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Abstract: In this paper, we introduce the concepts of second-orderalragpiderivative and second-order generalized radial
epiderivative for nonconvex set-valued maps. We also tigete some of their properties. We give existence theorfnghe
second-order generalized radial epiderivatives.
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1 Introduction

In set-valued analysis the notion of derivative for setieal maps has been formulated in different ways ( 4¢éo[
[31]). Kasimbeyli introduced in42] the notion of the radial epiderivative of a set-valued maith its help formulated
optimality conditins in single valued and set-valued ojtetion without convexity assumption. This definition oéth
radial epiderivative given by Kasimbeyli is different frahat of Flores- Bazan7] and is similar to the definition of the
contingent epiderivative given by Jahn and Ral@.[

Kasimbeyli andinceoglu introduced inJ4] the notion of generalized radial epiderivative for seleal maps and
investigated existence conditions for generalized raetierivative. They established the relationship betwien
radial epiderivative and the generalized radial epidérkeaBy using the generalized radial epiderivative, Kaseyli
andinceoglu presented the necessary and sufficient optinmalitditions for set-valued optimization.

In the last years, the second-order optimality conditiod d&mgher-order optimality conditions have been widely
investigated in set-valued optimizatio8][[4], [5], [6].[9].[11,[12, [13], [14], [16],[18,[25], [23], [21], [28], [3]]. It

can be seen that a second-order contingent set, introdyc&dtin and Frankowska?], and a second-order asymptotic
contingent cone, introduced by Pen®8], play a important role in establishing second-order optitpy conditions. Jahn

et al. proposed the second-order contingent derivativetaedsecond-order contingent epiderivative in terms of the
second-order contingent sdtf, introduced by Aubin and Frankowska][ They obtained the second-order optimality
conditions by using these derivatives in set-valued optitidn.

Khan and Tammer gave new second-order optimality conditioiset-valued optimization. They presented an extension
of the well-known Dubovitski-Milutin approach to set-vellioptimization 25].

Anh and Khanh introduced the higher-order radial sets amesponding derivatives. They proposed their properties
and basic calculus rules. They established both necessdrgudficient higher-order conditions for weak efficiency in
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set-valued vector optimization probled] [

Anh and Khanh gave both necessary and sufficient higheraaleditions for various kinds of proper solutions to
nonsmooth vector optimization problem in terms of higheten radial sets and radial derivatives.[However, the
results of second-order radial epiderivatives for setidloptimization problems still need to be addressed.

Motivated by the work above ird], [5], [18], [25], we introduce the notions of second-order radial epiderre and the
second-order generalized radial epiderivative and dssttus relationship the second-order radial epiderivatiwet the
second-order generalized radial epiderivative. We als@ lexistence theorems of second-order radial epideramtiv
This paper is divided into three sections. In Section 2, vaaliesome basic concepts. In Section 3, we introduce the
second-order radial epiderivative and the second-ordeergdized radial epiderivative and give the existence riéves
and some of their basic properties.

2 Preliminaries

Throughout this paper, 16X, ||.||x) and (Y,].|ly) be real normed spaces and Ytbe partially ordered by a closed
convex pointed con€ C Y. LetF : X — 2¥ be a set-valued map, I&,y) € graph(F), let (0,v) € X x Y.

We recall the concept of the radial epiderivative and theegaized radial epiderivative introduced by Kasimbe2#][
and Kasimbeyli anthceoglu 4], respectively, together with some standard notions.

Definition 1. Let U be a nonempty subset of a real normed sf@cé.||,), and letze cl (U) (closure of U) be a given
element. The closed radial conélR z) of U atze cl (U) is the set of all £ Z such that there arg,, > 0 and a sequence
(Zn)nen C Z Withlimp_,0 Zy = z so thaiz+ Anzy € U, foralln e N [7], [ 24], [ 30].

It follows from this definitions thaR(U,z) = cl (congU — z)), where cone denotes the conic hull of a set, which is the
smallest cone containing — z[7], [8], [24].

Definition 2. Let (X, ||.|lx) and (Y, ||.|ly) be real normed spaces, let:’ — 2 be a set-valued map.

