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Abstract: The aim of this paper is to give a good strategy for solving edimear and non-linear partial differential equations in
mechanics, physics, engineering and various other teghiiédds by Modified Reduced Differential Transform Methéuthis article
we use the method named with Laplace-Padé Reduced Diff@r&ransform Method. This method is obtained by combirliaglace-
Padé resummation method, which is a useful technique toeftadt solutions, and the Reduced Differential Transfornihide. \We
apply the method to the wave equations and give some exangpse® its effectiveness and usefulness. The results arfthttiegs
showed that this method leads us to exact solutions with atégations or the approximate solutions with small errors.

Keywords: Laplace-Padé Reduced Differential Transform Method (DFRI), Modified Reduced Differential Transform Method
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1 Introduction

As widely known, the importance of research linear and rioear PDEs have a large number of essential application
studies in different branches of engineering and sciench as fluid physics, plasma physics, non-linear fiberoptics,
fluidmechanics, thermodynamic mechanic, thermodynaneiat transfer, oceanography and atmospheric science[1-3].
Many researchers have paid attention to the solutions eatimnd non-linear PDEs by various methods, such as, the
differential transform method (DTM)[4-7], RDTM [8-15],ahvariational iteration method (VIM)[16,17] the homotopy
analysis method (HAM)[18-20] and the Adomian decompositicethod[21] among others.

Consider the following general form of (1+3) dimensional&quation,
Uit +a(X, Y, Z t)uxx + b(X, ¥, Z t)uyy + c(X, Y, Z t)uzz = (X, Y, Z, 1) 1)

subject to initial condition
u(x,y,z,0) = f(x,y,2)
Ut(X,y, Z, 0) = g(xvya Z)'
We apply LPRDTM (combining Laplace-Padé resummation wednd RDTM ) to solve wave equation of the form (1).

)

This study is organized as follows. In Section 2, we brieflgatdbe LPRDTM. Two numerical examples are introduced
in Section 3 for demonstrating the complete study. Conetuis given in the last section.
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2 Laplace-Pack reduced differential transform method (LPRDTM)

2.1 Reduced Differential Transform Method (RDTM)

We will briefly introduce RDTM [8] for wave equation in thisa#on. We consider the wave equation in the operator form
Ltt (U(X, y7 Z,t)) + L (U(X, y7 th)) = e(X7 y7 th) (3)

with initial conditions
u(x,y,z,0) = f(x,y,2)
ut (X) y) Z) O) = g(x5 y’ Z)

whereLy (U(X,Y,z,t)) = uyr andL (u(x,y, z,t)) = a(x, Y,z t)uxx+ b(X, Y,z t)uyy +c(X, Y, Z, t)u , are linear operators.

(4)

Definition 1. If u(x,y,zt) is differentiated continuously with respect to time t andlgticfunction and spaces x, y and z
in the domain of interest, then the spectrum function

k
Uk(X7y7 Z) L |:gtk (X Y, Z, t):| (5)
t=0

is the reduced transformed function ofxly,zt). In this study, the lowercase(xy,zt) represent the original function
while the uppercaseldx, y, z) stand for the transformed function. The differential irseetransform of Y(x, y, z) is defined
as.

uxyzt) = Uk(xy,2) t (6)
k=0

Combining equation (5) and (6). it can be obtained that

k

— c 1[0 k
u(xayazat> - k; Ki |:atku(X,y,Z,t):| . (7)

t=0

From the above definition, one can find that the concept ofdtieaed (1+3) dimensional differential transform is detdive
from the power series expansion. The following theorem efftmdamental operators of RDTM is given below (for
details see[8-10].
Theorem 1. Assume that the reduced differential transform functiorfs ugx,y,zt),v(x,y,zt)andv(x,y,zt)
areUc(x, Y, 2), Vk(x, y, z)andM(x, y, z) respectively. Then,
() fw(xy,zt) =u(xy,zt)av(xy,zt), then W(x,y,z) = Ux(X,y,z) £ aVk(X,Y, )(a is a constant),
k
(i) Fw(xy,zt) =u(xy,zt)v(xy,zt)then W(x,y,z) = Z Vi (XY, 2)Uk_r (X, Y,2) = Z Ur (X, Y, 2)Vk_r (X, Y, 2),
(i) Fw(xy.zt) = Zru(xy,zt), then W(x.y,2) = (k+ 1) <k+r>uk+r<x y,2) = k*” uk+r<x y.2),
m —
(V) fw(xy,zt) = X"y"ZtP, then W(x,y,2) = {3 ﬁ’n f ;)k’ P,
(V) IfW(vavzvt) = Wu(xaya Z,t), then W(Xaya Z) = WUK(XA/’ Z)'
Assume that the reduced differential transform functions a(x,y,zt),b(x,y,zt),c(X,y,zt)andk(x,y,zt)

areA«(x,Y,2),Bk(x,Y,2),Ck(X,y, z)andk(x,y, z) respectively. Then, According to Theorem 1 and the RDTM; {{®) we
can construct the following iteration formula.

