Some new integral inequalities for functions whose nth derivatives in absolute value are (α, m)-convex functions

Imdat Iscan ${ }^{1}$, Huriye Kadakal ${ }^{2}$ and Mahir Kadakal ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences and Arts, Giresun University, Giresun-Turkey
${ }^{2}$ Institute of Science, Ordu University, Ordu, Turkey

Received: 24 February 2017, Accepted: 1 June 2017
Published online: 16 July 2017.

Abstract

In this paper, by using an integral identity together with both the Hölder and the Power-Mean integral inequality we established some new integral inequalities for functions whose nth derivatives in absolute value are (α, m)-convex functions.

Keywords: Convex function, (α, m)-convex function, Hölder integral inequality and power-mean integral inequality.

1 Introduction

In this work, we establish some new integral inequalities for functions whose nth derivatives in absolute value are (α, m)convex functions. Convexity theory has appeared as a powerful technique to study a wide class of unrelated problems in pure and applied sciences. For some inequalities, generalizations and applications concerning convexity see [5, 7-9, 12, $14,16-18,20]$. Recently, in the literature there are so many papers about n-times differentiable functions on several kinds of convexities. In references $[1,3,4,6,16,19,20]$, readers can find some results about this issue. Many papers have been written by a number of mathematicians concerning inequalities for different classes of (α, m)-convex functions see for instance the recent papers $[1,2,10,11,13,15]$ and the references within these papers.

Definition 1. A function $f: I \subseteq R \rightarrow R$ is said to be convex if the inequality

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

is valid for all $x, y \in \operatorname{Iand} t \in[0,1]$. If this inequality reverses, then fis said to be concave on interval $I \neq \varnothing$. This definition is well known in the literature.

In [18], G. Toader defined m-convexity as the following.

Definition 2. The functionf : $[0, b] \rightarrow R, b>0$, is said to be m-convex, where $m \in[0,1]$, if we have

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y)
$$

for all $x, y \in[0, b]$ and $t \in[0,1]$. Denote by $K_{m}(b)$ the set of the m-convex functions on $[0, b]$ for which $f(0) \leq 0$.
In [17], V.G. Miheşan defined (α, m)-convexity as the following.

Definition 3. The functionf: $[0, b] \rightarrow R, b>0$, is said to be (α, m)-convex, where $(\alpha, m) \in[0,1]^{2}$, if we have

$$
f(t x+m(1-t) y) \leq t^{\alpha} f(x)+m\left(1-t^{\alpha}\right) f(y)
$$

for all $x, y \in[0, b]$ and $t \in[0,1]$. Denote by $K_{m}^{\alpha}(b)$ the class of all (α, m)-convex functions on $[0, b]$ for which $f(0) \leq 0$. It can be easily seen that for $(\alpha, m)=(1, m),(\alpha, m)$-convexity reduces to m-convexity; $(\alpha, m)=(\alpha, 1),(\alpha, m)$-convexity reduces to α-convexity and for $(\alpha, m)=(1,1),(\alpha, m)$-convexity reduces to the concept of usual convexity defined on $[0, b], b>0$. For recent results and generalizations concerning (α, m)-convex functions, see ([2] and [15]).
Let $0<a<b$, throughout this paper we will use

$$
A(a, b)=\frac{a+b}{2}, L_{p}(a, b)=\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}}, a \neq b, p \in R, p \neq-1,0
$$

for the arithmetic, geometric, logarithmic, generalized logarithmic mean for $a, b>0$ respectively.

2 Main Results

Especially we note that;
(i) In case of $m=1$ and $\alpha=s$, the results are obtained in this paper reduce to the results obtained for s-convex functions in the first sense in [14].
(ii) In case of $\alpha=m=1$, the results are obtained in this paper reduce to the results obtained for convex functions in [16].
We will use the following Lemma [16] in order to obtain the main results.
Lemma 1. Let $f: I \subseteq R \rightarrow R$ be n-times differentiable mapping on I° for $n \in N$ and $f^{(n)} \in L[a, b]$, where $a, b \in I^{\circ}$ with $a<b$, we have the identity

$$
\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x=\frac{(-1)^{n+1}}{n!} \int_{a}^{b} x^{n} f^{(n)}(x) d x
$$

where an empty sum is understood to be nil.
Theorem 1. For all $n \in N$; let $f: I \subseteq[0, \infty) \rightarrow$ Rbe n-times differentiable function on I° and $a, b \in I^{\circ}$ with $a<b$. If $f^{(n)} \in L[a, b]$ and $\left|f^{(n)}\right|^{q}$ for $q>1$ is (α, m)-convex on $[a, b]$, then the following inequality holds.

