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1 Introduction, definitions and notations

Let f (s) be an entire function of the complex variables= σ + it (σ and t are real variables) defined by everywhere

absolutely convergentvector valued Dirichlet series

f (s) =
∞

∑
n=1

anesλn (1)

where an’s belong to a Banach space(E,‖.‖) and λn’s are non-negative real numbers such that

0< λn < λn+1(n≥ 1) ,λn → ∞ asn→ ∞ and satisfy the conditions

limsup
n→∞

logn
λn

= D < ∞

and

limsup
n→∞

log‖an‖

λn
=−∞.

If σa andσc denote respectively the abscissa of convergence and absolute convergence of(1), then in this case clearly

σa = σc = ∞.

The functionM f (σ) known asmaximum modulusfunction corresponding to an entire functionf (s) defined by(1) is

written as follows.

M f (σ) = l .u.b.
−∞<t<∞

| f (σ + it )| .
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In the sequel the following two notations are used:

log[k] x= log
(

log[k−1] x
)

for k= 1,2,3, · · ·;

log[0] x= x

and

exp[k] x= exp
(

exp[k−1] x
)

for k= 1,2,3, · · ·;

exp[0] x= x.

Taking this into account, theRitt order(See[1]) of f (s) , denoted byρ f ,which is generally used in computational purpose,

is defined in terms of the growth off (s) with respect to the expexpz function as follows.

ρ f = limsup
σ→∞

log logM f (σ)

log logMexpexpz(σ)
= limsup

σ→∞

log[2]M f (σ)

σ
.

Similarly, one can define theRitt lower orderof f (s) , denoted byλ f in the following manner:

λ f = lim inf
σ→∞

log logM f (σ)

log logMexpexpz(σ)
= lim inf

σ→∞

log[2]M f (σ)

σ
.

Further an entire functionf (s) defined by(1) is said to be ofregular Ritt growthif its Ritt ordercoincides with itsRitt

lower order.Otherwisef (s) is said to be ofirregular Ritt-growth.

During the past decades, several authors{e.g., cf., [1],[2],[3],[5],[7]} have made intensive investigations on the

properties of entire Dirichlet series related toRitt order. Further, Srivastava [6] defined different growth parameters such

asorder and lower orderof entire functions represented byvector valued Dirichlet series. He also obtained the results

for coefficient characterization oforder.

Somasundaram and Thamizharasi [8] introduced the notions ofL-order (L-lower order ) for entire functions where

L ≡ L(σ) is a positive continuous function increasing slowly i.e.,L(aσ) ∼ L(σ) asσ → ∞ for every positive constant

‘a’. In the line of Somasundaram and Thamizharasi [8], one may introduce the notion ofRitt L-order for an entire

functions represented byvector valued Dirichlet seriesin the following manner.

Definition 1. Let f be an entire function represented byvector valued Dirichlet series. Then theRitt L-orderρL
f of f is

defined as

ρL
f = limsup

σ→∞

log[2]M f (σ)

σL(σ)
.

Similarly one may defineλ L
f , theRitt L-lower orderof f in the following way.

λ L
f = lim inf

σ→∞

log[2]M f (σ)

σL(σ)
.

Further one may introduce more generalized concept ofRitt L-order and Ritt L-lower order of an entire functions

represented byvector valued Dirichlet seriesin the following way.
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Definition 2. TheRitt L∗-orderand Ritt L∗-lower orderof an entire function f represented byvector valued Dirichlet

seriesare defined as

ρL∗
f = limsup

σ→∞

log[2]M f (σ)

σeL(σ)
and λ L∗

f = lim inf
σ→∞

log[2]M f (σ)

σeL(σ)
respectively.

Srivastava [4] introduced therelative Ritt orderbetween two entire functions represented byvector valued Dirichlet series

to avoid comparing growth just with expexpzas follows.

ρg( f ) = inf
{

µ > 0 : M f (σ)< Mg (σ µ) for all σ > σ0 (µ)
}

= limsup
σ→∞

M−1
g M f (σ)

σ
.

Similarly, one can define therelative Ritt lower orderof f (s) with respect tog(s) , denoted byλg ( f ) in the following

manner.

λg ( f ) == lim inf
σ→∞

M−1
g M f (σ)

σ
.

Extending the notion ofrelative Ritt orderas introduced by Srivastava [4], next in this paper we introducerelative Ritt

L∗-order between two entire functions represented byvector valued Dirichlet seriesas follows.

