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Abstract: We study the fundamental solution of bond-pricing in the llé@ stochastic interest rate model under the invariareriait
We obtain transformations between Ho-Lee model with theesponding lineaf1+ 1) partial differential equation and the first Lie
canonical form which is identical to the classical heat ¢ignaThese transformations help us to generate the funat@irgolution for
the Ho-Lee model with respect to the fundamental solutiothefclassical heat equation sense. Moreover, as a finapphtation
of the Ho-Lee model, we choose the drift term from power fiomg and perform simulations via Milstein method. Furtherey we
obtain important results for the parameter calibratiorhef¢orresponding drift term by using the simulation results

Keywords: Ho-Lee stochastic interest rate model, heat equation,niaaloLie forms, Lie symmetry analysis, invariant criteria
simulations.

1 Introduction

Interest rate have an important role not only in financiabtigébut also for the risky players in the market. Our aim in
this paper is to present fundamental solution of bond pgidinthe Ho-Lee stochastic interest rate model and show the
transformation between Ho-Lee stochastic interest ratefend the classical heat equation via the invariant caifer

the Lie canonical forms. Our approach in this paper is in the bf the Mahomed’s pape8] which is done onto the
completeness of the invariant characterization of scatat) parabolic equations. On the other hand, in the appicsit

of the Ho-Lee model the drift term’s is the one of the most imigat term. For this purpose, we perform simulations for
the power function in the drift term of the Ho-Lee model andgamt the calibration of it with the suitable parameter
choice.

Recently, Lie symmetry applications to stochastic difféia equations (SDESs), which use in mathematical finanaeg h
attracted more attention in the literature. This approahdto explain sophisticated SDEs in the view of the analyti
numerical solutions for partial differential equation®@Es) whose solutions are already known. The seminal work of
Lie symmetry analysis to SDE has been done for Merton-Blaztiofes modelJ] by Gazizov and Ibrahimov in 1998
[3]. In 2000, Goard 4] provided an alternative solutions for bond pricing PDEmg4d.ie’s classical method. The bond
pricing problems are worked by Pooe, Mahomed and 3ahih 2004.

On the other hand, the group invariant solutions and an @btaystem of the bond prices for the Cox-Ingersoll-Ross
(CIR) model is investigated by Sinkala, Leach and Harali},[2008. Moreover, Dimas et al. consider Black-Scholes,
Longstaf, Vasicek, CIR and Heath equations to discover ections with the heat equations by the means of Lie
symmetry in 20097]. Mahomed et al. show utilization of the invariant critefiei linear one time variable and one space
variable parabolic PDEs in finance and present new approatttetHamiltonian viewpoint{].
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Furthermore, we present relationship between the Ho-Legehand classical heat equation by the Lie symmetry sense.
Since the fundamental solution and behavior analyses afdgemtion can be found from the literature, representation
the Ho-Lee stochastic interest rate model into the heatteguemakes it more easily to understand and interpret this
stochastic differential equation. This is one of the mairtimadion of the this work. Although there has been important
works about bond-pricing with respect to the Lie symmetrglgsis of certain SDEs in financial mathematics, for
instance Lie symmetry analysis of the Merton-Black Shald® and Vasicek models among others, to the best of our
knowledge it has not been done for the Ho-Lee model yet. ksipilirpose, we try to do our best in this work to for this

gap.

The remainder of the paper is organized as follows. In SeQiowe briefly introduce the Ho-Lee model and related
PDE. In section 3, we represent some theorems for the liflearl) parabolic PDEs using the invariant criteria. In
Section 4, we show transformations from Ho-Lee model to thssical heat equation and find the fundamental solution
of corresponding heat equation for Ho-Lee model under thariant criteria. In Section 5, we illustrate importance of
parameter selection for power functions in the drift ternd amalyze it with respect to financial usefulness. Section 6
concludes the paper.

2 Bond pricing with Ho-Lee model

Thomas S. Y. Ho and Sang-Bin Lee developed Ho-Lee model i {€& B]). It is a short rate model which is known
as the first arbitrage free model of interest rates. It has dilscrete-time and continuous-time versions. It is a Usefu
model and has wide application area in mathematical finamcke that bond pricing, option pricing and modeling future
interest rate are just some of them in the literature.

