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Abstract: We study the fundamental solution of bond-pricing in the Ho-Lee stochastic interest rate model under the invariant criteria.
We obtain transformations between Ho-Lee model with the corresponding linear(1+1) partial differential equation and the first Lie
canonical form which is identical to the classical heat equation. These transformations help us to generate the fundamental solution for
the Ho-Lee model with respect to the fundamental solution ofthe classical heat equation sense. Moreover, as a financial application
of the Ho-Lee model, we choose the drift term from power functions and perform simulations via Milstein method. Furthermore, we
obtain important results for the parameter calibration of the corresponding drift term by using the simulation results.

Keywords: Ho-Lee stochastic interest rate model, heat equation, canonical Lie forms, Lie symmetry analysis, invariant criteria,
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1 Introduction

Interest rate have an important role not only in financial theory but also for the risky players in the market. Our aim in
this paper is to present fundamental solution of bond pricing in the Ho-Lee stochastic interest rate model and show the
transformation between Ho-Lee stochastic interest rate model and the classical heat equation via the invariant criteria for
the Lie canonical forms. Our approach in this paper is in the line of the Mahomed’s paper [8] which is done onto the
completeness of the invariant characterization of scalar (1+1) parabolic equations. On the other hand, in the applications
of the Ho-Lee model the drift term’s is the one of the most important term. For this purpose, we perform simulations for
the power function in the drift term of the Ho-Lee model and present the calibration of it with the suitable parameter
choice.

Recently, Lie symmetry applications to stochastic differential equations (SDEs), which use in mathematical finance, have
attracted more attention in the literature. This approach helps to explain sophisticated SDEs in the view of the analytic or
numerical solutions for partial differential equations (PDEs) whose solutions are already known. The seminal work of
Lie symmetry analysis to SDE has been done for Merton-Black Scholes model [9] by Gazizov and Ibrahimov in 1998
[3]. In 2000, Goard [4] provided an alternative solutions for bond pricing PDEs using Lie’s classical method. The bond
pricing problems are worked by Pooe, Mahomed and Soh [12] in 2004.

On the other hand, the group invariant solutions and an optimal system of the bond prices for the Cox-Ingersoll-Ross
(CIR) model is investigated by Sinkala, Leach and Hara in [13], 2008. Moreover, Dimas et al. consider Black-Scholes,
Longstaf, Vasicek, CIR and Heath equations to discover connections with the heat equations by the means of Lie
symmetry in 2009 [2]. Mahomed et al. show utilization of the invariant criteriafor linear one time variable and one space
variable parabolic PDEs in finance and present new approach by the Hamiltonian viewpoint [7].
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Furthermore, we present relationship between the Ho-Lee model and classical heat equation by the Lie symmetry sense.
Since the fundamental solution and behavior analyses of heat equation can be found from the literature, representationof
the Ho-Lee stochastic interest rate model into the heat equation makes it more easily to understand and interpret this
stochastic differential equation. This is one of the main motivation of the this work. Although there has been important
works about bond-pricing with respect to the Lie symmetry analysis of certain SDEs in financial mathematics, for
instance Lie symmetry analysis of the Merton-Black Sholes,CIR and Vasicek models among others, to the best of our
knowledge it has not been done for the Ho-Lee model yet. For this purpose, we try to do our best in this work to for this
gap.

The remainder of the paper is organized as follows. In Section 2, we briefly introduce the Ho-Lee model and related
PDE. In section 3, we represent some theorems for the linear(1+ 1) parabolic PDEs using the invariant criteria. In
Section 4, we show transformations from Ho-Lee model to the classical heat equation and find the fundamental solution
of corresponding heat equation for Ho-Lee model under the invariant criteria. In Section 5, we illustrate importance of
parameter selection for power functions in the drift term and analyze it with respect to financial usefulness. Section 6
concludes the paper.

