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1 Introduction

Uninorms on the unit intervdD, 1] by Yager and Rybalovl[5]. Because of applications of uninorm like fuzzy logic,
expert systems, neural networks, fuzzy system modelBntf], it is attracted interest. The generalization of uninoom t
a complete lattice has been an challenging problem for messarchers[4,10,14]. The order from logical operation
has gained interesi[,12,13] in recent years.

In [11], a partial order defined by means of t-norms bounded latti@s been introduced. This partial order is called
a T-partial order or..

Another interesting problems is to get an order generatedifijorms on bounded lattices since uninorms are
generalization of t-norms and t-conorms. Hlinéna et ak imtroduced pre-order based on unino@n After this work,
ordering based on uninorms is studiégl. In the same paper the order obtained by 2-uninorms isdoired without
proof and also on chain.

In this paper, we define an order induced by 2-uninorm on bedddttices. Since uninorms are an combination of
t-norms, t-conorms, also order from 2-uninorm containsaiftipl order, S-partial order and V-partial order (V is a
nullnorm) on bounded lattice with this order, the notion eflering from 2-uninorm has importance. The paper is
organized as follows: We shortly recall some basic notionsrasults in Section 2. In Section 3, we give an orglgs
induced by a 2-uninorry? on bounded latticé. Some properties of order of 2-uninorm are investigatedthen, this
generalization is extended to the n-uninorms on boundéddat

2 Notations, definitions and a review of previous results

A bounded latticeL, <) is a lattice which has the top and bottom elements, which aiteew as 1 and 0, respectively,
i.e., there exist two elementsde L suchthat 0< x < 1, forallx e L.
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Definition 1. [2] Given a bounded latticé_, <,0,1), and ab € L, if a and b are incomparable, in this case we use the
notation d|b.

Definition 2. [2] Given a bounded latticélL, <,0,1), and ab € L, a < b, a subintervala,b] of L is a sublattice of L
defined as
[a,b]={xelL|a<x< b}.

Similarly, (a,b] = {xeL|a<x< b},[ab)={xeL|a<x<b}and(ab)={xeL|a<x<b}.

Definition 3. [10] Let (L,<,0,1) be a bounded lattice. An operation L2 — L is called a uninorm on L, if it is
commutative, associative, increasing with respect to tith kariables and has a neutral elemerg &.

In this study, the notatior (e) will be used for the set of all uninorms on L with neutral eleinec L. Moreover, if
U(0,1) =0, U is called conjunctive uninorm and if(0,1) = 1 U is called disjunctive uninorm.

Definition 4. [11] An operation T (S) on a bounded lattice L is called a trianguiarm (triangular conorm) if it is
commutative, associative, increasing with respect to tith lariables and has a neutral elemdn(0).

Definition 5.[11,12] A t-norm T (or a t-conorm S) on a bounded lattice L is divisilbléne following condition holds.
For all x,y € L with x< y there is z= L such that x= T(y,z) (ory = S(x, 2)).

Definition 6. [9] Let (L,<,0,1) be a bounded lattice. A commutative, associative, nonedsang in each variable
function V: L? — L is called a nullnorm if there is an elementzl such that (x,0) = x for all x < a , V(x,1) = x for
all x > a. It can be easily obtained that(X,a) = a for all x € L. So ac L is the zero element for V.

Definition 7. [1]] Let L be a bounded lattice, T be a t-norm on L. The order defityed b
X=1y:& T(¢y) =xforsome € L

is called a T partial order (triangular order) for t-norm T.

Similarly, the notiorS— partial order can be defined as follows:

Definition 8. Let L be a bounded lattice, S be a t-conorm on L. The order difayeis called a S partial order for
t-conorm S.
X <sy:& §(¢,x) =y for some/ € L

is called a S- partial order for t-conorm S.
Note that many properties satisfied for- partial order are also satisfied f@— partial order.
Definition 9. [5] Let(L,<,0,1) be a bounded lattice and @ % (e). Define the following relation,for,y € L, as

if x,ye[0,e] andthereexist k [0,e] suchthat Uk,y)=x or,
X2y y:&if x,yeel] andthereexist /€ [e 1] suchthat Ux{)=y or, 1)
if (xy)el* and x<y,
where b= {xeL|x||e} and L = [0,€] x [e, 1] U[0,€] x leU[e, 1] x [0,6]U[e,1] X leUle x [0,e] Ule X [€,1] Ule X le. Here,
note that the notation|}y denotes that x and y are incomparable.