The short interest rate under the continuous-time versitbovis a normal process and its stochastic differentiabgiqn
(SDE) is as follow.
dr(t) = b(t)dt+ odW(t) 1)

Here, the non-stochastic drift terio(t) is a function of time and it provides more flexibility in matob the model to real
data. Its calibration to market price is the most importat pt the applications so that it is usually chosen by olisgrv
market data. The diffusion term is a constant while(t) andW(t) show the interest rate and one-dimensional standard
Brownian motion, respectively. On the other hand, the deifin has important role and should be determined carefully
otherwise the interest rate can be reached to the negativeswahich is not expected at the financial applications.

Furthermore, Ho and Lee derived this model (sBp [inder the complete market assumptions (i.e. the market is
frictionless, no taxes, no transaction costs, no arbitrageortunity and all securities are perfectly divisible)etc
Moreover, under these assumptions, u(x,t), which is the eeapon price in the Ho-Lee model, satisfies the scalariinea
one time variable and one space variable parabolic PDE

du ,0%U du

1
EﬁLEU ﬂij(t)&—XU:O, U(X,T):l. (2)

whereT represents the terminal time.

3 Linear (1+ 1) parabolic PDEs under the invariant criteria

At this section, we briefly introduce the main results of Mateal on the invariant characterization of scalar linear
(1+ 1) parabolic PDEs (for more details se)[
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The general representation of the scalar linear parabBlie & one time and one space variable is as follows.

au d%u du
E :a(tvx)ﬁ—’—b(tvx)& +C(t,X)U, (3)

where the coefficients, b andc are the continuous functions bandx.

Lie proved at his seminal work$]in 1881 that a scalar linear parabolic PD# fas the four canonical forms.

2u_ %
ot ox2’

du J’u A

%~ ae Tt AP0 @
du 9% )

i thc(x)u, c#0,A/x5,

du 9% )

o WnLc(t,x)u, c#0,A/x .

The invariant criteria are provided with the following thems (see§]) which help to reduce the scalar linear (1+1)
parabolic PDESJ) into 1'st Lie canonical form in Equatiorf).

Theorem 1.[Mahomed, B]]. The linear parabolic equation3] is reducible to the classical heat PDE (or the first Lie

. 2 . .
canonical form)2% = % via the transformations

I
Il

o(t),
:l:/ [('pa(t,x)*l}%dijB(t),

. 2 .
_ -1 b(t,x) lo dx 1 1 0 dx 13 dx
= vOlat 0] ver | Za““)dx_w(-/ a<t,x>%> 2/ Wﬁ(/ a<t,x>%>dXiEE/ a0l ©

whereg anda have the same sign, a8 andv satisfy

o btx ., 1[ 1 dx ax |\ dx
w=3t 5 [ 2alt) 2/ At O (,/—a(tv)(ﬁ)d”f(t) (/ a(t,x)%> +9(t) (/ a(t,x)%>+h(t)’ ®)

with J is

X|
Il

. by bax ax 33-)% & b2
=3+ % "7 a2 2 @ 0
and
=L 1(9)
16¢> 8\o/,
198 1(B
=+ L[ E )
o 4(qu% 2<(p%)t
1¢ 1B% v
h(t)_15+1_¢+3' (8)

The functionsf, g andh are constrained by the relation defined in equat&)r{gee B] and references therein).

Theorem 2.[Mahomed, B]]. The statements in (a) and (b) are equivalent.

(© 2017 BISKA Bilisim Technology


www.ntmsci.com

(_/
199 BIS KA B.lzgiand A. Bakkaloglu: Fundamental solution of bond jiririn the Ho-Lee stochastic interest rate...