$$
\left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \leq \frac{1}{n!}(b-a) L_{n p}^{n}(a, b)\left[\frac{f(b)-m f\left(\frac{a}{m}\right)}{\alpha+1}+m f\left(\frac{a}{m}\right)\right]^{\frac{1}{q}}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Proof. Since $\left|f^{(n)}\right|^{q}$ for $q>1$ is (α, m)-convex on $[a, b]$, using Lemma 1, the Hölder integral inequality and

$$
\left|f^{(n)}(x)\right|^{q}=\left|f^{(n)}\left(\frac{x-a}{b-a} b+m \frac{b-x}{b-a} \frac{a}{m}\right)\right|^{q} \leq\left[\frac{x-a}{b-a}\right]^{\alpha} f(b)+m\left[1-\left(\frac{x-a}{b-a}\right)^{\alpha}\right] f\left(\frac{a}{m}\right)
$$

we have

$$
\left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \leq \frac{1}{n!} \int_{a}^{b} x^{n}\left|f^{(n)}(x)\right| d x
$$

$$
\begin{aligned}
& \leq \frac{1}{n!}\left(\int_{a}^{b} x^{n p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left|f^{(n)}(x)\right|^{q} d x\right)^{\frac{1}{q}} \\
& \leq \frac{1}{n!}\left(\int_{a}^{b} x^{n p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left(\left[\frac{x-a}{b-a}\right]^{\alpha} f(b)+m\left[1-\left(\frac{x-a}{b-a}\right)^{\alpha}\right] f\left(\frac{a}{m}\right)\right) d x\right)^{\frac{1}{q}} \\
& =\frac{1}{n!}\left(\frac{b^{n p+1}}{n p+1}-\frac{a^{n p+1}}{n p+1}\right)^{\frac{1}{p}}\left(\frac{(b-a)^{\alpha+1}}{\alpha+1}\left[\frac{f(b)}{(b-a)^{\alpha}}-m \frac{f\left(\frac{a}{m}\right)}{(b-a)^{\alpha}}\right]+m \frac{f\left(\frac{a}{m}\right)}{(b-a)^{\alpha}}(b-a)^{\alpha+1}\right)^{\frac{1}{q}} \\
& =\frac{1}{n!}\left(\frac{b^{n p+1}-a^{n p+1}}{n p+1}\right)^{\frac{1}{p}}\left(\frac{b-a}{\alpha+1}\left[f(b)-m f\left(\frac{a}{m}\right)\right]+m f\left(\frac{a}{m}\right)(b-a)\right)^{\frac{1}{q}} \\
& =\frac{1}{n!}(b-a)^{\frac{1}{p}}\left[\frac{b^{n p+1}-a^{n p+1}}{(n p+1)(b-a)}\right]^{\frac{1}{p}}\left(\frac{b-a}{\alpha+1}\left[f(b)-m f\left(\frac{a}{m}\right)\right]+m f\left(\frac{a}{m}\right)(b-a)\right)^{\frac{1}{q}} \\
& =\frac{1}{n!}(b-a)^{\frac{1}{p}+\frac{1}{q}}\left[\frac{b^{n p+1}-a^{n p+1}}{(n p+1)(b-a)}\right]^{\frac{1}{p}}\left[\frac{f(b)-m f\left(\frac{a}{m}\right)}{\alpha+1}+m f\left(\frac{a}{m}\right)\right]^{\frac{1}{q}} \\
& =\frac{1}{n!}(b-a) L_{n p}^{n}(a, b)\left[\frac{f(b)-m f\left(\frac{a}{m}\right)}{\left.\alpha+m f\left(\frac{a}{m}\right)\right]^{\frac{1}{q}}}\right.
\end{aligned}
$$

This completes the proof of theorem.