(i) The set
graph(F) = {(x,y) e XxY |y e F (x)}

is called the graph of F;
(i) The set
dom(F) = {xe X | F(x) # 0}

is called the domain of F
(iii) LetY be partially ordered by a proper, convex, and pointeted@C Y. The set

epi(F)={(x,y) e XxY|yeF (x)+C}

is called the epigraph of F,
(iv) LetCcC Y a proper, convex and pointed cone. The profile map¥— 2Y is defined by

for every xe dom(F) .
(v) Let(xy) € graph(F). A set valued map gF (X,y) : X — 2" whose graph coincides with the contingent cone to
graph of F at(x,y), that is

graph(DrF (X,y)) = R(graph(F), (x,y)),
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is called radial derivative of F afx;y) [7],[ 30.
Now, we give the definition of the radial epiderivative givenKasimbeyli without convexity and boundednead |

Definition 3. Let Y be partially ordered by a convex cone(Y, let S be a nonempty subset of X and letS— 2¥ be
a set-valued map. Let a palk,y) € graph(F) be given. A single-valued mapB(x,y) : X — Y whose epigraph equals
the radial cone to the epigraph of F &y), i.e.

epi(DrF (x.y)) = R(epi(F), (xY)),
is called radial epiderivative of F afx,y).
To give the definition of the generalized radial epiderivative recall the minimality conceptT],[26].

Definition 4. Let (Y, ||.|ly) be a real normed space partially ordered by a convex coreXC Let D be a subset of Y and
lety e D.

(i) The elemeny is said to be a minimal element of DD N ({y} —C) = {y}.

(i) Letthe ordering cone have a nonempty interior(iDf. The elemeny is said to be a weakly minimal element of D,
if DN ({y} —int(C)) = 0. The set of all minimal, weakly minimal elements of D witlpees to the ordering cone
C is denoted by MinD, W- MinD, respectively.

Now, we recall the generalized radial epiderivative forsstied maps given by Kasimbeyli ahtteoglu in 4.

Definition 5. A set valued map RF (X,y) : X — 2 is called the generalized radial epiderivative of F(aty) if
Dy F (X9) (¥) = Min(G(x),C).

where G: X — 2Y is the set-valued map given by

G(x)={yeY|(xy) eR(epi(F),(xy))}, vxeX.

3 Second-order radial set and second-order radial epideriatives

In this section, we propose the definitions of the secon@aatlial epiderivatives. By using these definitions, wevpro
existence theorem and give some of their properties anthafty conditions.

Anh and Khanh definedtth-order radial set andh+th-order radial derivativeq]. Based on this, we give the following
definitions of second-order radial set and second-ordéalrddrivative.

Definition 6. Let (X, ||.|x) be a real normed space, let S be a nonempty subset of X ded (S) and let we X The
second-order radial set of S atwith respect to w is

RZ(SXW) = {X € X | Ttn > 0,3%1 — X, VN, X+ taW+ t2%, € S} . (1)
Itis also clear that R(S,X;0x) = R(S,X), Ox the zero element of X.

The following definition was presented by Ha itH].
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Definition 7. Let F: X — 2 be a set-valued map, lék y) € graph(F), let (U,v) € X x Y. The second-order radial
derivative of F ai(x,y) with respect tq, V) is the set-valued mapdF (x,y, 0, V) : X — 2¥ whose graph is

graph(D&F (¥, 1,V)) = R¥(graph(F), (%Y, (4,V)). 2
The relation 2) can be expressed equivalently by

D%F (XY 07 (X) = ye_Y | E_Itn >20,3xn %_x,Ely_n sz,Vn,
Y+t t2yn € F (X+ tal+tixn)

The following definition is a generalization given by Kaseyh and Kasimbeyli anthceoglu, respectively2i?],[ 7).

Definition 8. Let F: X — 2 be a set-valued map, I€x,y) € graph(F), let (G,v) € X x Y.