(a) the coefficients of parabolic equatio8) (satisfies the invariant equation
2Ly +2My — Ny = 0, (9)

where
1 1 1 1 1 1
L=la2[ja]2d]x, M =a]?[|a|2a(b/2a)]x. N = |a|297(1/a2), (10)

and J is given by equatiofT); L
(b) the linear parabolic equationd) can be reduced to the heat PO = 24 via the transformations5) for which g,
B andv are constructed from equation8)(with the functions fg and h are constrained by the relation

9 [btx 1 1 9% (1 dx ax \? - dx B
JjLat/Za(t,x)dX 2/a(t7x)% o2 (/ a(tx)%)d)“rf(t) </a(t,x)%> +9(t) (/ a(t,x)%)+h(t)_o' (11)

4 Fundamental solution of Ho-Lee parabolic PDE

In this section, we find the transformation of Ho-Lee PDE inatipn @) for the related Lie canonical forms by using the
given theorems in sectidh Then, we obtain fundamental solution for the correspagtia canonical form, which is the
classical heat equation, with respect to the invariantigatapproach.

4.1 Transformation from Ho-Lee model to the heat equation

The related coefficients can be written easily, when we coeitee Ho-Lee PDEZ) with the scalar linear, one time and
one space variable parabolic PD#, (as follows:

a(t,x) = 7%02,
bit,x) = —b(t),
c(t,x) = x. (12)

The coefficiena(t,x) is a constant and thie(t,x) is independent oxX, so that we geM = N = 0 (see equationl1Q)).
Moreover, we evaluatéfor Ho-Lee PDE using the Theorem 2’s condition which is gibgrequation 7):

_ P
I=x+ 5. (13)

Similarly, we obtainL = 0 by using this] in equation £0). If we substitute these values in the invariant conditi@nir

Theorem 2, then it shows that invariant condition is satisft&o that, we can reduce Ho-Lee PDE to the classical heat

equation since all the statements of Theorem 2 are equivddenthis purpose, we need to obtain the transformations,
which is defined by Theorem 1, by using the coefficients gimesgjuation 12). First of all, we get the following functions
defined in Theorem 2:

2
(=0, 90 =5+ 20 b =51,

(14)
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Then, we use these functions and obtain the following fenstdefined in Theorem 1 :

2

c
ot) = *TZ +Cs,

B(t) = %(iz—l)/b( dt+ = /b dt—Z\/_t+cel+c7,

o-enf (&[0 fovn) (3 ] )

wherec;'s are integral constants. After that, we get the transfoiona which reduce the Ho-Lee PDE into the heat
equation as below.

(15)

2

t_:—%+C3,
Zi\/iczx+c—;<%21)/b(t dt+ 2 /b tf£t+csf1+c7,
o [ (£~ g [L2 (10 - fo) ~vao(27) vo] - E0)a} 202 ' ao

exp{%xnL 08+jt (\/é X+ 9> 41[£2< b(t) /b(t)dt> - \/§0<%t2) +c5] <§x+09>}

wherec;’s are integral constants. Existing of the transformati@mesent with the equations ihG) means that we can
reduce Ho-Lee PDE into the classical heat equation. Now,reratethe position to use the advantage of the heat equation
since the fundamental solution of the classical heat eguiiwell-known in the literature. For instance, Pooe, Makd

and Soh gave its solution in "barred” coordinates in thepgrgsee 12]) as follows.

17)

X2

1
—exp| — —|.
2vim p{ 4

If we substitute the equatioi®) in the equation16) and solve it folu then we have the fundamental solution of Ho-Lee

PDE @):
vt iS5l 2o o) (3 of
S (S 3B - fr)
- ﬁa(%@) +c5] (gw c9> } (19)

Although the left hand side of the solution does not depenigasred parameters, tixeandt still appears at the right hand
side of it (19). Therefore, we need to substitute thandt values from the equatiori €) into of it, then the fundamental
solution of Ho-Lee PDE becomes

U= (18)

(© 2017 BISKA Bilisim Technology


www.ntmsci.com

201 BIS K A B.lzgiand A Bakkaloglu: Fundamental solution of bond prigin the Ho-Lee stochastic interest rate...

b
(& 222x+ % (F - 1) [ Bldt+ § [bit)dt— 2+ ot +¢)°

exp| —

JT A(-F e

QR R e
oo s (Bera) s 2o o) ()
<o %)} (20)

5 lllustration for the drift term of Ho-Lee model: b(t) = kt®

%
02]

As it is seen in the equatior2@), the fundamental solution of Ho-Lee PDE differs with théftderm b(t) of Ho-Lee
model. We deal with the importance of its calibration in &t and take your attention on choosing of it so that we can
avoid from negative interest rate values which are not eegat the financial applications.