2 Bond pricing with Ho-Lee model

Thomas S. Y. Ho and Sang-Bin Lee developed Ho-Lee model in 1986 (see [5]). It is a short rate model which is known
as the first arbitrage free model of interest rates. It has also discrete-time and continuous-time versions. It is a useful
model and has wide application area in mathematical finance such that bond pricing, option pricing and modeling future
interest rate are just some of them in the literature.

The short interest rate under the continuous-time version follows a normal process and its stochastic differential equation
(SDE) is as follow.

dr(t) = b(t)dt+σdW(t) (1)

Here, the non-stochastic drift termb(t) is a function of time and it provides more flexibility in matching the model to real
data. Its calibration to market price is the most important part at the applications so that it is usually chosen by observing
market data. The diffusion termσ is a constant whiler(t) andW(t) show the interest rate and one-dimensional standard
Brownian motion, respectively. On the other hand, the driftterm has important role and should be determined carefully
otherwise the interest rate can be reached to the negative values which is not expected at the financial applications.

Furthermore, Ho and Lee derived this model (see [5]) under the complete market assumptions (i.e. the market is
frictionless, no taxes, no transaction costs, no arbitrageopportunity and all securities are perfectly divisible etc).
Moreover, under these assumptions, u(x,t), which is the zero coupon price in the Ho-Lee model, satisfies the scalar linear
one time variable and one space variable parabolic PDE

∂u
∂ t

+
1
2

σ2 ∂ 2u
∂ 2x

+b(t)
∂u
∂x

− xu= 0, u(x,T) = 1. (2)

whereT represents the terminal time.

3 Linear (1+1) parabolic PDEs under the invariant criteria

At this section, we briefly introduce the main results of Mahomed on the invariant characterization of scalar linear
(1+1) parabolic PDEs (for more details see [8]).
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The general representation of the scalar linear parabolic PDE of one time and one space variable is as follows.

∂u
∂ t

= a(t,x)
∂ 2u
∂x2 +b(t,x)

∂u
∂x

+ c(t,x)u, (3)

where the coefficientsa,b andc are the continuous functions oft andx.

Lie proved at his seminal works [6] in 1881 that a scalar linear parabolic PDE (3) has the four canonical forms.

∂u
∂ t

=
∂ 2u
∂x2 ,

∂u
∂ t

=
∂ 2u
∂x2 +

A
x2 u, A 6= 0, (4)

∂u
∂ t

=
∂ 2u
∂x2 + c(x)u, c 6= 0,A/x2,

∂u
∂ t

=
∂ 2u
∂x2 + c(t,x)u, c 6= 0,A/x2.

The invariant criteria are provided with the following theorems (see [8]) which help to reduce the scalar linear (1+1)
parabolic PDEs (3) into 1’st Lie canonical form in Equation (4).

Theorem 1. [Mahomed, [8]]. The linear parabolic equation (3) is reducible to the classical heat PDE (or the first Lie
canonical form)∂ ū

∂ t̄ =
∂ 2ū
∂ x̄2 via the transformations

t̄ = φ(t),

x̄=±
∫

[

φ̇a(t,x)−1
]

1
2

dx+β (t),

ū= ν(t) [a(t,x)]−
1
4 uexp[

∫

b(t,x)
2a(t,x)

dx− 1
8

φ̈
φ̇

(

∫

dx

a(t,x)
1
2

)2

− 1
2

∫

1

a(t,x)
1
2

∂
∂ t

(

∫

dx

a(t,x)
1
2

)

dx± 1
2

β̇
φ̇

1
2

∫

dx

a(t,x)
1
2

]. (5)

whereφ̇ anda have the same sign, andφ , β andv satisfy

φ̇ c̄= J+
∂
∂ t

∫

b(t,x)
2a(t,x)

dx− 1
2

∫

1

a(t,x)
1
2

∂ 2

∂ t2

(

∫

dx

a(t,x)
1
2

)

dx+ f (t)

(

∫

dx

a(t,x)
1
2

)2

+g(t)

(

∫

dx

a(t,x)
1
2

)

+h(t), (6)

with J is

J = c− bx

2
+

bax

2a
+

axx

4
− 3

16
a2

x

a
− at

2a
− b2

4a
, (7)

and

f (t) =
1
16

φ̈2

φ̇2
− 1

8

(

φ̈
φ̇

)

t
,

g(t) =±1
4

φ̈
φ̇

β̇
φ̇

1
2

± 1
2

(

β̇
φ̇

1
2

)

t

,

h(t) =
1
4

φ̈
φ̇
+

1
4

β̇ 2

φ̇
+

ν̇
ν
. (8)

The functionsf , g andh are constrained by the relation defined in equation (6) (see [8] and references therein).

