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Abstract: In this paper, we have proved some more resultsl-enonvergence of filters. We have proved the equivalence of
I —convergence and ordinary convergence of filters as welleasdhivalence of—convergence of nets and filters.
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1 Introduction

The concept of convergence of a sequence of real numberebashltended to statistical convergence independently by
H. Fast [4] and I. J. Schoenberg [21]. Any convergent segeiengtatistically convergent but the converse is not tré [1
Moreover, a statistically convergent sequence need nat lpgdounded [18]. LN denotes the set of natural numbers.
If K C N, thenK,, will denote the sefk € K : k < n} and|Ky| stands for the cardinality df,. The natural density df is
defined by

if the limit exists [5,17].

The concept of —convergence of real sequences [7,8] is a generalizatiolatidtical convergence which is based on the
structure of the idedl of subsets of the set of natural numbers. The notion of idealergence for single sequences was
first defined and studied by Kostyrko et. al. [7]. Mursaleerak{13] defined and studied the notion of ideal convergence
in random 2-normed spaces and construct some interesting examplesabemrks onl —convergence and statistical
convergence have been done in [1,3,6,7,8,9,12,13,14,P9]1

The idea ofl —convergence of real sequences coincides with the idea ofaysdconvergence if is the ideal of all finite
subsets oN and with the statistical convergence if the ideal of subsets &f of natural density zero [10].

The idea ofl —convergence has been extended from real number space fo aspetce [7] and to a normed linear space
[19] in recent works. Later B. K. Lahiri and P. Das [10] exteddhe idea of —convergence to an arbitrary topological
space and observed that the basic properties are presarag¢dpological space. In [11], they also introduced the ifea

| —convergence of nets in a topological space and examineddrateffects the basic properties. [6] introduced the idea
of | —convergence of filters in a topological spatand studied its various properties. [6] proved that basiperties of
convergence of filters in a topological spacalso hold in case df—convergence of filters. We start with the following
definitions.

Definition 1. Let X be a non-empty set. Then a fansflyc 2% is called afilter on X if
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(i) 0¢.7,
(i) A,Be .7 implies AABe . and
(i) Ae .Z#,BD Aimplies Be .#.
Definition 2. Let X be a non-empty set. Then a famity PX is called anideal of X if

(i) 0el,
(i) A,BelimpliesAUBel and
(i) Ael,BC AimpliesBel.

Definition 3. Let X be a non-empty set. Then afiltgron X is said to beon-trivial if .# = {X}.
Definition 4. Let X be a non-empty set. Then an ideal | of X is said todretrivial if | # {0} and X¢ 1.

Note (i) # =.7(1)={AC X:X\Acl}isafilter onX, called thefilter associated with the ideall .
(i) 1=1(F)={ACX:X\Ac Z}is anideal o, called theideal associated with the filter.7.
(iif) A non-trivial ideal | of X is calledadmissibleif | contains all the singleton subsets of X.
Several examples of non-trivial admissible ideals have lbeasidered in [7].

Throughout this papeK = (X, 1) will stand for a topological space ahd-= | (%) will be the ideal ofX associated with
the filter.# on X.

Before proving some more results baconvergence of filters, we give a brief discussion eftonvergence of filters as
given by [6].

Definition 5. A filter .# on X is said to be+convergentto xp € X if for each nbd U of %, {ye X:y¢ U} € 1. In this
case, ¥ is called an limit of .# and is written as I lim.% = xg.

Theorem 1.A filter % on X is I-convergent to xif and only if for each nbd U ofg {V € £(X):UNV =0} C 1.
Proposition 1.1f X is Hausdorff, then any-convergent filterZ on X has a unique-limit.

Notation In case more than one filter is involved, we use the notaltich) to denote the ideal associated with the
corresponding filter .

Proposition 2. Let E C X and.% be a filter on E which is+convergent to x€ X, where I=1(.%) is an admissible
ideal of E Then ¥ is a limit point of E Conversely, if xis a limit point of E then there is a filter on E {xo} which is
| —convergent to i for some admissible ideal | of.E

Proposition 3.Let X and Y be two topological spaces andX — Y be a map. Let? be afilter on X Then f: X —Y
is continuous atxe X if and only if k —lim.% = xg in X implies { —lim f (%) = f(xp), where k = Ix(%), f(#) isa
filter onY generated by the ba§&(F) : F € .#} and k = Iy(f(.%)).

1.1 Characterization of closure

Proposition 4.Let E C X. Then x € E if and only if there is a filterZ on X such that E= . and | - lim .% = xo.

Proposition 5. Let .# be a filter on X such that+ lim .# = xg. Then every filterZ’ finer than.# also I-converges to
Xo, Where |=1(.%).

RemarkLet.Z be a filter onX and.#’ be another filter oiX finer than.#. Thenl (.#') —lim .%#' = xp need not imply
thatl (%) —lim .Z = xo.

(© 2017 BISKA Bilisim Technology



=
NTMSCI 5, No. 1, 190-195 (2017)www.ntmsci.com BISKA 192

Proposition 6. Let .# be a filter on X such that + lim.% = xo. Then every filter#’ on X coarser than# also
| —converges tox where |= [ (#).