ρL∗
g ( f ) = inf

{

µ > 0 : M f (σ)< Mg

(

σeL(σ)µ
)

for all σ > σ0 (µ)
}

= limsup
σ→∞

M−1
g M f (σ)

σeL(σ)
.

Similarly, one can define therelative Ritt L∗-lower orderof f (s) with respect tog(s) , denoted byλ L∗
g ( f ) in the following

manner.

λ L∗
g ( f ) == lim inf

σ→∞

M−1
g M f (σ)

σeL(σ)
.

Further to compare the relative growth of two entire functions represented byvector valued Dirichlet serieshaving same

non zero finiterelative Ritt L∗-order with respect to another entire function represented byvector valued Dirichlet series,

one may introduce the definitions ofrelative Ritt-typeandrelative Ritt-lower typein the following manner.

Definition 3. The relative Ritt L∗-type and relative Ritt L∗-lower type denoted respectively by∆L∗
g ( f ) and ∆L∗

g ( f ) of

an entire function f with respect to another entire functiong both represented by vector valued Dirichlet series are

respectively defined as follows.

∆L∗
g ( f ) = limsup

σ→∞

expM−1
g M f (σ)

exp
[

ρL∗
g ( f ) ·σeL(σ)

]

and

∆L∗

g ( f ) = lim inf
σ→∞

expM−1
g M f (σ)

exp
[

ρL∗
g ( f ) ·σeL(σ)

] , 0< ρL∗
g ( f ) < ∞.

Further to determine the relative growth of two entire functions represented by vector valued Dirichlet series having same

non zero finiterelative Ritt L∗-lower orderwith respect to another entire function represented byvector valued Dirichlet

seriesone may also introduce the definition ofrelative Ritt L∗-weak typein the following way.
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Definition 4. [8] The relative Ritt L∗-weak type denoted byτL∗
g ( f ) of an entire function f with respect to another entire

function g both represented by vector valued Dirichlet series is defined as follows.

τL∗
g ( f ) = lim inf

σ→∞

expM−1
g M f (σ)

exp
[

λ L∗
g ( f ) ·σeL(σ)

] , 0< λ L∗
g ( f ) < ∞.

Also one may define the growth indicatorτL∗
g ( f ) of an entire function f with respect to another entire function g both

represented by vector valued Dirichlet series in the following manner.

τL∗
g ( f ) = limsup

σ→∞

expM−1
g M f (σ)

exp
[

λ L∗
g ( f ) ·σeL(σ)

] , 0< λ L∗
g ( f ) < ∞ .

In the paper we study some relative growth properties of entire functions represented byvector valued Dirichlet series

usingrelative Ritt L∗-order, relative Ritt L∗- typeandrelative Ritt L∗-weak type.

2 Main results

In this section we present the main results of the paper.

Theorem 1. If f , g, h and k be any four entire functions represented by vector valued Dirichlet series such that0 <

∆L∗

h ( f ) ≤ ∆L∗
h ( f ) < ∞, 0< ∆L∗

k (g) ≤ ∆L∗
k (g) < ∞ andρL∗

h ( f ) = ρL∗
k (g), then

∆L∗

h ( f )

∆L∗
k (g)

≤ lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )

∆L∗

k (g)
≤ limsup

σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )

∆L∗

k (g)
.

Proof.From the definition of∆L∗
k (g) and∆L∗

h ( f ), we have for arbitrary positiveε and for all sufficiently large values of

σ that

expM−1
h M f (σ)≥

(

∆L∗

h ( f )− ε
)

exp
[

ρL∗
h ( f ) ·σeL(σ)

]

, (2)

and

expM−1
k Mg (σ)≤

(

∆L∗
k (g)+ ε

)

exp
[

ρL∗
k (g) ·σeL(σ)

]

. (3)

Now from (2), (3) and the conditionρL∗
h ( f ) = ρL∗

k (g) , it follows that for all sufficiently large values ofσ ,

expM−1
h M f (σ)

expM−1
k Mg (σ)

>
∆L∗

h ( f )− ε
∆L∗

k (g)+ ε
.

As ε (> 0) is arbitrary , we obtain from above that

liminf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

>
∆ L∗

h ( f )

∆L∗
k (g)

. (4)

Again for a sequence of values ofσ tending to infinity,

expM−1
h M f (σ)≤

(

∆ L∗

h ( f )+ ε
)

exp
[

ρL∗
h ( f ) ·σeL(σ)

]

(5)
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and for all sufficiently large values ofσ ,

expM−1
k Mg (σ)≥

(

∆L∗

k (g)− ε
)

exp
[

ρL∗
k (g) ·σeL(σ)

]

. (6)

Combining(5) and(6) and the conditionρL∗
h ( f ) = ρL∗

k (g) , we get for a sequence of values ofσ tending to infinity that

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )+ ε

∆L∗

k (g)− ε
.

