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Abstract: In this paper, we introduce the concepts of second-order radial epiderivative and second-order generalized radial
epiderivative for nonconvex set-valued maps. We also investigate some of their properties. We give existence theoremsfor the
second-order generalized radial epiderivatives.
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1 Introduction

In set-valued analysis the notion of derivative for set-valued maps has been formulated in different ways ( see [1] to

[31]). Kasımbeyli introduced in [22] the notion of the radial epiderivative of a set-valued map,with its help formulated

optimality conditins in single valued and set-valued optimization without convexity assumption. This definition of the

radial epiderivative given by Kasımbeyli is different fromthat of Flores- Bazan [7] and is similar to the definition of the

contingent epiderivative given by Jahn and Rauh [19].

Kasımbeyli andİnceoğlu introduced in [24] the notion of generalized radial epiderivative for set-valued maps and

investigated existence conditions for generalized radialepiderivative. They established the relationship betweenthe

radial epiderivative and the generalized radial epiderivative. By using the generalized radial epiderivative, Kasımbeyli

andİnceoğlu presented the necessary and sufficient optimality conditions for set-valued optimization.

In the last years, the second-order optimality condition and higher-order optimality conditions have been widely

investigated in set-valued optimization [3], [4], [5], [6],[9],[11],[12], [13], [14], [16],[18],[25], [23], [21], [28], [31]. It

can be seen that a second-order contingent set, introduced by Aubin and Frankowska [2], and a second-order asymptotic

contingent cone, introduced by Penot [28], play a important role in establishing second-order optimality conditions. Jahn

et al. proposed the second-order contingent derivative andthe second-order contingent epiderivative in terms of the

second-order contingent set [18], introduced by Aubin and Frankowska [2]. They obtained the second-order optimality

conditions by using these derivatives in set-valued optimization.

Khan and Tammer gave new second-order optimality conditions in set-valued optimization. They presented an extension

of the well-known Dubovitski-Milutin approach to set-valued optimization [25].

Anh and Khanh introduced the higher-order radial sets and corresponding derivatives. They proposed their properties

and basic calculus rules. They established both necessary and sufficient higher-order conditions for weak efficiency in
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set-valued vector optimization problem [4].

Anh and Khanh gave both necessary and sufficient higher-order conditions for various kinds of proper solutions to

nonsmooth vector optimization problem in terms of higher-order radial sets and radial derivatives [5]. However, the

results of second-order radial epiderivatives for set-valued optimization problems still need to be addressed.

Motivated by the work above in [4], [5], [18], [25], we introduce the notions of second-order radial epiderivative and the

second-order generalized radial epiderivative and discuss the relationship the second-order radial epiderivative and the

second-order generalized radial epiderivative. We also have existence theorems of second-order radial epiderivatives.

This paper is divided into three sections. In Section 2, we recall some basic concepts. In Section 3, we introduce the

second-order radial epiderivative and the second-order generalized radial epiderivative and give the existence theorems

and some of their basic properties.

2 Preliminaries

Throughout this paper, let(X,‖.‖X) and (Y,‖.‖Y) be real normed spaces and letY be partially ordered by a closed

convex pointed coneC⊂Y. Let F : X → 2Y be a set-valued map, let(x̄, ȳ) ∈ graph(F), let (ū, v̄) ∈ X×Y.

We recall the concept of the radial epiderivative and the generalized radial epiderivative introduced by Kasımbeyli [22],

and Kasımbeyli anḋInceoğlu [24], respectively, together with some standard notions.

Definition 1. Let U be a nonempty subset of a real normed space(Z,‖.‖Z) , and letz̄∈ cl (U) (closure of U) be a given

element. The closed radial cone R(U, z̄) of U at z̄∈ cl (U) is the set of all z∈ Z such that there areλn > 0 and a sequence

(zn)n∈N ⊂ Z with limn→∞ zn = z so that̄z+λnzn ∈U, for all n ∈ N [7], [ 24], [ 30].

It follows from this definitions thatR(U, z̄) = cl (cone(U − z̄)), where cone denotes the conic hull of a set, which is the

smallest cone containingU − z̄ [7], [8], [24].

Definition 2. Let (X,‖.‖X) and(Y,‖.‖Y) be real normed spaces, let F: X → 2Y be a set-valued map.