Note The above proposition need not be true if we repldcg) — lim .#’ by | (#') —lim .#'.

Proposition 7Let .# be a filter on X and4 be any other filter on X finer thai#. Then I(.%#) — lim¥ = xg implies
[(¢) —lim%¥ = xp. But not conversely.

Proposition 8Let 1; and 1, be two topologies on X such that is coarser thant,. Let % be a filter on X such that
| —lim.% = xgW.r.t 1. Then I-Ilim % = xg w.r.t T;. But the converse need not be true.

Proposition 9Let.# be a collection of all those filter§ on a space X which(#)—converges to the same pointx X.
Then the intersectio of all the filters in.# | (.#)—converges tox

Proposition 10If every I-convergent filtet# on X has a unique-tlimit, then the space X is Hausdorff.

Theorem 2A filter & Ix—converges to X in %= [qen Xo if and only if py (F#) Ix, —converges to p(x),V o, where
Ix = Ix(F) and I, = Ix, (Pa (F)).

This paper is an extension of the work donel erconvergence of filters in [6] and is inspired from [2,22].

2 Equivalence ofl —convergence and convergence of a filte#

We recall the following.
Let.Z be afilter onX and letZ be a set that is bijective with the filte¥. We shall callZ an index set for and denote
the bijective correspondance b5 = {Fy : d € Z}.

Notelt is easy to show tha¥ becomes a poset with the partial order defined by
c<d if andonlyif k D Fy.

In this case, we speak of an indexed filter.

Definition 6. Let.# be an indexed filter on X with index s&t Any netA : 2 — X with A (d) € Fy is called aderived
netof.7.

Definition 7. LetA be a netin X with directed s&t. Then# = {F C X: A is eventually in B is called aderived filter
of A. By A eventually in Fwe mean that some tail dfis contained in FBy tail of A, we mean the sety = {A(c) :c >
din2}.

Definition 8. A netA : 2 — X in X is said to beeonvergentto xp € X if for each nbd U of i, there is some @& 2 such
that c>d in 2 implies thatA (c) € U. In other words, some tailg = {A(c):c>d in 2} C U.

Theorem 3.A filter % on X |—converges toxe X if and only if every derived nét of .# converges tox

Proof. Supposé — lim.Z = xp. This means that for each nktof xp, {V € Z(X) :UNV =0} C |. Let us indexZ with

an index setZ so that¥# = {Fs: s€ Z}. Let us give some direction t& so thatc > d in & if and only if F; C Fy. LetA

be a derived net of# so obtained. We have to show that the Aatonverges tog. For this, letU be a nbd of. Since
UN(X\U)=0,we find thatX \U € |. This implies that) € .#. NowU € .% impliesU = Ry, for somed € 2. Now if
c>d, thenF. C Fq and soA (c) € Fc € Fg =U. Thus there is some tafly = {A(c) : ¢ > d in Z} of A such that\q C U.

That is,A is eventually inJ. ThusA — Xg.
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Conversely, suppose every derived Aatonverges tog. We shall show that — lim .% = xg. For this, letU be a nbd of
Xo. We claim that{V € #(X) :U NV =0} C |. SinceA — xg, tail Ay ={A(c):c>dinZ} CU. SinceA is a derived
net, there exist§. € % for c € 2 such thatA (c) € F.. ThusAg € #. Now, letV € £(X) such thal NV = 0. Then
V Cc X\U impliesV C X\ Ag (“Ag cU)andsoV €| (" Ag € #). Therefore{V € #(X):UNV =0} C |. Hence
| —lim.% = Xg. This completes the proof.

We recall [22] that a filter” on a topological spack is said toconvergeto Xp(written as.% — Xp) if .# is finer than the
nbd filter atxg (i.e., %, C .#). Using Theorem 24, we can prove the equivalencelefconvergence and convergence of
a filter #.

Theorem 4. A filter % on X |—converges to xe X if and only if.# converges to x Proof We know that a filter#
converges to xin a topological space X if and only if every derived fetloes [22]. Using Theorer@ - 4, we get the
required result.

Theorem 5.AnetA : 2 — X converges toge X if and only if the derived filteg# of A | — converges tox Proof Suppose
anetA : 2 — X converges toxe X. This means that for each nbd U of,>some tailA\y = {A(c):c>din 2} c U.
Since7 is a derived filter, each nbd & .%# (by definition of derived filter and the given condition). Ve to show that
| —lim.% = xg. For this, let U be a nbd ofx We claim tha{V € Z(X) :UNV =0} C |. So, let Ve &£(X) such that
UnV = 0. Now UNV = 0 implies that VC X\ U. Since Ue .#,X \U € |. Further, | is an ideal of X and = X \U
implies that Ve |. Therefore{V € £(X):UNV =0} C |. Conversely, suppos# is a derived filter ofA such that

| —lim.# = xo. This means that for each nbd U of, XV € Z(X) :UNV =0} C | ---(x). We shall show that the net
A 1 9 — X converges tox Supposé does not converge tgxThis means that there is some nbd U @6xch thatA is
not eventually in UThatis,Ag = {A(c):c>d in 2} £ U, for any tail Aq. SinceZ is a derived filter, U¢ .7 . From (x),
UN(X\U)=0implies that X\U € I. This further implies that Uz .%, which is not true. Therefore, our supposition is
wrong. Hencel — Xg.