At this section, for an example, we choose the drift term fritve power functions ab(t) = kt® wherek anda are
constants. Then, we illustrate several situations andeptesome results for the related parameters of the seledféd d
term by using the numerical solution of stochastic diff¢i@requations11] via Milstein method (] at the simulations.
We try to make its parameters’ selection more easily undedigit of the simulation results. On the other hand, the
fundamental solution of corresponding heat equation casbbened for Ho-Lee model with this drift term by using the
equation in 20).

For instance, we choose the following parameters when wenpesimulations for the Ho-Lee model.

-t =0 (initial time)

—T =1 (terminal time)

—(0) =0.05 (initial interest rate)

—Nn =100 (the number of the discretization point between 0 and T)
—0 = 0.04 (the volatility of interest rate)

If k takes positive valuek (> 0), then the interest rate generally increases. Othenitidecreases and can be reached
to the negative values which are meaningless by the finaasfact. The latter case is illustrated in the both panels of
figure 1. Therefore, practitioners should choose positive valddswhen they use Ho-Lee interest rate model at their
analyses. Although the interest rate increases relatigelll o € R andk > 0, we can control its increasing by choosing
suitablea parameter. As an example, it increases rapidly and may bevalued wheno = 0.5 (see left panel of the
figure 2) which is not expected by the investor at the stable marketéxkcept crisis or any other abnormal situations).
For this reason, we need to choose more useful value @f. o = —0.5, see right panel of figurg). This is nothing
more than fundamental calculus result since the propesfidiset? functions are well-known. All the analysis results
show that interest rate relatively diverge from the initialue at the terminal time. Although small or relatively big
magnitude changes in interest rate can be reasonable asionuiesults show that large fluctuations happen during the
time. Especially, it reaches ta8lat the terminal time which is the approximately 300 timeghaf initial value 005
(see left panel of figur@). Since the Ho-Lee model does not have mean reversion gyopeICox, Ingersol and Ross
(CIR) model fL] has, its application results may be misled to the marketerka But the more optimistic scenario can be
obtained with positivd&k and negativer pairs if we want to control its changes around the initiagrest rate. Since the
estimation of interest rate behavior may help for your asialyo be more realistic by the time. Here, we present some
optimistic scenario results in figure 3.
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Fig. 1. Behavior of interest rates fér= —0.2 whena = 0.5(left) anda = —0.5(right).
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Fig. 2: Behavior of interest rates fér= 0.2 whena = 0.5(left) anda = —0.5(right).
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6 Conclusions

The numerical solution of stochastic differential equasionay take long time which depends on either complexity®f th
SDEs being considered or the numerical solution methodes.uBherefore, it is challenging to find the fundamental
solution of SDEs by using the invariant criteria in order tmeert underlying SDE to the one of the Lie canonical forms.
We present the transformations from linéar 1) parabolic PDE for the Ho-Lee model to the 1'st Lie canonicahf
which is also identical to the classical heat equation. Ttuesobtain the fundamental solution of the corresponding PD
for the Ho-Lee model based on this transformations by usie@tivantage of the heat equation.

Moreover, the drift term of the Ho-Lee model is a determini$tinction of time and it provides more flexibility in
matching the model to real data. Its calibration to markitepis the most important part at the applications so that it i
usually chosen by observing market data. For this purposepsrform extensive simulations and obtain important
results for the calibration of it. Such that, we presenttdefm’s calibration for power function with respect to its
parameter analysis.

After that, we can use the analytical solution for the cqroggling heat equation instead of the numerical solution of
SDE's at the financial applications. At this step, we notitce éxistence of a problem "which approximation to the
solution of SDE is more efficient than others?” by the timespective since the investment timing takes very important
role for the practitioners at the financial markets. We doaoatsider to find the answer of this question in this paper and
its answer is not considered by the other authors who useiththgant criteria approximations for the certain SDEs in
mathematical finance. We believe that the answer of thislenolin terms of their trade-offs, which is still an open
problem, should be a subject of the different research paper
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