Sinceε (> 0) is arbitrary, it follows from above that

liminf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )

∆ L∗

k (g)
. (7)

Also for a sequence of values ofr tending to infinity it follows that

expM−1
k Mg (σ)≤

(

∆L∗

k (g)+ ε
)

exp
[

ρL∗
k (g) ·σeL(σ)

]

. (8)

Now from (2), (8) and the conditionρL∗
h ( f ) = ρL∗

k (g) , we obtain for a sequence of values ofσ tending to infinity that

expM−1
h M f (σ)

expM−1
k Mg (σ)

≥
∆L∗

h ( f )− ε

∆L∗

k (g)+ ε
.

As ε (> 0) is arbitrary, we get from above that

limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≥
∆L∗

h ( f )

∆L∗

k (g)
. (9)

Also for all sufficiently large values ofσ ,

expM−1
h M f (σ)≤

(

∆L∗
h ( f )+ ε

)

exp
[

ρL∗
h ( f ) ·σeL(σ)

]

. (10)

In view of the conditionρL∗
h ( f ) = ρL∗

k (g) , it follows from (6) and(10) for all sufficiently large values ofσ that

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )+ ε

∆L∗

k (g)− ε
.

Sinceε (> 0) is arbitrary, we obtain that

limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )

∆L∗

k (g)
. (11)

Thus the theorem follows from(4) , (7) , (9) and(11) .
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Theorem 2. If f , g, h and k be any four entire functions represented by vector valued Dirichlet series such that0 <

∆L∗
h ( f ) < ∞, 0< ∆L∗

k (g) < ∞ andρL∗
h ( f ) = ρL∗

k (g), then

lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )

∆L∗
k (g)

≤ limsup
r→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

.

Proof.From the definition of∆L∗
k (g) , we get for a sequence of values ofσ tending to infinity that

expM−1
k Mg (σ)≥

(

∆L∗
k (g)− ε

)

exp
[

ρL∗
k (g) ·σeL(σ)

]

. (12)

Now from (10), (12) and the conditionρL∗
h ( f ) = ρL∗

k (g) , it follows for a sequence of values ofσ tending to infinity that

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )+ ε
∆L∗

k (g)− ε
.

As ε (> 0) is arbitrary, we obtain that

liminf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )

∆L∗
k (g)

. (13)

Again for a sequence of values ofσ tending to infinity that

expM−1
h M f (σ)>

(

∆L∗
h ( f )− ε

)

exp
[

ρL∗
h ( f ) ·σeL(σ)

]

. (14)

So combining(3) and(14) and in view of the conditionρh( f ) = ρk (g) , we get for a sequence of values ofσ tending to

infinity that
expM−1

h M f (σ)

expM−1
k Mg (σ)

>
∆L∗

h ( f )− ε
∆L∗

k (g)+ ε
.

Sinceε (> 0) is arbitrary, it follows that

limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

>
∆L∗

h ( f )

∆L∗
k (g)

. (15)

Thus the theorem follows from(13) and(15) .

The following theorem is a natural consequence of Theorem1 and Theorem2.

Theorem 3. If f , g, h and k be any four entire functions represented by vector valued Dirichlet series such that0 <

∆L∗

h ( f ) ≤ ∆L∗
h ( f ) < ∞, 0< ∆L∗

k (g) ≤ ∆L∗
k (g) < ∞ andρL∗

h ( f ) = ρL∗
k (g), then

lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤ min

{

∆L∗

h ( f )

∆L∗

k (g)
,

∆L∗
h ( f )

∆L∗
k (g)

}

≤ maxL∗

{

∆L∗

h ( f )

∆L∗

k (g)
,

∆L∗
h ( f )

∆L∗
k (g)

}

≤ limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

.

Now in the line of Theorem1, Theorem2 and Theorem3 respectively one can easily prove the following six theorems

using the notion ofrelative Ritt L∗-weak typeand therefore their proofs are omitted.