(i) The set

graph(F) = {(x,y) ∈ X×Y | y∈ F (x)}

is called the graph of F;

(ii) The set

dom(F) = {x∈ X | F (x) 6= /0}

is called the domain of F;

(iii) Let Y be partially ordered by a proper, convex, and pointed cone C⊂Y. The set

epi(F) = {(x,y) ∈ X×Y | y∈ F (x)+C}

is called the epigraph of F,

(iv) Let C⊂Y a proper, convex and pointed cone. The profile map PF : X → 2Y is defined by

PF (x) = F (x)+C,

for every x∈ dom(F) .

(v) Let (x̄, ȳ) ∈ graph(F) . A set valued map DRF (x̄, ȳ) : X → 2Y whose graph coincides with the contingent cone to

graph of F at(x̄, ȳ) , that is

graph(DRF (x̄, ȳ)) = R(graph(F) ,(x̄, ȳ)) ,
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is called radial derivative of F at(x̄, ȳ) [7],[ 30].

Now, we give the definition of the radial epiderivative givenby Kasımbeyli without convexity and boundedness [22].

Definition 3. Let Y be partially ordered by a convex cone C⊂ Y, let S be a nonempty subset of X and let F: S→ 2Y be

a set-valued map. Let a pair(x̄, ȳ) ∈ graph(F) be given. A single-valued map DrF (x̄, ȳ) : X →Y whose epigraph equals

the radial cone to the epigraph of F at(x̄, ȳ) , i.e.

epi(DrF (x̄, ȳ)) = R(epi(F) ,(x̄, ȳ)) ,

is called radial epiderivative of F at(x̄, ȳ) .

To give the definition of the generalized radial epiderivative, we recall the minimality concept [17],[26].

Definition 4. Let (Y,‖.‖Y) be a real normed space partially ordered by a convex cone C⊂Y. Let D be a subset of Y and

let ȳ∈ D.

(i) The element̄y is said to be a minimal element of D, if D ∩ ({ȳ}−C) = {ȳ}.

(ii) Let the ordering cone have a nonempty interior int(C). The element̄y is said to be a weakly minimal element of D,

if D ∩ ({ȳ}− int (C)) = /0 . The set of all minimal, weakly minimal elements of D with respect to the ordering cone

C is denoted by MinD, W−MinD, respectively.

Now, we recall the generalized radial epiderivative for set-valued maps given by Kasımbeyli andİnceoğlu in [24].

Definition 5. A set valued map DgrF (x̄, ȳ) : X → 2Y is called the generalized radial epiderivative of F at(x̄, ȳ) if

DgrF (x̄, ȳ) (x) = Min(G(x) ,C) ,

where G: X → 2Y is the set-valued map given by

G(x) = {y∈Y | (x,y) ∈ R(epi(F) ,(x̄, ȳ))} ,∀x∈ X.

3 Second-order radial set and second-order radial epiderivatives

In this section, we propose the definitions of the second-order radial epiderivatives. By using these definitions, we prove

existence theorem and give some of their properties and optimality conditions.

Anh and Khanh definedm-th-order radial set andm-th-order radial derivative [5]. Based on this, we give the following

definitions of second-order radial set and second-order radial derivative.

Definition 6. Let (X,‖.‖X) be a real normed space, let S be a nonempty subset of X, letx̄ ∈ cl (S) and let w∈ X The

second-order radial set of S at̄x with respect to w is

R2 (S, x̄,w) =
{

x∈ X | ∃tn > 0,∃xn → x,∀n, x̄+ tnw+ t2
nxn ∈ S

}

. (1)

It is also clear that R2 (S, x̄,0X) = R(S, x̄), 0X the zero element of X.

The following definition was presented by Ha in [15].
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Definition 7. Let F : X → 2Y be a set-valued map, let(x̄, ȳ) ∈ graph(F) , let (ū, v̄) ∈ X ×Y. The second-order radial

derivative of F at(x̄, ȳ) with respect to(ū, v̄) is the set-valued map D2RF (x̄, ȳ, ū, v̄) : X → 2Y whose graph is

graph
(

D2
RF (x̄, ȳ, ū, v̄)

)

= R2(graph(F) ,(x̄, ȳ) ,(ū, v̄)) . (2)

The relation (2) can be expressed equivalently by

D2
RF (x̄, ȳ, ū, v̄)(x) =

{

y∈Y | ∃tn > 0,∃xn → x,∃yn → y,∀n,

ȳ+ tnv̄+ t2
nyn ∈ F

(

x̄+ tnū+ t2
nxn

)

}

.