Corollary 1. Under the conditions Theorem 1 for $n=1$ we have the following inequality,

$$
\left|\frac{f(b) b-f(a) a}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq L_{p}(a, b)\left[\frac{f(b)-m f\left(\frac{a}{m}\right)}{\alpha+1}+m f\left(\frac{a}{m}\right)\right]^{\frac{1}{q}}
$$

Theorem 2. For all $n \in N$; let $f: I \subseteq[0, \infty) \rightarrow R$ be n-times differentiable function and $0 \leq a<b$. If $\left|f^{(n)}\right|^{q} \in L[a, b]$ and $\left|f^{(n)}\right|^{q}$ for $q \geq 1$ is (α, m)-convex on $[a, b]$, then the following inequality holds.

$$
\begin{aligned}
& \left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \\
& \leq \frac{1}{n!}(b-a)^{1-\frac{1}{q}} L_{n}^{n\left(\frac{q-1}{q}\right)}(a, b)\left[\frac{M}{(b-a)^{\alpha}}\left[f(b)-m f\left(\frac{a}{m}\right)\right]+m(b-a) f\left(\frac{a}{m}\right) L_{n}^{n}(a, b)\right]^{\frac{1}{q}}
\end{aligned}
$$

where $M=M(a, b, \alpha, n)=\int_{a}^{b} x^{n}(x-a)^{\alpha} d x$.

Proof. From Lemma 1 and Power-mean integral inequality, we obtain

$$
\begin{aligned}
& \left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \leq \frac{1}{n!} \int_{a}^{b} x^{n}\left|f^{(n)}(x)\right| d x \\
& \leq \frac{1}{n!}\left(\int_{a}^{b} x^{n} d x\right)^{1-\frac{1}{q}}\left(\int_{a}^{b} x^{n}\left|f^{(n)}(x)\right|^{q} d x\right)^{\frac{1}{q}} \\
& \leq \frac{1}{n!}\left(\int_{a}^{b} x^{n} d x\right)^{1-\frac{1}{q}}\left(\int_{a}^{b} x^{n}\left(\left[\frac{x-a}{b-a}\right]^{\alpha} f(b)+m\left[1-\left(\frac{x-a}{b-a}\right)^{\alpha}\right] f\left(\frac{a}{m}\right)\right) d x\right)^{\frac{1}{q}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n!}\left(\int_{a}^{b} x^{n} d x\right)^{1-\frac{1}{q}}\left(\frac{f(b)}{(b-a)^{\alpha}} \int_{a}^{b} x^{n}(x-a)^{\alpha} d x+\frac{m f\left(\frac{a}{m}\right)}{(b-a)^{\alpha}} \int_{a}^{b} x^{n}\left[(b-a)^{\alpha}-(x-a)^{\alpha}\right] d x\right)^{\frac{1}{q}} \\
& =\frac{1}{n!}\left(\frac{b^{n+1}-a^{n+1}}{n+1}\right)^{1-\frac{1}{q}}\left(\frac{f(b)}{(b-a)^{\alpha}} M+m f\left(\frac{a}{m}\right)\left(\frac{b^{n+1}-a^{n+1}}{n+1}\right)-\frac{m f\left(\frac{a}{m}\right)}{(b-a)^{\alpha}} M\right)^{\frac{1}{q}} \\
& =\frac{1}{n!}(b-a)^{1-\frac{1}{q}}\left[\frac{b^{n+1}-a^{n+1}}{(n+1)(b-a)}\right]^{1-\frac{1}{q}} \\
& \times\left(\frac{M}{(b-a)^{\alpha}}\left[f(b)-m f\left(\frac{a}{m}\right)\right]+m(b-a) f\left(\frac{a}{m}\right)\left[\frac{b^{n+1}-a^{n+1}}{(n+1)(b-a)}\right]\right]^{\frac{1}{q}} \\
& =\frac{1}{n!}(b-a)^{1-\frac{1}{q}} L_{n}^{n\left(\frac{q-1}{q}\right)}(a, b)\left[\frac{M}{(b-a)^{\alpha}}\left[f(b)-m f\left(\frac{a}{m}\right)\right]+m(b-a) f\left(\frac{a}{m}\right) L_{n}^{n}(a, b)\right]^{\frac{1}{q}}
\end{aligned}
$$

This completes the proof of theorem.
Corollary 2. Under the conditions Theorem 2.2 for $n=1$ we have the following inequality.

$$
\left|\frac{f(b) b-f(a) a}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq A^{\frac{q-1}{q}}(a, b)\left[\frac{(\alpha+1) b+a}{(\alpha+1)(\alpha+2)}\left(f(b)-m f\left(\frac{a}{m}\right)\right)+m f\left(\frac{a}{m}\right) A(a, b)\right]^{\frac{1}{q}}
$$

Proposition 1. Under the conditions Corollary 2 for $q=1$ we have the following inequality.