Theorem 2.[Mahomed, [8]]. The statements in (a) and (b) are equivalent.
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(a) the coefficients of parabolic equation (3) satisfies the invariant equation

2Lx+2Mx−Nx = 0, (9)

where
L = |a| 1

2 [|a| 1
2 Jx]x, M = |a| 1

2 [|a| 1
2 ∂t(b/2a)]x. N = |a| 1

2 ∂ 2
t (1/|a|

1
2 ), (10)

and J is given by equation (7);
(b) the linear parabolic equation (3) can be reduced to the heat PDE∂ ū

∂ t̄ =
∂ 2ū
∂ x̄2 via the transformations (5) for whichφ ,

β andν are constructed from equations (8) with the functions f, g and h are constrained by the relation

J+
∂
∂ t

∫

b(t,x)
2a(t,x)

dx− 1
2

∫

1

a(t,x)
1
2

∂ 2

∂ t2

(

∫

dx

a(t,x)
1
2

)

dx+ f (t)

(

∫

dx

a(t,x)
1
2

)2

+g(t)

(

∫

dx

a(t,x)
1
2

)

+h(t) = 0. (11)

4 Fundamental solution of Ho-Lee parabolic PDE

In this section, we find the transformation of Ho-Lee PDE in equation (2) for the related Lie canonical forms by using the
given theorems in section3. Then, we obtain fundamental solution for the corresponding Lie canonical form, which is the
classical heat equation, with respect to the invariant criteria approach.

4.1 Transformation from Ho-Lee model to the heat equation

The related coefficients can be written easily, when we compare the Ho-Lee PDE (2) with the scalar linear, one time and
one space variable parabolic PDE (3), as follows:

a(t,x) =−1
2

σ2,

b(t,x) =−b(t),

c(t,x) = x. (12)

The coefficienta(t,x) is a constant and theb(t,x) is independent ofx, so that we getM = N = 0 (see equation (10)).
Moreover, we evaluateJ for Ho-Lee PDE using the Theorem 2’s condition which is givenby equation (7):

J = x+
b2(t)
2σ2 . (13)

Similarly, we obtainL = 0 by using thisJ in equation (10). If we substitute these values in the invariant condition (9) in
Theorem 2, then it shows that invariant condition is satisfied. So that, we can reduce Ho-Lee PDE to the classical heat
equation since all the statements of Theorem 2 are equivalent. For this purpose, we need to obtain the transformations,
which is defined by Theorem 1, by using the coefficients given in equation (12). First of all, we get the following functions
defined in Theorem 2:

f (t) = 0, g(t) =− σ√
2
+

b′(t)√
2σ

, h(t) =−b2(t)
2σ2 , (14)
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Then, we use these functions and obtain the following functions defined in Theorem 1 :

φ(t) =−c2
2

t
+ c3,

β (t) =
c2

2

(

√
2

σ
−1
)

∫

b(t)
t

dt+
c2

2t

∫

b(t)dt− c2σ
2
√

2
t + c6

1
t
+ c7,

ν(t) = exp

{

∫

(

1
2t

− 1
16t2

[

√
2

σ

(

tb(t)−
∫

b(t)dt

)

−
√

2σ
(

1
2

t2
)

+ c5

]2

− b2(t)
2σ2

)

dt

}

(15)

whereci ’s are integral constants. After that, we get the transformations which reduce the Ho-Lee PDE into the heat
equation as below.