The following definition is a generalization given by Kasımbeyli and Kasımbeyli anḋInceoğlu, respectively [22],[?].

Definition 8. Let F : X → 2Y be a set-valued map, let(x̄, ȳ) ∈ graph(F) , let (ū, v̄) ∈ X×Y.

(i) A single-valued map D2r F (x̄, ȳ, ū, v̄) : X →Y whose epigraph equals the second-order radial set to the epigraph of

F at (x̄, ȳ) with respect to(ū, v̄), i.e.,

epi
(

D2
r F (x̄, ȳ, ū, v̄)

)

= R2 (epi(F) ,(x̄, ȳ) ,(ū, v̄)) , (3)

is called the second-order radial epiderivative.

(ii) A set-valued map D2grF (x̄, ȳ, ū, v̄) : X → 2Y is called the second-order generalized radial epiderivative of F at(x̄, ȳ)

with respect to(ū, v̄) if

D2
grF (x̄, ȳ, ū, v̄)(x) = Min

(

G2 (x) ,C
)

,x∈ dom
(

G2 (x)
)

,

where G2 : X → 2Y is a set-valued map defined by

G2 (x) =
{

y∈Y | (x,y) ∈ R2(epi(F) ,(x̄, ȳ) ,(ū, v̄))
}

. (4)

Example 1.Let F : R→ 2R be a set-valued map given by

F (x) = {y∈ R | y≥ x} , for all x∈ R.

Let (x̄, ȳ) = (0,0) and let(ū, v̄) = (1,0) . Then

R2 (epi(F) ,(0,0) ,(1,0)) =
{

cz∈ R
2 | ∃tn > 0,∃(zn)→ z, for all n, tn (1,0)+ t2

nzn ∈ epiF
}

. (5)

The condition

tn (1,0)+ t2
nzn ∈ epi(F)

is equivalent to

t2
nzn2 ≥ tn+ t2

nzn1;

hence,

zn2 ≥ (1+ tnzn1)
2

Sincetn > 0 andzn2 → z2, zn1 → z1, we obtain that

R2 (epi(F) ,(0,0) ,(1,0)) = R× [1,0) .

Consequently, we have

G2 (x) = [1,0) ,
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for everyx∈ R. On the other hand,

D2
r F (0,0,1,0)(x) = {1} ,

for everyx∈ R.

D2
grF (0,0,1,0)(x) = Min

(

G2 (x) ,R+

)

= {1} ,

for everyx∈ R.

Proposition 1.For every x∈ dom
(

D2
RF (x̄, ȳ, ū, v̄)

)

, the following inclusion holds:

D2
RF (x̄, ȳ, ū, v̄) (x)+CY ⊆ D2

RPF (x̄, ȳ, ū, v̄)(x) .

Proof.Let y∈ D2
RF (x̄, ȳ, ū, v̄)(x) and letc∈C be arbitrarily chosen. Then, we have

(x,y) ∈ R2 (graph(F) ,(x̄, ȳ) ,(ū, v̄)) .

This means the existence oftn > 0 and(xn,yn)→ (x,y) such that for alln∈ N

ȳ+ tnv̄+ t2
nyn ∈ F

(

x̄+ tnū+ t2
nxn

)

.

Setting

ȳn = yn+ c,

we get that

ȳ+ tnv̄+ t2
nȳn = ȳ+ tnv̄+ t2

nyn+ t2
nc∈ F

(

x̄+ tnū+ t2
nxn

)

+C,

and this ensures that

(x̄, ȳ)+ tn(ū, v̄)+ t2
n (xn,yn) ∈ epi(F) .

As ȳn → y+ c, we conclude that

y+ c∈ D2
RPF (x̄, ȳ, ū, v̄)(x) .

This completes the proof.