(i) A single-valued map fF (x,y,0,V) : X — Y whose epigraph equals the second-order radial set to thgraggh of
F at (x,y) with respect tqu, V), i.e.,

epi(D7F (X, 0,V)) = R (epi(F),(Xy), (0, V), (3)

is called the second-order radial epiderivative.
(i) A set-valued map S)F (X,y,0,V) : X — 2 is called the second-order generalized radial epiderivaif F at(X,y)
with respect tqu, v) if
DZ.F (XY, U, V) (x) = Min (G? (x),C) ,x € dom(G? (x)) ,

where G : X — 2" is a set-valued map defined by
G2 ={yeY|(xy) e R(epi(F), (X9, (5) } - (4)
Example 1.LetF : R — 2R be a set-valued map given by
F(x)={yeR|y>x},forallxeR.
Let (x,y) = (0,0) and let(u,v) = (1,0). Then
R (epi(F),(0,0),(1,0)) = {cze€ R?| 3ty > 0,3 () — z for all n,tn (1,0) +t2z, € epiF}. (5)

The condition
tn (1,0) 4 t2z, € epi(F)

is equivalent to
t3Zn, > th+ 720,

hence,
an Z (1+tnzn1)2

Sincet, > 0 andz,, — 2, z,, — z1, we obtain that
R (epi(F),(0,0),(1,0)) =R x [1,0).

Consequently, we have
G*(x) =[1,0),
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for everyx € R. On the other hand,
D?F (0,0,1,0) (x) = {1},

for everyx € R.
DGF (0,0,1,0) () = Min (G*(x),R+) = {1},

for everyx € R.

Proposition 1. For every xe dom(D%F (X,y,U,V)), the following inclusion holds:
D&F (X.¥,0,¥) (X) +Cy C D&PE (X, 0,V) (X).

Proof.Lety € D&F (X,Y,0,V) (x) and letc € C be arbitrarily chosen. Then, we have

(xy) € R(graph(F), (xy), (4, V).
This means the existencetgf> 0 and(xn,Y¥n) — (X,y) such that for alh € N

VARRARY,

Y+ taV+t2yn € F (X+ tal+t2%n) -

Setting
% = Yn + C)

we get that
Y+ taV+t2Yn = Y+ taV+ t2yn + t2c € F (X+ tal+t2%n) +C,

and this ensures that
(X.Y) +tn (0,V) + 3 (Xn, Yn) € epi(F).

As yn — y+ ¢, we conclude that
y+ce DR (XY,07) (X).

This completes the proof.
Corollary 1. For every xe dom(D%Pp (X,y,4,V)), the following inclusion holds:
D&PE (XY, U, V) (X) + Oy = DAPE (XY, 1,V) (¥)

ProofThe inclusion
D&P: (XY, 0,V) (x) C DEPE (XY, 0, V) (X) +C

is trivial. From Propositiori and the identity?- (.) +C = P (.), we get this inclusion
D&P: (XY, 0,V) (X) + C C D3P (XY, 0, V) (X).

Before we give an existence theorems for second-order gkzest radial epiderivative, we remind that a convex cGne
is called regular (see ref27]) if eachC—decreasing an@—lower bounded sequence converges to an elemeit of

The proof of the next theorem will be used the following lemginaen by Sonntag-Zalinescu i29].

Lemma 1.LetY be areal normed space and letDy. Then
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(i) If the cone C is regular and D is closed and-®wer bounded, themin(D,C) # 0 and the domination property
holds, that is, DC min(D,C) +C.

(i) Letthe cone C has a compact base and let D be closed and cdhi@r,(D,C) # 0 then the domination property
holds.

Next, we give the existence theorems for second-order géped radial epiderivative

Theorem 1.Let the convex cone €Y be regular. For every x dom(G?), let the set @,F (X, ¥,u,V) (X) have a C-lower
bound. Then for every® dom(G?), D3,F (X,y,0,V) (X) exists. Moreover, the following equality holds:

epi(DF (XY, 0,V)) = R (epi(F), (Xy), (U,V)). (6)

Proof.Because the second-order radial set is always closed inaaeaed space, the s&f (x) is closed. ASG? (x) has a
C— lower bound an€ is a regular cone, we haf%,F (X,y,u,V) (X) # 0 by the Lemmad.. Moreover, by the same lemma,

G?(x) € D§F (XY U.¥) (X) +C, @
for everyx € dom(G?(x)).
For the inverse inclusion, lgtc DS,F (X,¥,u,V) (X) + C, which implies that
ye G2 (x)+C. (8)
It follows from the definition of the second-order radial idetive that
G? (x) = DAPE (X ¥, 0,V) (x) (9)

From @) and @), we get
y € DR (%,%,0,V) (x) +C. (10)

In view of Corollaryly € D3P: (X,Y, 0, V) (X) = G (x), which confirms the inclusion
DZ:F (%Y, 0,V) (X) +C € DR (XY, 0,V (X).