Proposition 1.[5] The relation=y defined in 1) is a partial order on L.
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3 Ordering based 2-uninorm on bounded lattice

A 2-uninorm (introduced by Akellal]) is an operation which is increasing, associative and catative on the unit
interval with an absorbing element seperating two subiaterhaving their own neutral elements. Since 2- uninorms
is generalization of both nullnorms and uninorms, the ojperia important. In this section, the order obtained from 2-
uninorms on bounded lattice is defined and the proof is giBgrthis way, we give more general forsy 2 of the order

=<u givenin (1) on bounded lattice.

Definition 10. [3] Let (L,<,0,1) be a bounded lattice. An operator:fE.? — L is called2-uninorm if it is commutative,
associative, increasing with respect to both variables fatfiling

¥x <k F(e,x) = x andvx >k F(f,x) =X,
where ek, f e Lwith0<e<k< f <1. By Uer) We denote the class of &tuninorms on bounded lattice L.

Definition 11. Let U% € Uk(e f)- Define the following relation: For everyxe L,

3¢ < e such that3(¢,y) = x, when xy € [0, € or,
Ime [e k] such that B(x,m) =y, when xy € [e K] or,
X =y2Y:< < Ine [k, f] such that F(y,n) = x, when xy € [k, f] or, (2)
3p € [f,1] such that B(x, p) =y, when xy € [f,1] or,
x <y, otherwise

Proposition 2. The relation=;2 defined in @) is a partial order on bounded lattice L.

Proof.(1) If x € [0,€] or x € [e K], X <2 x sinceU?(x,e) = x. If x € [k, f] or x € [, 1], x <2 X sinceU?(x, f) = x.
Otherwise, since < x, we have thak <,z x. So, the relatior<y satisfies the reflexivity.

(2) Letx =2y andy <2 x for elements,y € L. Letx,y € [0,€] (X,y € [k, f]). Sincex <;2 y andy =,z X, there exist
elementd;, 4, € [0,€] (N1, N, € [k, f]) such that

U2(¢1,y) = xandU?(¢2,x) =y (U%(ng,y) = xandU?(nz,x) =y).

By using the monotonicity dff 2, we have that

x=U2%(f1,y) <U?(e)y) =y (x=U?(ng,y) <U?(f,y) =)

and
y=U?(l2,x) <U?%(e,x) =x (y=U?(nz,x) <U2(f,x) =X).

Thus,x=Yy. Letx,y € [ K| (x,y € [f,1]). Sincex <2 y andy =<2 X, there exist elementsy,m € [e K] (p1, P2 €
[f,1]) such that

U2(my,x) =yandU?(mg,y) = x (U?(p1,X) = yandU?(pz,y) = X).

By using the monotonicity dff2, we have that

x=U?(mp,y) > U%(ey) =y (x=U?%(p2,y) > U%(f,y) =)

and
y=U%my,x) > U?(ex) = x (y =U?%(p1,x) > U3(f,x) = X).

Thus, x = y. Otherwise, since =2 y andy <2 X, it is obtained thak <y andy < x, whencex =y. So, the
antisymmetry property holds.
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(3) Letx =<y2yandy <2 zfor elements,y,z € L.

Possible cases are as follows. 3.k.€ [0, €]

3.1.1y<0,€

3.1.1.1z€[0,€

Sincex <2 y andy =2 z there existy, ¢, of [0,€] such thaUz(y, l1) =X andUz(Ez,z) =vy. Then,

x=U?2(f1,y) =U?(£1,U?(l2,2)) =U?U?(l1,45),2).

SinceU?(44,/2) < g, it is obtained thak <,z z

3.1.1.2z¢[0,€].

Sincey <2 z it is clear thaty < z Also, sincex <,z y, there exists an elemeft< e such thaty?(¢,y) = x. It follows
x =2 zfromx=U?(¢,y) <U?(e)y) =y < z it is obtained thak <> z

3.1.2y¢[0,€¢.

Sincey ¢ [0, €], it must be thaz ¢ [0,€]. On the other hand, we have thet y.

3.1.2.1yandzbe in one of intervale k], [k, f] or [f,1] at the same time.

Let y,z € [gk]l. Sincey =<2 z there existm ¢ [g k] such thatU?(y,m) = z It must be thatx <. z from
x<y=U?(y,e) <U%(yym) =z

Same proof can be done for other cases.

3.1.2.2yandzdon't be in one of intervale, K|, [k, f] or [f, 1] at the same time.

In this case, we have thgt< zfromy <(,> z Sincex <y andy < z, it is obtained thak < z. Thusx <(;2 z

3.2.xe ek

Lety € [0,€]. Sincex <2 y,e<x<y<e ltis obvious.

3.2.1lyeek.

Letze [0,€]. Sincey <2z, e<y<z<e ltisobvious.

3.211zeek.