3 Equivalence ofl —convergence of filters and nets

We first define thé—convergence of nets .

Definition 9. Let | be a non-trivial ideal of subsets of XetA : 2 — X be a netin XwhereZ is a directed set. Theh
is said to be }-convergentto xy in X if for each nbd U of , {A(c) e X: A(c) ¢ U} €.

Theorem 6. A filter # on X I—converges to xe X if and only if every derived nét of # | —converges to x where
| =1(F).

Proof. Supposé — lim % = xg--- (x). Let us index% with an index set? so that# = {Fy :d € 2}. Let us give some
direction toZ so thatc > d in 2 ifand only if F; C Fy. LetA : 2 — X be the derived net of# so obtained. This means
that A (c) € R, for somec € 2. We have to show thdt—limA = xp. For this, letU be a nbd ofxy. We claim that
{A(c)eX:A(c)¢ U} el. So, letA(c) € X such thatA (c) ¢ U. Then by the given conditiof), {A(c)} € |. Hence
{A(c)eX:A(c)¢U}el.

Conversely, suppose every derived het? — X of # | —converges tag- - - (xx). We have to show thdt— lim .% = x.
For this, letU be a nbd ofkg. We claim that{y e X :y¢ U} € 1. So, lety € X such thaty ¢ U. We need to show that
{y} €l.1f y# A(c), foranyc € 2, then clearlyy ¢ F, for anyc € 2 and soy € X\ F, for somec € 2. This implies
that{y} € I. If y=A(c), for somec € 2, theny ¢ U implies thatA (c) ¢ U. By the given conditior(xx), {A(c)} € I.
This implies tha{y} € 1.
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Lemma 1.A filter # on X converges topin X if and only if every derived nétof % | —converges tox Proof It follows
from Theorem2-5and3- 2.

Theorem 7.LetA : 2 — X be anetin X and” be a derived filter oA. ThenA | —converges toxin X if and only if the
derived filter.# | —converges tox where |= | (7).

Proof.Let A : 2 — X be a netinX and.# be a derived filter ofA. Supposé — limA = xp. Then for each nbd of xg,
{A(c) e X:A(c)¢U} el---(x). We have to show thdt— lim .% = Xo. For this, letU be a nbd ofkg. We claim that
{yeX:y¢ U} el. So, lety € X such thaty ¢ U. If y= A(c), for somec € 2, then clearly by the given condition
{y} €l.1f y# A(c), for anyc € &, then we proceed as followg+# A (c), for anyc € 2 implies thaty ¢ Aq, for any tail
Ng of A. ThusAyq C U. Since.7 is a derived filter, by definitiod) € .%. This implies thatX\ U € |. Nowy ¢ U implies
thaty € X\ U and sofy} € 1. Therefore{ye X :y¢ U} € 1. Hencel —lim.% = Xo.

Conversely, suppose thiat lim.%# = Xo. Then for each nbtd of xg, {ye X:y¢ U} €1---(xx). We have to show that
| —limA = xo. For this, letU be a nbd ofxg. We claim that{A(c) € X : A(c) ¢ U} € |. So, letA(c) € X such that
A(c) ¢ U. Clearly, by the given conditiofkx), {A(c)} € |I. Therefore] —lim A = xo.

We have the following definition df—convergence of nets i as given by [11].

Definition 10. Let 2 be a directed set. Let | be a non-trivial ideal of subsetsZofA netA : 9 — X is said to be
| —convergentto Xy in X if for each nbd U of g, {ce 2:A(c) ¢U} €.

With the help of an example, we shall show tha#) — lim % = xo need not imply that(A) — lim A = xo, wherel (%)
is the ideal associated with the filtéf andl (A) is the non-trivial ideal of subsets of the directed etf A.

Example 1.Let X = {1,2,3} with T = {0,{1},X}. Here, %4 = {{1},{1,2},{1,3}, X}, % = {X} and % = {X}. Let
F ={{1},{1,2},{1,3},X}. Thenl (Z) = {0,{2},{3},{2,3}}. We can easily see thatd and 3 ard (.#)— limits of
Z. Now let 2 = {a,b,c,d}. Then there is a one-to-one correspondapce? — % given by g(a) = Fa = X, @(b) =
Fo={1,3}, o(c) =R ={1,2} andg(d) = Fqg = {1}. Let A : 2 — X be the directed net so obtained such th@) € F,
for i = a/b,c,d. Supposer = {1,2,1,1}. Let I(A) = {0,{a},{c},{a c}}. We can see that fox = 1 andU = {1},
{te2:A(t) ¢ {1}} ={b} ¢1(A). Therefore] (A) —limA # 1.
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