Theorem 4.If f , g, h and k be any four entire functions represented by vector valued Dirichlet series such that0< τL∗
h ( f )

≤ τL∗
h ( f ) < ∞, 0< τL∗

k (g) ≤ τL∗
k (g) < ∞ andλ L∗

h ( f ) = λ L∗
k (g), then

τL∗
h ( f )

τL∗
k (g)

≤ lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
τL∗

h ( f )

τL∗
k (g)

≤ limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
τL∗

h ( f )

τL∗
k (g)

.
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Theorem 5. If f , g, h and k be any four entire functions represented by vector valued Dirichlet series with0 < τL∗
h ( f )

< ∞, 0< τL∗
k (g) < ∞ andλ L∗

h ( f ) = λ L∗
k (g), then

lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
τL∗

h ( f )

τL∗
k (g)

≤ limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

.

Theorem 6.If f , g, h and k be any four entire functions represented by vector valued Dirichlet series such that0< τL∗
h ( f )

≤ τL∗
h ( f ) < ∞, 0< τL∗

k (g) ≤ τL∗
k (g) < ∞ andλ L∗

h ( f ) = λ L∗
k (g), then

lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤ min

{

τL∗
h ( f )

τL∗
k (g)

,
τL∗

h ( f )

τL∗
k (g)

}

≤ max

{

τL∗
h ( f )

τL∗
k (g)

,
τL∗

h ( f )

τL∗
k (g)

}

≤ limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

.

We may now state the following theorems without their proofsbased onrelative Ritt L∗-typeandrelative Ritt L∗-weak

type.

Theorem 7. If f , g, h and k be any four entire functions represented by vector valued Dirichlet series such that0 <

∆L∗

h ( f ) ≤ ∆L∗
h ( f ) < ∞, 0< τL∗

k (g) ≤ τL∗
k (g) < ∞ andρL∗

h ( f ) = λ L∗
k (g), then

∆L∗

h ( f )

τL∗
k (g)

≤ lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )

τL∗
k (g)

≤ limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )

τL∗
k (g)

.

Theorem 8. If f , g, h and k be any four entire functions represented by vector valued Dirichlet series with0< ∆L∗
h ( f )

< ∞, 0< τL∗
k (g) < ∞ andρL∗

h ( f ) = λ L∗
k (g), then

lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
∆L∗

h ( f )

τL∗
k (g)

≤ limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

.

Theorem 9. If f , g, h and k be any four entire functions represented by vector valued Dirichlet series such that0 <

∆L∗

h ( f ) ≤ ∆L∗
h ( f ) < ∞, 0< τL∗

k (g) ≤ τL∗
k (g) < ∞ andρL∗

h ( f ) = λ L∗
k (g), then

lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤ min

{

∆L∗

h ( f )

τL∗
k (g)

,
∆L∗

h ( f )

τL∗
k (g)

}

≤ max

{

∆L∗

h ( f )

τL∗
k (g)

,
∆L∗

h ( f )

τL∗
k (g)

}

≤ limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

.

Theorem 10.If f , g, h and k be any four entire functions represented by vector valued Dirichlet series with0< τL∗
h ( f )

≤ τL∗
h ( f ) < ∞, 0< ∆L∗

k (g) ≤ ∆L∗
k (g) < ∞ andλ L∗

h ( f ) = ρL∗
k (h), then

τL∗
h ( f )

∆L∗
k (g)

≤ lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
τL∗

h ( f )

∆ L∗

k (g)
≤ limsup

σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
τL∗

h ( f )

∆ L∗

k (g)
.

Theorem 11.If f , g, h and k be any four entire functions represented by vector valued Dirichlet series such that0 <

τL∗
h ( f ) < ∞, 0< ∆L∗

k (g) < ∞ andλ L∗
h ( f ) = ρL∗

k (g) , then

lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤
τL∗

h ( f )

∆L∗
k (g)

≤ limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

.
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Theorem 12.If f , g, h and k be any four entire functions represented by vector valued Dirichlet series with0< τL∗
h ( f )

≤ τL∗
h ( f ) < ∞, 0< ∆L∗

k (g) ≤ ∆L∗
k (g) < ∞ andλ L∗

h ( f ) = ρL∗
k (g), then

lim inf
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

≤ min

{

τL∗
h ( f )

∆ L∗

k (g)
,

τL∗
h ( f )

∆L∗
k (g)

}

≤ max

{

τL∗
h ( f )

∆L∗

k (g)
,

τL∗
h ( f )

∆L∗
k (g)

}

≤ limsup
σ→∞

expM−1
h M f (σ)

expM−1
k Mg (σ)

.
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