Corollary 1. For every x∈ dom
(

D2
RPF (x̄, ȳ, ū, v̄)

)

, the following inclusion holds:

D2
RPF (x̄, ȳ, ū, v̄) (x)+CY = D2

RPF (x̄, ȳ, ū, v̄)(x)

Proof.The inclusion

D2
RPF (x̄, ȳ, ū, v̄)(x)⊆ D2

RPF (x̄, ȳ, ū, v̄) (x)+C

is trivial. From Proposition1 and the identityPF (.)+C= PF (.), we get this inclusion

D2
RPF (x̄, ȳ, ū, v̄)(x)+C⊆ D2

RPF (x̄, ȳ, ū, v̄)(x) .

Before we give an existence theorems for second-order generalized radial epiderivative, we remind that a convex coneC

is called regular (see ref. [27]) if eachC−decreasing andC−lower bounded sequence converges to an element ofC.

The proof of the next theorem will be used the following lemmagiven by Sonntag-Zalinescu in [29].

Lemma 1.Let Y be a real normed space and let D⊂Y. Then
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(i) If the cone C is regular and D is closed and C−lower bounded, thenmin(D,C) 6= /0 and the domination property

holds, that is, D⊂ min(D,C)+C.

(ii) Let the cone C has a compact base and let D be closed and convex.If min(D,C) 6= /0 then the domination property

holds.

Next, we give the existence theorems for second-order generalized radial epiderivative

Theorem 1.Let the convex cone C⊂Y be regular. For every x∈ dom
(

G2
)

, let the set D2grF (x̄, ȳ, ū, v̄) (x) have a C-lower

bound. Then for every x∈ dom
(

G2
)

, D2
grF (x̄, ȳ, ū, v̄) (x) exists. Moreover, the following equality holds:

epi
(

D2
grF (x̄, ȳ, ū, v̄)

)

= R2 (epi(F) ,(x̄, ȳ) ,(ū, v̄)) . (6)

Proof.Because the second-order radial set is always closed in a real normed space, the setG2 (x) is closed. AsG2 (x) has a

C− lower bound andC is a regular cone, we haveD2
grF (x̄, ȳ, ū, v̄)(x) 6= /0 by the Lemma1. Moreover, by the same lemma,

G2 (x)⊆ D2
grF (x̄, ȳ, ū, v̄) (x)+C, (7)

for everyx∈ dom(G2(x)).

For the inverse inclusion, lety∈ D2
grF (x̄, ȳ, ū, v̄)(x)+C, which implies that

y∈ G2 (x)+C. (8)

It follows from the definition of the second-order radial derivative that

G2 (x) = D2
RPF (x̄, ȳ, ū, v̄) (x) (9)

From (8) and (9), we get

y∈ D2
RPF (x̄, ȳ, ū, v̄)(x)+C. (10)

In view of Corollary1 y∈ D2
RPF (x̄, ȳ, ū, v̄) (x) = G2 (x), which confirms the inclusion

D2
grF (x̄, ȳ, ū, v̄) (x)+C⊆ D2

RPF (x̄, ȳ, ū, v̄)(x) .

Therefore,

D2
grF (x̄, ȳ, ū, v̄)(x)+C= G2 (x) = D2

RPF (x̄, ȳ, ū, v̄)(x) . (11)

From (11) and the definition of the second-order radial derivative,

epi
(

D2
grF (x̄, ȳ, ū, v̄)

)

= graph
(

D2
RPF (x̄, ȳ, ū, v̄)(x)

)

= R2 (graph(PF) ,(x̄, ȳ) ,(ū, v̄)) = R2 (epi(F) ,(x̄, ȳ) ,(ū, v̄)) ,

which complete the proof.

Proposition 2. Let the convex cone C⊂ Y be regular. Let F: X → 2Y be a set-valued map, let(x̄, ȳ) ∈ graph(F), let

(ū, v̄) ∈ X×Y. For every x∈ dom
(

G2 (x)
)

, let the set G2 (x) have a C− lower bound. The following assertion is satisfied:

epi
(

D2
grF (x̄, ȳ, ū, v̄)

)

⊂ R2 (dom(F) , x̄, ū)×Y.
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Proof.Let (x̄, ȳ) ∈ epi
(

D2
gr (x̄, ȳ, ū, v̄)

)

. Then(x̄, ȳ) ∈ R2 (epi( f ) ,(x̄, ȳ) ,(ū, v̄)) It follows from the definition of the second-

order generalized radial epiderivative that there exist sequencestn > 0 and(xn,yn) with (xn,yn)→ (x,y) such that

(x̄, ȳ)+ tn(ū, v̄)+ t2
n (xn,yn) ∈ epi(F) , forall n∈ N,

ȳ+ tnv̄+ t2
n ∈ F

(

x̄+ tnū+ t2
nxn

)

+C, forall n∈ N.

