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Abstract: In this short note we analyze the asymptotics of eigenvalues, and Ambarzumyan type theorem for energy dependent potential
problem with boundary condition including spectral parameter. We should mention that results are more general then theresults given
in [18].
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1 Introduction

Consider the boundary-value problem generated by the quadratic ( in the eigenvalueλ ) differential equation

−y′′+[q(x)+2λ p(x)]y= λ 2y, x∈ (0,π) (1)

with the homogeneous with the boundary conditions

y′(0) = 0, (2)

(a0+a1λ )y(π)+ y′(π) = 0, (3)

wherea0 anda1 are any real numbers andq(x) ∈W1
2 [0,π ] , p(x) ∈W2

2 [0,π ] .

In the literature, equation (1) is called as quadratic of differential pencil and it is very important in quantum theory.For

instance, this type equation come to light in Klein-Gordon equations by seperation of variables, which define the motion

of particles. By the way, Sturm–Liouville energy-dependent potential is also used in viscous vibration of rope. (see [16]).

We also emphasize that problems including the spectral parameterλ in boundary condition is related to the energy of the

system. Inverse problems of quadratic pencil have been solved by many authors. Also, this eigenvalue problem arises in

many fields such as mechanics, physics, electronics, geophysics, meteorology and other branches of sciences and there is

a lot of literature on solving this problem [3],[2],[4],[10],[9],[12],[13],[14],[17],[24],[25].

Ambarzumyan’s paper can be viewed as first and vital reference in the history of inverse spectral problems associated

with Sturm-Liouville operators [1]. In 1929, he showed that for the Neumann boundary conditions (θ = χ =
π
2
), if the
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spectrum (collection of the eigenvalues) in (1) is
{

λn = n2 : n= 0,1,2, ...
}
, then the potential functionq(x) is zero

almost everywhere on[0,π ]. Ambarzumyan’s theorem was extended to the second order differential systems of two

dimensions in [7], to Sturm-Liouville differential systems of any dimension in [8], to the Sturm–Liouville problem with

seperable conditions by adding more condition on the potential [22]. In addition, some different results of

Ambarzumyan’s theorem have been obtained in [6], [15], [20], [21], [23].

If p(x) = 0 the classical Sturm-Liouville operator is obtained. Someversions of the eigenvalue problem (1)-(4) were

studied extensively in [5], [11], [22], [19].

In this study, by extending the results of classical Sturm-Liouville problem, we show that an explicit formula of

eigenvalues can determine two functions in the quadratic pencil of Sturm-Lioville operator with spectral parameter in

boundary condition.

We define

∆(λ ) = (a0+a1λ )y(π)+ y′(π) (4)

which is called the characteristic function. In the Sturm-Liouville theory, we known that if theλ is an eigenvalue of the

problem (1)-(4) then∆(λ ) = 0.

Theorem 1. [14] Let q(x) ∈W1
2 [0,π ] , p(x) ∈W2

2 [0,π ] and y(x,λ ) solution of (1) with the inital condition (2),

y(x,λ ) = cos(λx−α(x))+

x∫

0

A(x, t)cosλ tdt+

x∫

0

B(x, t)sinλ tdt, (5)

where A(x, t) and B(x, t) satisfy the following equations

∂ 2A(x, t)
∂x2 −2p(x)

∂B(x, t)
∂ t

−q(x)A(x, t) =
∂ 2A(x, t)

∂ t2

∂ 2B(x, t)
∂x2 +2p(x)

∂A(x, t)
∂ t

−q(x)B(x, t) =
∂ 2B(x, t)

∂ t2

A(0,0) = 0, B(x,0) = 0,
∂A(x, t)

∂ t

∣∣∣∣
t=0

= 0,

q(x)+ p2(x) = 2
d
dx

[A(x,x)cosα (x)+B(x,x)sinα (x)] ,

A(0,0) = 0, B(x,0) = 0,
∂A(x, t)

∂ t

∣∣∣∣
t=0

= 0,

α(x) =

x∫

0

p(t)dt = p(0)x+2

x∫

0

[A(ζ ,ζ )sinα(ζ )−B(ζ ,ζ )cosα(ζ )]dζ .

2 Main results

In this section, some uniqueness theorems are given for the problem (1)-(4). It is shown that an explicit formula of

eigenvalues can determine the functionq(x) be zero.
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Let’s considering a second quadratic Sturm -Liouville problem

−y′′+[
∼
q(x)+2λ p(x)]y= λ 2y, x∈ (0,π) (6)

y′(0) = 0, (7)

(a0+a1λ )y(π)+ y′(π) = 0 (8)

and showing this problem brieflyE(p,
∼
q,a0,a1). Also, we will show spectrums of the (1)-(4) and (6)-(8) asσ (p,q,a0,a1)

andσ
(

p,
∼
q,a0,a1

)
respectively.

Theorem 2. The eigenvalues of the problem satisfiying the∆(λ ) = 0 are as following.