$$
\left|\frac{f(b) b-f(a) a}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{(\alpha+1) b+a}{(\alpha+1)(\alpha+2)}\left(f(b)-m f\left(\frac{a}{m}\right)\right)+m f\left(\frac{a}{m}\right) A(a, b)
$$

Corollary 3. Under the conditions Theorem 2 for $q=1$ we have the following inequality.

$$
\left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \leq \frac{1}{n!}\left[\frac{M}{(b-a)^{\alpha}}\left(f(b)-m f\left(\frac{a}{m}\right)\right)+m(b-a) f\left(\frac{a}{m}\right) L_{n}^{n}(a, b)\right] .
$$

Theorem 3. For all $n \in N$; let $f: I \subseteq[0, \infty) \rightarrow R$ be n-times differentiable function and $0 \leq a<b$. If $\left|f^{(n)}\right|^{q} \in L[a, b]$ and $\left|f^{(n)}\right|^{q}$ for $q>1$ is (α, m)-convex on $[a, b]$, then the following inequality holds.

$$
\begin{aligned}
& \left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \\
& \leq \frac{1}{n!}(b-a) L_{p\left(n-\frac{1}{q}\right)}^{\frac{q n-1}{q}}(a, b)\left(\left[f(b)-m f\left(\frac{a}{m}\right)\right]\left[\frac{(\alpha+1) b+a}{(\alpha+1)(\alpha+2)}\right]+m f\left(\frac{a}{m}\right) \frac{a+b}{2}\right)^{\frac{1}{q}}
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Proof. Since $\left|f^{(n)}\right|^{q}$ for $q>1$ is (α, m)-convex on $[a, b]$, using Lemma 2.1 and the Hölder integral inequality, we have the following inequality.

$$
\begin{aligned}
& \left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \leq \frac{1}{n!} \int_{a}^{b} x^{n-\frac{1}{q}} \cdot x^{\frac{1}{q}}\left|f^{(n)}(x)\right| d x \\
& \leq \frac{1}{n!}\left(\int_{a}^{b}\left(x^{n-\frac{1}{q}}\right)^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left(x^{\frac{1}{q}}\right)^{q}\left|f^{(n)}(x)\right|^{q} d x\right)^{\frac{1}{q}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{n!}\left(\int_{a}^{b} x^{p \frac{q n-1}{q}} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} x\left(\left[\frac{x-a}{b-a}\right]^{\alpha} f(b)+m\left[1-\left(\frac{x-a}{b-a}\right)^{\alpha}\right] f\left(\frac{a}{m}\right)\right) d x\right)^{\frac{1}{q}} \\
& =\frac{1}{n!}\left(\int_{a}^{b} x^{p \frac{q n-1}{q}} d x\right)^{\frac{1}{p}}\left(\left[\frac{f(b)}{(b-a)^{\alpha}}-\frac{m f\left(\frac{a}{m}\right)}{(b-a)^{\alpha}}\right] \int_{a}^{b} x(x-a)^{\alpha} d x+m f\left(\frac{a}{m}\right) \int_{a}^{b} x d x\right)^{\frac{1}{q}} \\
& =\frac{1}{n!}(b-a)^{\frac{1}{p}}\left[\frac{b^{p \frac{q n-1}{q}+1}-a^{p \frac{q n-1}{q}+1}}{\left(p^{\frac{q n-1}{q}}+1\right)(b-a)}\right]^{\frac{1}{p}} \\
& \times\left(\left[f(b)-m f\left(\frac{a}{m}\right)\right]\left[\frac{(b-a)^{2}}{\alpha+2}+a \frac{b-a}{\alpha+1}\right]+m f\left(\frac{a}{m}\right)\left[\frac{(b-a)(b+a)}{2}\right]\right)^{\frac{1}{q}} \\
& =\frac{1}{n!}(b-a) L_{p\left(n-\frac{1}{q}\right)}^{\frac{q n-1}{q}}(a, b)\left(\left[f(b)-m f\left(\frac{a}{m}\right)\right]\left[\frac{(\alpha+1) b+a}{(\alpha+1)(\alpha+2)}\right]+m f\left(\frac{a}{m}\right) \frac{a+b}{2}\right)^{\frac{1}{q}}
\end{aligned}
$$

This completes the proof of theorem.
Corollary 4. Under the conditions Theorem 2.3 for $n=1$ we have the following inequality,

$$
\left|\frac{f(b) b-f(a) a}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq A^{\frac{1}{p}}(a, b)\left(\left[f(b)-m f\left(\frac{a}{m}\right)\right]\left[\frac{(\alpha+1) b+a}{(\alpha+1)(\alpha+2)}\right]+m f\left(\frac{a}{m}\right) \frac{a+b}{2}\right)^{\frac{1}{q}}
$$

3 Conclusions

In this paper, by using an integral identity we obtained some new integral inequalities for functions whose nth derivatives in absolute value are (α, m)-convex functions.