Therefore we have ¯x+ tnū+ t2
nxn ∈ dom(F). This implies that(x,y) ∈ R2dom(F), x̄, ū×Y.

Proposition 3. Let A⊂ X be nonempty set and let C⊂ Y be a convex cone with int(C) 6= /0 . Let F : A⊂ X → 2Y be a

set-valued map, let E= dom
(

D2
grF (x̄, ȳ, ū, v̄)

)

. Then

⋃

x∈E

D2
grF (x̄, ȳ, ū, v̄)⊂ R2 (F (A)+C, ȳ, v̄)

Proof. Let y ∈ D2
grF(x̄, ȳ, ū, v̄)(E) and letx ∈ E be the corresponding element such thaty ∈ D2

grF(x̄, ȳ, ū, v̄)(x). Then,

(x,y) ∈ R2(epi(F),(x̄, ȳ),(ū, v̄)). There existtn > 0, (xn,yn)→ (x,y) such that ,for alln∈ N,

ȳ+ tnv̄+ t2
nyn ∈ F

(

x̄+ tnū+ t2
nxn

)

+C⊂ F (A)+C

Sinceλn > 0 andyn → y, we gety ∈ R2(F(A)+C, ȳ, v̄). Becausey is chosen arbitrarily, we haveD2
grF(x̄, ȳ, ū, v̄)(E) ⊂

R2(F(A)+C, ȳ, v̄).

The following result establish relationship between the second-order radial epiderivative and the second-order generalized

radial epiderivative.

Proposition 4.Assume that the second-order radial epiderivative D2
r F (x̄, ȳ, ū, v̄) of F : X → 2Y at (x̄, ȳ) ∈ graph(F) with

respect to(ū, v̄) ∈ X×Y exist. Then

D2
grF (x̄, ȳ, ū, v̄)(x) = Min

(

D2
r F (x̄, ȳ, ū, v̄) ,CY

)

,

for all x ∈ dom
(

D2
r F (x̄, ȳ, ū, v̄)

)

.

Proof. It follows from the Definition8 thatD2
r F (x̄, ȳ, ū, v̄)

epi
(

D2
r F (x̄, ȳ, ū, v̄)

)

= R2 (epi(F) ,(x̄, ȳ) ,(ū, v̄)) = graph
(

D2
RPF (x̄, ȳ, ū, v̄)

)

.

Hence,
{

D2
r F (x̄, ȳ, ū, v̄)(x)

}

+CY = D2
RPF (x̄, ȳ, ū, v̄)(x) , (12)

for everyx∈ dom
(

D2
RPF (x̄, ȳ, ū, v̄)

)

. In view of the Definition8 and the (12) equality, the second-order generalized radial

epiderivativeD2
grF (x̄, ȳ, ū, v̄) : X → 2Y is given by

D2
grF (x̄, ȳ, ū, v̄)(x) = Min

(

D2
r F (x̄, ȳ, ū, v̄) ,CY

)

.

4 Conclusion

In this study, we introduced the two new concepts called second-order radial epiderivative and second-order generalized

radial epiderivative. We gave some properties of these epiderivatives. We proved the existence theorems for second-order

radial epiderivatives.

c© 2017 BISKA Bilisim Technology

www.ntmsci.com


155 G. Inceoglu: Existence theorems for second-order radial epiderivatives

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. Allauthors read and approved the final manuscript.

References

[1] Aubin, J.P.,1981, Contingent Derivatives of Set-Valued Maps and Existence of Solutions to Nonlinear Inclusions and Differential

Inclusions. In: Nachbin, L (ed.) Mathematics Analysis and Applications, part A, 160-229, Academic Press, New York.

[2] Aubin, J.P., Frankowska, H., 1990, Set Valued Analysis,Birkhauser, Boston.