(i) If a1 = 0 and a0 6= 0 andα(π) = 0,

λn = n−
A(π ,π)

n
−

a0

n
+

a0B(π ,π)
n2 +O

(
1
n2

)
, n→ ∞. (9)

(ii) If a1,a0 6= 0 andα(π) = 0,

λn = n−
arctana1

π
−

A(π ,π)
nπ(1+a2

1)
+

a1B(π ,π)
nπ(1+a2

1)
+O

(
1
n2

)
, n→ ∞. (10)

Proof.From (8), we see thatλ is an eigenvalue of the problem (6-8) if and only if

∆(λ ) = (a0+a1λ )y(π)+ y′(π) = 0. (11)

Applying integration by parts to (5), we obtain

y(x,λ ) = cos(λx−α(x))+
1
λ

A(x,x)sinλx−
1
λ

B(x,x)cosλx−
1
λ

x∫

0

At(x, t)sinλ tdt+

+
1
λ

x∫

0

Bt(x, t)cosλ tdt,

or asymptotically

y(π ,λ ) = cos(λ π −α(π))+
1
λ

A(π ,π)sinλ π −
1
λ

B(π ,π)cosλ π +O

(
1
λ

)
(12)

and

y
′
(π ,λ ) =−

(
λ −α

′
(π)

)
sin(λ π −α(π))+A(π ,π)cosλ π +B(π ,π)sinλ π +O

(
1
λ

)
. (13)

Inserting (12) and (13) in (11), it is not difficult to obtain that

(
λ −α

′
(π)

)
sin(λ π −α(π))+A(π ,π)cosλ π +B(π ,π)sinλ π (14)

+(a0+a1λ )
[
cos(λ π −α(π))+

1
λ

A(π ,π)sinλ π −
1
λ

B(π ,π)cosλ π +O

(
1
λ

)]
= 0,
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whereA(x, t), B(x, t), ∂
∂x,t A(x, t) and ∂

∂x,t B(x, t) are bounded functions for 0≤ x, t ≤ π .

If a1 = 0 anda0 6= 0 andα(π) = 0,we can easily see that from (14) for cosλ π 6= 0

tanλ π =−
A(π ,π)

λ
−

a0

λ
−

B(π ,π) tanλ π
λ

−
a0A(π ,π) tanλ π

λ 2 +
a0B(π ,π)

λ 2 +O

(
1

λ 2

)
.

For λ → ∞, tanλ π → 0. Then

tanλ π =−
A(π ,π)

λ
−

a0

λ
+

a0B(π ,π)
λ 2 +O

(
1

λ 2

)

and we see that

λnπ = nπ −
A(π ,π)

n
−

a0

n
+

a0B(π ,π)
n2 +O

(
1
n2

)
.

If a1,a0 6= 0 andα(π) = 0, for cosλ π 6= 0

tanλnπ +a1 =−
A(π ,π)

λn
+

a1B(π ,π)
λn

+O

(
1
λn

)
.

After some trigonometric identities, we obtain that

λn = n−
arctana1

π
−

A(π ,π)
nπ(1+a2

1)
+

a1B(π ,π)
nπ(1+a2

1)
+O

(
1
n2

)

This completes the proof.

Theorem 3. Let consider the two problems E(p,q,a0,a1), E(p,
∼
q,a0,a1) and their spectrumsσ (p,q,a0,a1),

σ
(

p,
∼
q,a0,a1

)
, respectively. Assumeσ (p,q,a0,a1) = σ

(
p,

∼
q,a0,a1

)
, then

∫ 1
0 [q−

∼
q]dx= 0.

Proof. By the hypotesisσ (p,q,a0,a1) = σ
(

p,
∼
q,a0,a1

)
, then it followsλn ∈ σ (p,q,a0,a1) = σ

(
p,

∼
q,a0,a1

)
. Let’s

consider the problemsE(p,q,a0,a1) andE(p,
∼
q,a0,a1), multiply the first equation by

∼
y, second byy subracting them

after integration on[0,π ] ;
π∫

0

[q− q̃]yỹdx=
(

ỹ
′
y− y

′
ỹ
)∣∣∣

π

0
,

using the conditions (1) and (4) asy
′
(π) =−(a0+a1λ )y(π), ỹ

′
(π) =−(a0+a1λ )ỹ(π) and inserting in above, we obtain

that
π∫

0
[q− q̃]yỹdx= 0.

Let multiply y andỹ in (5) and using some trigonometric identities, we can get easily see that

1
2

π∫

0

(q− q̃)dx+

π∫

0

(q− q̃)cos(λx−α(x))dx+

π∫

0

(q− q̃)

s∫

0

H(s,τ)cos2[λ τ −α(τ)]dτdx= 0,

whereH(s, t) depends onA(x, t), B(x, t), ∂
∂x,t A(x, t) and ∂

∂x,t B(x, t),then the first and second terms goes to zero asλ → ∞
because of the Riemann-Lebesque lemma. This completes the proof.

Theorem 4. Assume that p,q∈C[0,π ], andσ (p,q,a0,a1), σ(0, p,a0,a1). Then q(x) = 0 on [0,π ].
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Proof.By assumption Theorem 2, we obtain that

π∫

0

q(x)dx= 0.

The rest of proof is the same as in [18]. Then, this completes the proof.

3 Conclusion

In this short note, we solve inverse problem for Sturm-Liouville problem energy dependent potential containing the

spectral parameter in boundary condition. We note that, results are more general then the results obtained in [18].
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