Sincex <2 y andy =<,z z, there existmy, mp € [e,k] such thaUz(x, m)=y andUZ(y, mp) = z Then, it must be that

Z= UZ(y, m2) = UZ(UZ(X7 ml)? mz) = UZ(Xvuz(mL mZ))

SinceU?(my,mp) € [ K], x <2 2

3.21.2z¢ [eKk.

Sincey <2 z, y < z Also, there existn € [e k] such thatJ?(x,m) =y. Sincex =U2(x,e) <U?(x,m) =y <z X <2 Z
3.21y¢[ek.

Sincey ¢ [e k], it must be thaz ¢ [e,k]. On the other hand, we have thet y.

3.2.2.1yandzbe in one of intervalk, f] or [f, 1] at the same time.

Lety,z€ [k, f]. There exish € [k, f] such that)?(z,n) = yfromy < ;> z Sincex<y=U?(z,n) <U%(z, f) =z x =<2 2
3.2.2.2yandzdon’'t be in one of intervalk, f] or [f,1] at the same time.

In this case, we have that< z. Sincex <yandy <z x<z Thusx <2z

3.3.xe [k florxe[f,1].

Similar proof can be done fore [k, f] andx € [f, 1] as done ir{0, €] and[e, f] respectively.

3.4.x¢€[0,elU[eklULk flU[f,1].

In this case, we have that< yforally € L.

3.4.1.y andzbe in one of interval0, €], [e,K], [k, f] or [f, 1] at the same time.

Let y,z € [0,€] Sincey =<2 z there exist/ € [0, such thatU?(z¢) =y. It is obtained thatx <. z since
x<y=U?(z¢) <U?%(ze)=z

Similar proof can be done for other caseg@s).
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3.4.2.y and z don't be in one of interval0,€],[e k], [k, f] or [f,1] at the same time or either or z don't be in
[0,e]U[e,KlU [k, flU[f,1] or neithery norzdon’t be in[0,e] U [e, K UK, flU[f,1].

In this casey <,z zimplies thaty < z. Sincex <y andy < z, it is obtained thak < z Thus,x <,z z. So the transitivity
holds.

Proposition 3.Let (L, <,0,1) be a bounded lattice and4Jc Uket)- IfX 22y forany xy e L, then x<y.

Proof.Letx <2 yforx,y € L. If X,y € [0,€](x,y € [k, f]), then there exists an element e(n € [k, f]) such that

U%(Ly) = x(U2(n,y) = x).

Sincex = U?(¢,y) <U?(e)y) = y(x=U?(n,y) <U?(f,y) =y), we have thak <. Letx,y € [e,K|(x,y € [f,1]). Then,
there exists an elemente [e K| (n € [f,1]) such that

Uz(ma X) = y(UZ(n,x) = y)

Sincex=U?(e,x) <U(m,x) = y(x=U(f,x) <U(n,x) =y), we have thax < y. Otherwise, since& <,z , it is clear that
x<y.

RemarkThe converse of Propositidhmay not be satisfied. For example. Consider the laftice {0,a,b,c,d,e 1}, <
,0,1) such that 0< a< b < ¢ < d < e < 1 and define the functiod? € Up(ac) as follows.

N

Rlolalo|o|v|lolc
o|o|o|o|o|o|o|o
o|o|o|o|o|o|o|o
Pl R alo|olo|a
R R R o|ojo|o|o
R R P R o o|o| -

=l o|o|o|lo|o

O|T|T|T|(T|o| Ol

Table 1: The 2-uninornU2 onL.

Itis clear that the functiobd 2 is an 2-uninorm ot.. Althoughd < e, d 4,2 esince there doesn’t exist an element [f, 1]
such thae=U?(m,d). The order<,> onL has its diagram as follows (see Figure 1).

Fig. 1: (L, =y2)-
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RemarkEven if (L, <,0,1) is a chain, the partially ordered sg@t, <,,2) may not be a chain. To show that consider the

p—

above mentioned lattice and 2-uninorm on it. It is easilyngbat(L, < ,2) even if (L, <,0,1) is a chain.
Proposition 4.Let (L, <,0,1) be a bounded lattice and4= Uk f)- Then,(L, =,2) is a bounded partially ordered set.

Proof. It is clear that(L, <y ) is a partially ordered set by Propositi@nLet x < [0,€]. SinceU?(0,x) < U(0,e) = 0, we
have that) (0,x) = 0. Thus, 0<,2 X. Letx ¢ [0,€]. Then, it follows 0=<;2 x from 0 < x. So, for anyx € L, 0 <;2 x. That
1 is the greatest element with respectdgz is shown in a similar way.

Remark. (i) Note thatifU? e Uke ) Is an 2-uninorm on bounded lattiteU? | [0,K]? := Uy is an disjunctive uninorm
on [0,k] with identity element and zero elemerkandU? | [k, 1]2 := U, is an conjunctive uninorm ofk, 1] with
identity element and zero elemeni.