t̄ =−c2
2

t
+ c3,

x̄=±
√

2c2

σ t
x+

c2

2

(

√
2

σ
−1

)

∫

b(t)
t

dt+
c2

2t

∫

b(t)dt− c2σ
2
√

2
t + c6

1
t
+ c7,

ū= exp

{

∫

(

1
2t

− 1
16t2

[

√
2

σ

(

tb(t)−
∫

b(t)dt

)

−
√

2σ
(

1
2

t2
)

+ c5

]2

− b2(t)
2σ2

)

dt

}[

− 1
2

σ2
]− 1

4

u (16)

exp

{

b(t)
σ2 x+ c8+

1
4t

(
√

2
σ

x+ c9

)2

± 1
4t

[
√

2
σ

(

tb(t)−
∫

b(t)dt

)

−
√

2σ
(

1
2

t2
)

+ c5

](
√

2
σ

x+ c9

)}

(17)

whereci ’s are integral constants. Existing of the transformationsrepresent with the equations in (16) means that we can
reduce Ho-Lee PDE into the classical heat equation. Now, we are at the position to use the advantage of the heat equation
since the fundamental solution of the classical heat equation is well-known in the literature. For instance, Pooe, Mahomed
and Soh gave its solution in ”barred” coordinates in their paper (see [12]) as follows.

ū=
1

2
√

t̄π
exp

[

− x̄2

4t̄

]

. (18)

If we substitute the equation (18) in the equation (16) and solve it foru then we have the fundamental solution of Ho-Lee
PDE (2):

u(x, t) =
1

2
√

t̄π
exp

[

− x̄2

4t̄

]

exp−1
{

∫

(

1
2t

− 1
16t2

[

√
2

σ

(

tb(t)−
∫

b(t)dt

)

−
√

2σ
(

1
2

t2
)

+ c5

]2

− b2(t)
2σ2

)

dt

}[

− 1
2

σ2
]

1
4

exp−1
{

b(t)
σ2 x+ c8+

1
4t

(

√
2

σ
x+ c9

)2

± 1
4t

[

√
2

σ

(

tb(t)−
∫

b(t)dt

)

−
√

2σ
(

1
2

t2
)

+ c5

](

√
2

σ
x+ c9

)}

(19)

Although the left hand side of the solution does not depend onbarred parameters, the ¯x andt̄ still appears at the right hand
side of it (19). Therefore, we need to substitute the ¯x andt̄ values from the equation (16) into of it, then the fundamental
solution of Ho-Lee PDE becomes
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u(x, t) =
1

2
√

(

− c2
2
t + c3

)

π
exp

[

−
(

±
√

2c2
σt x+ c2

2

(

√
2

σ −1
)
∫ b(t)

t dt+ c2
2t

∫

b(t)dt− c2σ
2
√

2
t + c6

1
t + c7

)2

4
(

− c2
2
t + c3

)

]

exp−1
{

∫

(

1
2t

− 1
16t2

[
√

2
σ

(

tb(t)−
∫

b(t)dt

)

−
√

2σ
(

1
2

t2
)

+ c5

]2

− b2(t)
2σ2

)

dt

}[

− 1
2

σ2
] 1

4

exp−1
{

b(t)
σ2 x+ c8+

1
4t

(

√
2

σ
x+ c9

)2

± 1
4t

[

√
2

σ

(

tb(t)−
∫

b(t)dt

)

−
√

2σ
(

1
2

t2
)

+ c5

]

(

√
2

σ
x+ c9

)}

(20)

5 Illustration for the drift term of Ho-Lee model: b(t) = ktα

As it is seen in the equation (20), the fundamental solution of Ho-Lee PDE differs with the drift term b(t) of Ho-Lee
model. We deal with the importance of its calibration in section 2 and take your attention on choosing of it so that we can
avoid from negative interest rate values which are not expected at the financial applications.