(k+1)(k+2)Uk2(x,Y,2) = Ex(x,Y,2) ZoAr (*¥.2) = ZUk r(%,Y,2)
(8)
17} 17}
_%BI’ Xya 0y2Uk r va %CI’ va d ZUk r(Xy7 )
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From initial condition (3), we write

UO(Xv Y, Z) = f(X, Y, Z)

Ul(X7y7 Z) = g(X7y7 Z)
Substituting (9) into (8) and by a straight forward iteratigalculations, we get the following((X,y, z) values. Then the
inverse transformation of the set of valugs(x,y,2) }r_, gives approximation solution as,

©)

n
On(xY,2t) = 5 Uk(xy.2)t" (10)
k=0

where n is order of approximation solution. Therefore, thaat solution of problem is given by

u(x7y7z7t) = A@mﬁn(xaya Zat)' (11)

2.2 Padk Approximant

Letu(x,y,zt) be an analytical function with Maclaurin’s expansion
n
uxyzt) =3 unt" (12)
K=0

Then the Padé approximantugx, y,zt) of order[K, L] which we denote byK /L]u(x,y,zt) is defined by [22,23],

K
Ly 0o+ it + -+ qut

(13)

whereqp = 1, and the numerator and denominator polynomials have no conf@etors. The numerator and denominator
polynomials are constructed as follows

K
u(xy,zt) - H (xyzt) =0 (14)
u
From (14), it is obtained
L K
ux,y,zt) § aut"— ¥ pat" =0 (). (15)
2,00 2 M=o
From (15), the following algebraic linear systems are otgdias
U+ -+ Uk—L+10m = —Uk+1,

Uk+101 + -+ Uk—L+20m = —Uk 42, (16)

UK+L-101 + -+ UkOL = —Uk+L,

Po = Uo
p1 = U1+ Up01

(17)
Pk = UK +Uk—101 + - - - + UoOk -
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From (16), we calculate first all the coefficiemmig 1 < n < L, Then, we determine the coefficierg, 0 < n < K, from
@an).

2.3 Laplace-Pad reduced differential transform method (LPRDTM)

Some numerical methods give power series solutions. Hawehiess kind of solutions have narrow domains of
convergence. Hence, Laplace-Padé [23-26] resummatitimochés used to extend the domain of convergence of the
solutions or to obtain exact solutions. We describe the LIPROwvhich is combination of RDTM and Laplace-Padé
resummation method as follows.

(i) Firstly, let's get series as in (2.8) by using RDTM up toaatain iteration for the initial value problem.

(i) Secondly, we apply Laplace transformation to the atediseries (10).

(i) Next, we write 1/tinstead of s in the obtained equation.

(iv) Afterthat, we transform the series obtained from (iifjo a meromorphic function by creating its Padé approxitma
of order [K/L] whereK andL are randomly chosen, but they should be smaller than the ofdbe series. In
this step, the Padé approximant enlarges the domain oftiteéned series solution to get better convergence and
accuracy.

(v) Then, we write ¥sinstead ot in the obtained equation.

(vi) Finally, we get the approximate or exact solution byngsihe inverse Laplacgtransformation.

3 Numerical consideration
We consider two examples applied to LPRDTM.
Example 1.Considering the following wave equation,
Ut = % (Xuex+ Y2y + ZUyz) (18)

subject to initial conditions:

u(x,y,z0) = x2y°7Z,

19
Ut(X7Y7 Z 0) = _XZyZZZ. ( )
Now we apply the step@)-(vi) to our example. If we apply RDTM and Theorem 2.1 in (3.1) itgfiws
Uii2(X,Y,2) = . xza—ZU (X,Y,2) +y20—2U (X,Y,2) +225_2U (X,Y,2) (20)
k+2 aya 76(k+1)(k+2) dxz k aya y2 k 7y7 22 k 7y7
whereUy (x,y,2)’s are the transformed functions. By the initial conditi¢h9) we write
Uo(X,Y,2) = X2y?Z
0( ) Ys ) y22 (21)
Ul(xaya Z) =X y222
By substituting (21) into (20) respectively, we obtain
X2y?Z7
UZ(X7 Y, Z) = ); (22)
X227
U3(X7 Y, Z) = y6 ) (23)
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X2y 7
By (10)
1(X,Y,Zt) = Zon (XY, 2)t*. (25)
Substituting (21), (22), (23) and (24) in (25), we get
2,2 2.2 2.2
Ga(x,y,2t) = 22 — xoy22t 4+ = Zztzf Xy 22t3+ Xy 22t4. (26)
2 6 24
If we apply Laplace transform tay(X,y,z ), it gives
- PR -S+L—s+1
Lty 2] = YEES 3 @)
We write 1/t instead of s in (27) then
L[0a(x, Y, 2,t)] = X*y?2 (1 —t +t2 —t3 - tH)t. (28)
All [K/L] -Padé approximants of (28) with> 1,K > 1 andK + L < 4 give
K X227t
|:E:| ﬁ4(xvyvzvt) - 1+t . (29)
Now by changing ;Ksintot in (3.12), we obtaiij/L]ﬂ4 in terms ofs as follow,
L X2y 7
|:M:|G4(Xaya Zat) - 1+s . (30)

Finally, when we apply the inverse Laplace transform to B.1t gives us an approximate solution. In fact, the
approximate solution corresponds the exact solution.

da(x,y,zt) = u(x,y,zt) = x2y?Zet. (31)

Example 2.Now we consider the following another wave equation.
Uit = alkx + bUyy+ CUzz (32)
wherea, banct are constant. Subject to initial conditions.