References

[1] S.-P. Bai, S.-H. Wang and F. Qi, "Some Hermite-Hadamard type inequalities for n-time differentiable (a,m)-convex functions", Jour. of Ineq. and Appl., 2012, 2012:267.
[2] M. K. Bakula, M. E. Özdemir and J. Pečarić, "Hadamard type inequalities for m-convex and (α, m)-convex functions", J. Inequal. Pure \& Appl. Math., 9(2008), Article 96, [http://jipam.vu.edu.au].
[3] P. Cerone, S.S. Dragomir and J. Roumeliotis, "Some Ostrowski type inequalities for n-time differentiable mappings and applications", Demonstratio Math., 32 (4) (1999), 697-712.
[4] P. Cerone, S.S. Dragomir, J. Roumeliotis and J. Sunde, "A new generalization of the trapezoid formula for n-time differentiable mappings and applications", Demonstratio Math., 33 (4) (2000), 719-736.
[5] S.S. Dragomir and C.E.M. Pearce, "Selected Topics on Hermite-Hadamard Inequalities and Applications", RGMIA Monographs, Victoria University, 2000, online: http://www.staxo.vu.edu.au/RGMIA/monographs/hermitehadamard.html.
[6] D.-Y. Hwang, "Some Inequalities for n-time Differentiable Mappings and Applications", Kyung. Math. Jour., 43 (2003), 335-343.
[7] İ. İşcan, "Ostrowski type inequalities for p-convex functions", New Trends in Mathematical Sciences, 4 (3) (2016), 140-150.
[8] İ. İşcan and S. Turhan, "Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral", Moroccan J. Pure and Appl. Anal.(MJPAA), Volume 2(1) (2016), 34-46.
[9] İ. İşcan, "Hermite-Hadamard type inequalities for harmonically convex functions", Hacettepe Journal of Mathematics and Statistics, Volume 43 (6) (2014), 935-942.
[10] İ. İşcan, A new generalization of some integral inequalities for (α, m)-convex functions, Mathematical Sciences 2013, 7:22,1-8, doi:10.1186/2251-7456-7-22.
[11] İ. İşcan, Hermite-Hadamard type inequalities for functions whose derivatives are (α, m)-convex, International Journal of Engineering and Applied sciences (EAAS), 2 (3) (2013), 69-78.
[12] İ. İşcan, New estimates on generalization of some integral inequalities for s-convex functions and their applications, International Journal of Pure and Applied Mathematics, 86 (4) (2013), 727-746.
[13] İ. İşcan, New estimates on generalization of some integral inequalities for (α, m)-convex functions, Contemporary Analysis and Applied Mathematics, Vol. 1, No. 2 (2013), 253-264.
[14] M. Kadakal, H. Kadakaland İ. İşcan, "Some New Integral Inequalities for n - Times Differentiable s-Convex Functions in the First Sense", Turkish Journal of Analysis and Number Theory, 2017, (Accepted).
[15] M. Klaričić, Bakula, J. Pečarić, and M. Ribičić, "Companion inequalities to Jensen's inequality for m-convex and (α, m)-convex functions", J. Inequal. Pure \& Appl. Math., 7(2006), Article 194.
[16] S. Maden, H. Kadakal, M. Kadakal and İ. İşcan, "Some new integral inequalities for n-times differentiable convex and concave functions". Available online at: https://www.researchgate.net/publication/312529563.
[17] V. G. Miheşan, "A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex", Cluj-Napoca (Romania) (1993).
[18] G. Toader, "Some generalizations of the convexity, Proceedings of The Colloquium On Approximation and Optimization", Univ. Cluj-Napoca, Cluj-Napoca, 1984, 329-338.
[19] S.H. Wang, B.-Y. Xi and F. Qi, "Some new inequalities of Hermite-Hadamard type for n-time differentiable functions which are m-convex", Analysis (Munich), 32 (2012), 247-262.
[20] Ç. Yıldız, "New inequalities of the Hermite-Hadamard type for n-time differentiable functions which are quasiconvex", Journal of Mathematical Inequalities, 10, 3(2016), 703-711.