Therefore,
D3:F (XY,0,V) (X) +C = G*(x) = DR (X,¥, 0, V) (X). (11)

From (11) and the definition of the second-order radial derivative,
epi(DF (X¥,0,v)) = graph(D&P: (XY, U,V) (x)) = R (graph(R) . (X.y) . (I, V) = R (epi(F) , (X.y) , (&)
p [o]8 7ya ) g p R 5y7 ) g p ) ayv ) p ) ayv ) )
which complete the proof.
Proposition 2. Let the convex cone € Y be regular. Let E X — 2¥ be a set-valued map, I€k,y) € graph(F), let

(0,v) € X x Y. For every xe dom(G?(x)) , let the set &(x) have a G- lower bound. The following assertion is satisfied:

epi(D5F (x,¥,0,v)) C R (dom(F),X,0) x V.
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Proof.Let (x,y) € epi(DSr (X,y,u,V)). Then(xy) € R?(epi(f), (XY, (U, V)) It follows from the definition of the second-
order generalized radial epiderivative that there exigtisaces, > 0 and(Xn, yn) With (Xn,¥n) — (X,y) such that

(%) +t (@ V) + 2 (xn, o) € €Pi(F), forall ne N,

Y+ taV+t2 € F (X+tal+t3%,) +C, forall ne N.
Therefore we have t,U+ t2x, € dom(F). This implies tha(x,y) € R’Bdom(F),x, ux Y.

Proposition 3. Let AC X be nonempty set and let€Y be a convex cone with if€) # 0. Let F: Ac X — 2" be a
set-valued map, let E dom(D3,F (X,y,0,V)). Then

U DF (XF.6:9) C R (F (A)+C.%.7)

XeE

Proof. Let y € D3,F (X.Y,

,V)(E) and letx € E be the corresponding element such that DS,F()Z)T,U_,\?)(X). Then,
(x,y) € R¥(epi(F),(xy), (4,

Vv
V)). There existp > 0, (Xn,Yn) — (X,y) such that ,for alh € N,

< 3

Y+ taV+ t2yn € F (X+tal+t3%,) +C C F (A)+C

SinceA, > 0 andy, — y, we gety € R*(F(A) 4-C,y,V). Becausg is chosen arbitrarily, we havIBSrF(Z)T,lI\ﬂ(E) C
RE(F(A)+C.y. V).

The following result establish relationship between treose-order radial epiderivative and the second-orderrmgdined
radial epiderivative.

Proposition 4. Assume that the second-order radial epiderivati& Dx, y, 0, V) of F : X — 2 at (X,y) € graph(F) with
respect tau,v) € X x Y exist. Then

DG F (X.¥,0,V) (x) = Min (DFF (X,Y,1,V),Cy ),
for all x € dom(DZF (X,y, 1, V)).
Proof. It follows from the Definition8 thatD?F (X,y, 1, V)
epi(DZF (X¥,0,%) = R (epi(F), (XY, (&) = graph(DAPE (%¥.G, 7))

Hence,

{DZF (XY,0,V) (x) } +Cv = DR (X.¥,0,V) (), (12)
for everyx € dom(D%P,: (XY, u_,\7)) . In view of the Definition8 and the 12) equality, the second-order generalized radial
epiderivativeD3,F (XY, 0,V) : X — 2Y is given by

D2 F (X, 0,V) () = Min (D?F (X¥.G,¥) ,Cy)

4 Conclusion

In this study, we introduced the two new concepts calledrs@@avder radial epiderivative and second-order genedliz
radial epiderivative. We gave some properties of theseeepimtives. We proved the existence theorems for secoderor
radial epiderivatives.
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