(i) LetU?¢e Uke ) Is @an 2-uninorm on bounded lattite
(@) T1* =U?1 | [0,€]?:]0,e]> — [0,e] andT,* =U?, | [k, f]2: [k, f]?> — [k, ] are t-norms.
(b) S;* =U?; | [eK?: [eK?— [eK andS* =U?, | [f,1]2:[f,1]? — [f,1] are t-conorms.

Proposition 5. (L, <,0,1) be a bounded lattice anddke Uke ) is an 2-uninorm on bounded lattice L. Ther!, T,*, $*

p—

and $* are divisible if and only i< 2=<.

Proof. (i) If a<y2bforanyab e L, thena <b. Conversely, lea < b. Suppose thaa,b < [0,€]. <1,~=< sinceT;*
divisible. Thusa <v,+ b, whence there exist an elemeht [0,€] such thafT;*(b,¢) = a. SinceU?(b,¢) =U? |
[0,€|(b,¢) = T1*(b,£) = &, a <2 b. Suppose that,b € [e k]. <g-=< sinceS" divisible. Thusa <g - b, whence
there exist an elemenic [e k| such thaf;*(a,m) = b. SinceU?(a,m) =U? | [e k](a,m) = S;*(a,m) =b,a <2 b.
Suppose thaa, b € [k, f]. <t,»=< sinceT,* divisible. Thusa <r,: b, whence there exist an elemamt [K, f]
such thatT,*(b,n) = a. SinceU?(b,n) = U? | [k, f](b,n) = Ty*(b,n) = a, a <2 b. Suppose thaa,b € [f,1].
<gr=<sinceS;" divisible. Thusa <g b, whence there exist an element [f, 1] such that$*(a, p) = b. Since
U?(a,p) =U2 | [f,1](a p) = S*(a p) = b, a <2 b. Otherwisea < b implies thata <, b.

(i) Let <_,2=<. Suppose thaa < b for a,b € [0,€]. Then,a <,z b. Sincea,b € [0, €], there exist € [0, €] such that
U2(b,¢) = a. SinceU?(b,¢) =U2 ] [0,€](b,£) = T1*(b,¢) = a, a <1,- b. This implies thafl;* divisible. Suppose
thata < b for a,b € [e k]. Then,a <2 b. Sincea,b € [e k], there existm ¢ [ k| such thatJ?(a,m) = b. Since
U2(a,m) =U? | [ekl(a,m) = S*(a,m) = b, a <g+ b. This implies thatS,* divisible. Suppose tha < b for
a,b e [k, f]. Then,a <,z b. Sincea,b € [k, f], there exish € [k, f] such that)?(b,n) = a. SinceU?(b,n) =U? |
[k, f](b,n) = Ty*(b,n) = a, a <t,+ b. This implies thail,* divisible. Suppose tha < bfora,b € [f,1]. Then,a <.
b. Sincea,b € [f, 1], there exisp € [f,1] such that)?(a, p) = b. SinceU?(a, p) =U? | [f,1](a,p) = S*(a,p) = b,
a <g,* b. This implies tha;" divisible.

Definition 12. [1] Let (L,<,0,1) be a bounded lattice and V a binary operator on L which is cotatiwe. Then,
{e1,e,...,en}2.2...2,_, IS called an n-neutral element of V if(&,x) = xforallx € [z_1,z]for0=2<z1 < ... <z,=1
ande € [z-1,7],i=1,2,...n.

Definition 13.[1] A binary operator U on L, is an n-uninorm if it is associative, monotone, nonreasing in each
variable and commutative and has an n-neutral elerdeqtey, ...,en} 2 7, ..z, ;-

Similarly, the order given in) can be generalized for n-uninorms as follows.

Proposition 6. Let U" be an n-uninorm on a bounded lattice L with an n-neutral eletjes, e, ....en}z2 2,2, 1, 1 =
1,2,...,n. Then, the relation given ir8)

I e€(z_1,8] suchthat Uly)=x when xyel[z_i,6] or,
X=uny:& ¢ dme[g,z] suchthat Umx)=y, when xyecle,z] or, ?3)
x<Yy, otherwise
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is a partial order on bounded lattice L.

Proof. The proof can be done as done in Proposifion

4 Conclusion

A partial order on a bounded lattitefrom a 2-uninorm orL is given and discussed. So, we have extended the T-partial
(S-partial) and V-order to a more general form. Accordingn® underlying t-norm and t-conorm of a uninorm, we have
characterized the order induced by the uninorm. We haveestimbme properties of the order induced by a uninorm.
Moreover, we have generalized n-uninorms.
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