At this section, for an example, we choose the drift term fromthe power functions asb(t) = ktα wherek andα are
constants. Then, we illustrate several situations and present some results for the related parameters of the selected drift
term by using the numerical solution of stochastic differential equations [11] via Milstein method [10] at the simulations.
We try to make its parameters’ selection more easily under the light of the simulation results. On the other hand, the
fundamental solution of corresponding heat equation can beobtained for Ho-Lee model with this drift term by using the
equation in (20).

For instance, we choose the following parameters when we perform simulations for the Ho-Lee model.

–t = 0 (initial time)
–T = 1 (terminal time)
–r(0) = 0.05 (initial interest rate)
–n= 100 (the number of the discretization point between 0 and T)
–σ = 0.04 (the volatility of interest rate)

If k takes positive values (k > 0), then the interest rate generally increases. Otherwise,it decreases and can be reached
to the negative values which are meaningless by the financialaspect. The latter case is illustrated in the both panels of
figure 1. Therefore, practitioners should choose positive values of k when they use Ho-Lee interest rate model at their
analyses. Although the interest rate increases relativelyfor all α ∈R andk> 0, we can control its increasing by choosing
suitableα parameter. As an example, it increases rapidly and may be overvalued whenα = 0.5 (see left panel of the
figure2) which is not expected by the investor at the stable market (i.e. except crisis or any other abnormal situations).
For this reason, we need to choose more useful value ofα (i.e. α = −0.5, see right panel of figure2). This is nothing
more than fundamental calculus result since the propertiesof the tα functions are well-known. All the analysis results
show that interest rate relatively diverge from the initialvalue at the terminal time. Although small or relatively big
magnitude changes in interest rate can be reasonable, simulation results show that large fluctuations happen during the
time. Especially, it reaches to 1.5 at the terminal time which is the approximately 300 times ofthe initial value 0.05
(see left panel of figure2). Since the Ho-Lee model does not have mean reversion property as Cox, Ingersol and Ross
(CIR) model [1] has, its application results may be misled to the market players. But the more optimistic scenario can be
obtained with positivek and negativeα pairs if we want to control its changes around the initial interest rate. Since the
estimation of interest rate behavior may help for your analysis to be more realistic by the time. Here, we present some
optimistic scenario results in figure 3.
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Fig. 1: Behavior of interest rates fork=−0.2 whenα = 0.5(left) andα =−0.5(right).

Fig. 2: Behavior of interest rates fork= 0.2 whenα = 0.5(left) andα =−0.5(right).

Fig. 3: Behavior of interest rates fork= 0.2 whenα =−0.7(left) andα =−0.8(right).
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6 Conclusions

The numerical solution of stochastic differential equations may take long time which depends on either complexity of the
SDEs being considered or the numerical solution method is used. Therefore, it is challenging to find the fundamental
solution of SDEs by using the invariant criteria in order to convert underlying SDE to the one of the Lie canonical forms.
We present the transformations from linear(1+1) parabolic PDE for the Ho-Lee model to the 1’st Lie canonical form
which is also identical to the classical heat equation. Thus, we obtain the fundamental solution of the corresponding PDE
for the Ho-Lee model based on this transformations by using the advantage of the heat equation.

Moreover, the drift term of the Ho-Lee model is a deterministic function of time and it provides more flexibility in
matching the model to real data. Its calibration to market price is the most important part at the applications so that it is
usually chosen by observing market data. For this purpose, we perform extensive simulations and obtain important
results for the calibration of it. Such that, we present drift term’s calibration for power function with respect to its
parameter analysis.

After that, we can use the analytical solution for the corresponding heat equation instead of the numerical solution of
SDE’s at the financial applications. At this step, we notice the existence of a problem ”which approximation to the
solution of SDE is more efficient than others?” by the time perspective since the investment timing takes very important
role for the practitioners at the financial markets. We do notconsider to find the answer of this question in this paper and
its answer is not considered by the other authors who used theinvariant criteria approximations for the certain SDEs in
mathematical finance. We believe that the answer of this problem in terms of their trade-offs, which is still an open
problem, should be a subject of the different research paper.
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