U(X, Y,Z, 0) = a1X+ a-ZXZ + b1Y+ b2y2 +C1Z+ C2227

33
U (X,y,2,0) = a1x+ alxe+ b1y -+ b’2y2 +1z+ 2. (33)
Now we apply the step@)-(vi) to our example. If we apply RDTM and Theorem 1 in (32) it gives u
1 02 9? 02
Uki2(X,Y,2) = m( r Uk(%,Y,2) + bayz k(X% Y,2) + Coz Uk(X,Y, )) (34)
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whereUy (x,y,2)’s are the transformed functions. By the initial conditi¢88) we write

Uo(X,Y,2) = agX+ apX? + bry + bpy? + c1z+ ¢, 22
Ui(x,y,2) = a'1x+ alxe+ b1y -+ b'zy2 +C1z+ 72

Now, substituting (35) into (34) respectively, we obtain

Uz(X,Y,2) = aap + bbby + cop

U3(X7 Y, Z) = (adz + bUZ + CdZ) ;

Wl =

Ua(x,y,2) = 0.
By (10)
4
04(X7y7 th) = z Uk(X7y7 z)tk'
K=0
Substituting (35), (36), (37) and (38) in (39), we get

0a(X,Y,2,t) = arx+ aox? + bry + boy? + c1z+ 672 + (& 1x+ &ox2 + b1y + boy? + <12+ <72 )t

1
+ (@@ + bby + c) t? + 3 (adl,+bbp +cd2) t2.

If we apply Laplace transform tay(X,y, z,t), it gives
N aix+ aX + by +boy? + 17+ 72 aix+a X% + b1y + by’ +1z+ o7
L[da(x,y.2,t)] = 1X+ 8X” + 1ng 2Y" +C1Z+Cp ! +agXt+ 1Y-Si-2 2y"+C1Z+Co

2aa +2blp +2cc,  2ad, + 2bbs + 2cds
+ 3 + o .

We write 1/t instead of s in (27) then

LGa(xy.2t)] = < X+ apx? + by + bpy? + €12+ CoZ2 + (8 ax+ @ px% + b/ 1y + b'oy? + 12+ L2t ) .

+(2a@ + 2bly + 2ccy)t? 4 (2ad 2 + 2bb, 4 2cd)t3
All [K/L] t-Padé approximants of (42) with> 1,K > 1 andK + L < 4 give

2a1b1Xy -+ 2a1byXyP + 281C1XZ+ 281CoXZ + 2ab1X%Y + 2a,b,x2y?
+2a201x22+ 2&202X222 + 2bic1yz+ 2b102y22 + 2b201y22ﬁL 2b2C2y222 + a12x2 t
[K ] +a?xXt + 012y + 02V + €122 + 627 + 2a180%C + 201 by + 216,78
L

(xy,zt) =

s X+ apX2 + byy 4 bpy2 4+ Crz+ Cpz2 — (& 1X+ aox2 + b1y + boy2 + ¢1z+ 2t

Now by changing ;Ks intot in (3.12), we obtairﬁK/L]GA in terms ofs as follow:

2a1bixy+ 2a1b2xy2 + 2a;C1XZ2+ 2&102X22 + 2a2b1x2y+ 2a2b2x2y2
+28,C1X2Z+ 285CoX° 7 + 2b1C1yZ+ 201y Z + 2boC1yPz+ 2byCoyPZ + a1 PXP

[K ] yzt) +a?xXt + 012y + 02YA + €122 + 027 + 2a180%C + 2bi by + 216,78
T X7 y7 27 =
y (

Ug

aixX+ ax2 + by + boy2 + 17+ Co22) s— (& 1X+ @ 2x2 + b1y + /oy2 4 €12+ ¢222)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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Finally, when we apply the inverse Laplace transform to (B@jives us an approximate solution. In fact, the approxéma
solution corresponds the exact solution.

a pxtal by Y2+ 21 d o2 )

{a(X,Y,Z,t) = U(X,Y,2,t) = (arX+ apX® + byy + bpy? + c1z+ ¢7) e< ayx+agx®+byy+boy?+eyz+cp7 (45)

4 Conclusion

In this study, LPRDTM, which is combining Laplace-Padéuresation method as a useful technique to find exact
solutions and the RDTM, has been successfully applied ferdifit types of (1+3) dimensional wave equations. Our
obtained results show that LPRDTM gives exact solutionshef équations by using only two iterations. Hence,

LPRDTM is useful to ease CPU load and it helps us to have higleuracy, efficiency and perfect harmony for

solutions. Additionally, we point out that LPRDTM is verywwerful and easy applicable mathematical tool for PDEs.
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