[3] Aghezzaf, B. and Hachimi, M., 1999, Second Order Optimality Conditions in Multiobjective Optimization Problems,J. Optim.

Theory Apply., 102,1,37-50.

[4] Anh, N.L.H., and Khanh, P.Q., 2013, Higher-Order Optimality Conditions in Set-Valued optimization Using Radial Sets and Radial

Derivatives. J. Glob Optim.,56,2,519-536.

[5] Anh, N.L.H. and Khanh, P.Q., 2014, Higher-Order optimality Conditions for Proper Efficiency in Nonsmooth Vector Optimization

Using Radial Sets and Radial Derivatives,J. Glob Optim., 58,4, 693-709.

[6] Anh, N.L.H. Khanh, P.Q. and Tung, L.T., 2011, Higher-Order Radial Derivatives and Optimality Conditions in Nonsmooth Vector

Optimization, Nonlinear Anal.Theory Meth.Appl.,74,7365-7379.

[7] Bazan, F.F., 2001, Optimality Conditions in Nonconvex Set-Valued Optimization, Mathematical Methods of Operations

Research,53, 403-417.

[8] Bazan, F.F., 2003, Radial Epiderivatives and Asymptotic Functions in Nonconvex Vector Optimization, SIAM J. Optimization,

14,284-305.

[9] Bigi, G. and Castellani, M.,2000, Second Order Optimality Conditions for Differentiable Multiobjective Problems, RARIO

Operations Research, 34,411-426.

[10] Chen, G.Y. and Jahn, J., 1998, Optimality Conditions for Set-Valued Optimization Problems, Mathematical Methodsof Operations

Research, 48,187-200.

[11] Cambini, A. and Martein, L., 2002, First and Second Order Optimality Conditions in Vector Optimization,Journal ofStatistics and

Management Systems,5,295-319.

[12] Cambini, A., Martein, L. and Vlach,M., 1999, Second Order Tangent Sets and Optimality Conditions, Matematica Japonica,

49,451-461.

[13] Giorgi, G., Jimenez, B. and Novo, V., 2010, An Overview of Second Order Tangent Sets and Their Application to Vector

Optimization, SeMA Journal,52, 1, 73-96.

[14] Gutierrez,C., Jimenez,B. and Novo, V., 2009, New Second-Order Directional Derivative and Optimality Conditionsin Scalar and

Vector Optimization, J. Optim. Theory Appl., 142,85-106.

[15] Ha,T.D.X., 2009, Optimality conditions for several types of efficient solutions of set-valued optimization problems,in: P. Pardolos,

Th.M. Rassis, A.A. Khan (Eds.), Nnlinear Analysis and Variational Problems, Springer, p.305-324(Chapter 21).

[16] Hachimi, M. and Aghezzaf, B., 2007, New Results on Second-Order Optimality Conditions in Vector Optimization Problems, J.

Optim. Theory Appl.,135,117-133.

[17] Jahn,J., 1986, Mathematical vector optimization in partially ordered linear space, Peter Lang, Frankfurt.

[18] Jahn,J., Khan,A.A., and Zeillinger, P., 2005, Second Order Optimality Conditions in Set Optimization, J. Optim. Theory Apply.,

125,2,331-347.

[19] Jahn, J. and Rauh, R.,1997, Contingent Epiderivativesand Set-Valued Optimization Mathematical Methods of Operations

Research, 46,193-211.

[20] Jimenez, B. and Novo, V., 2003, Second Order Necessary Conditions in Set Constrained Differentiable Vector Optimization,

Mathematical Methods of Operations Research, 58,299-317.

c© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 2, 148-156 (2017) /www.ntmsci.com 156

[21] Jimenez, B. and Novo, V.,2004, Optimality Conditions in Differentiable Vector Optimization via Second-Order Tangent Sets,

Appl. Math. Optim., 49,123-144.

[22] Kasımbeyli,R.,2009 Radial Epiderivatives and Set-Valued Optimization, Optimization,58,5,519-532.

[23] Kalashnikov, V., Jadamba, B. and Khan,A.A., 2006, First and Second- Order Optimality Condition in Set-Optimization, In

Optimization with Multivalued Mappings, Edited by: Dempe,S and Kalashnikov, V. , Berlin, Heidelberg: Springer Verlag, 265-

276.
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