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Abstract: The aim of this paper is to give a good strategy for solving some linear and non-linear partial differential equations in
mechanics, physics, engineering and various other technical fields by Modified Reduced Differential Transform Method.In this article
we use the method named with Laplace-Padé Reduced Differential Transform Method. This method is obtained by combiningLaplace-
Padé resummation method, which is a useful technique to findexact solutions, and the Reduced Differential Transform Method. We
apply the method to the wave equations and give some examplesto see its effectiveness and usefulness. The results and thefindings
showed that this method leads us to exact solutions with a fewiterations or the approximate solutions with small errors.
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1 Introduction

As widely known, the importance of research linear and non-linear PDEs have a large number of essential application
studies in different branches of engineering and science such as fluid physics, plasma physics, non-linear fiberoptics,
fluidmechanics, thermodynamic mechanic, thermodynamic, heat transfer, oceanography and atmospheric science[1–3].
Many researchers have paid attention to the solutions of linear and non-linear PDEs by various methods, such as, the
differential transform method (DTM)[4–7], RDTM [8–15], the variational iteration method (VIM)[16,17] the homotopy
analysis method (HAM)[18–20] and the Adomian decomposition method[21] among others.

Consider the following general form of (1+3) dimensional wave Equation,

utt +a(x,y,z, t)uxx+b(x,y,z, t)uyy+ c(x,y,z, t)uzz= e(x,y,z, t) (1)

subject to initial condition
u(x,y,z,0) = f (x,y,z)

ut(x,y,z,0) = g(x,y,z).
(2)

We apply LPRDTM (combining Laplace-Padé resummation method and RDTM ) to solve wave equation of the form (1).

This study is organized as follows. In Section 2, we briefly describe LPRDTM. Two numerical examples are introduced
in Section 3 for demonstrating the complete study. Conclusion is given in the last section.
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2 Laplace-Pad́e reduced differential transform method (LPRDTM)

2.1 Reduced Differential Transform Method (RDTM)

We will briefly introduce RDTM [8] for wave equation in this section. We consider the wave equation in the operator form

Ltt (u(x,y,z, t))+L(u(x,y,z, t)) = e(x,y,z, t) (3)

with initial conditions
u(x,y,z,0) = f (x,y,z)

ut(x,y,z,0) = g(x,y,z)
(4)

whereLtt (u(x,y,z, t)) = utt andL(u(x,y,z, t)) = a(x,y,z, t)uxx+ b(x,y,z, t)uyy+ c(x,y,z, t)uzz are linear operators.

Definition 1. If u(x,y,z, t) is differentiated continuously with respect to time t and analyticfunction and spaces x, y and z
in the domain of interest, then the spectrum function

Uk(x,y,z) =
1
k!

[

∂ k

∂ tk u(x,y,z, t)

]

t=0
(5)

is the reduced transformed function of u(x,y,z, t). In this study, the lowercase u(x,y,z, t) represent the original function
while the uppercaseUk (x,y,z) stand for the transformed function. The differential inverse transform ofUk (x,y,z) is defined
as.

u(x,y,z, t) =
∞

∑
k=0

Uk (x,y,z) tk (6)

Combining equation (5) and (6). it can be obtained that

u(x,y,z, t) =
∞

∑
k=0

1
k!

[

∂ k

∂ tk u(x,y,z, t)

]

t=0
tk. (7)

From the above definition, one can find that the concept of the reduced (1+3) dimensional differential transform is derived
from the power series expansion. The following theorem of the fundamental operators of RDTM is given below (for
details see[8–10].

Theorem 1. Assume that the reduced differential transform functions of u(x,y,z, t) ,v(x,y,z, t)andw(x,y,z, t)
areUk(x,y,z),Vk(x,y,z)andWk(x,y,z) respectively. Then,

(i) If w(x,y,z, t) = u(x,y,z, t)±αv(x,y,z, t), then Wk(x,y,z) =Uk(x,y,z)±αVk(x,y,z)(α is a constant),

(ii) If w(x,y,z, t) = u(x,y,z, t)v(x,y,z, t),then Wk(x,y,z) =
k
∑

r=0
Vr(x,y,z)Uk−r(x,y,z) =

k
∑

r=0
Ur(x,y,z)Vk−r(x,y,z),

(iii) If w(x,y,z, t) = ∂ r

∂ tr u(x,y,z, t), then Wk(x,y,z) = (k+1)...(k+ r)Uk+r(x,y,z) =
(k+r)!

k! Uk+r(x,y,z),

(iv) If w(x,y,z, t) = xmynzqt p, then Wk(x,y,z) =

{

xmynzq,k= p
0,k 6= p

,

(v) If w(x,y,z, t) = ∂
∂xm∂yn∂zq u(x,y,z, t), then Wk(x,y,z) =

∂
∂xm∂yn∂zqUk(x,y,z).

Assume that the reduced differential transform functions of a(x,y,z, t) ,b(x,y,z, t) ,c(x,y,z, t)ande(x,y,z, t)
areAk(x,y,z),Bk(x,y,z),Ck(x,y,z)andEk(x,y,z) respectively. Then, According to Theorem 1 and the RDTM, from (3) we
can construct the following iteration formula.

(k+1)(k+2)Uk+2(x,y,z) = Ek(x,y,z)−
k

∑
r=0

Ar(x,y,z)
∂

∂x2Uk−r(x,y,z)

−
k

∑
r=0

Br(x,y,z)
∂

∂y2Uk−r(x,y,z)−
k

∑
r=0

Cr(x,y,z)
∂

∂z2Uk−r(x,y,z)

(8)
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From initial condition (3), we write
U0(x,y,z) = f (x,y,z)

U1(x,y,z) = g(x,y,z)
(9)

Substituting (9) into (8) and by a straight forward iterative calculations, we get the following Uk(x,y,z) values. Then the
inverse transformation of the set of values{Uk(x,y,z)}

n
k=0 gives approximation solution as,

ũn(x,y,z, t) =
n

∑
k=0

Uk(x,y,z)t
k (10)

where n is order of approximation solution. Therefore, the exact solution of problem is given by

u(x,y,z, t) = lim
n→∞

ũn(x,y,z, t). (11)

2.2 Pad́e Approximant

Let u(x,y,z, t) be an analytical function with Maclaurin’s expansion

u(x,y,z, t) =
n

∑
k=0

unt
k (12)

Then the Padé approximant tou(x,y,z, t) of order[K,L] which we denote by[K/L]u(x,y,z, t) is defined by [22,23],

[

K
L

]

u
(x,y,z, t) =

p0+ p1t + · · ·+ pLtK

q0+q1t + · · ·+qMtL , (13)

whereq0 = 1, and the numerator and denominator polynomials have no common factors. The numerator and denominator
polynomials are constructed as follows

u(x,y,z, t)−

[

K
L

]

u
(x,y,z, t) = O

(

tK+L+1) (14)

From (14), it is obtained

u(x,y,z, t)
L

∑
n=0

qnt
n−

K

∑
n=0

pnt
n = O

(

tK+L+1) . (15)

From (15), the following algebraic linear systems are obtained as

uKq1+ · · ·+uK−L+1qM =−uK+1,

uK+1q1+ · · ·+uK−L+2qM =−uK+2, (16)

...

uK+L−1q1+ · · ·+uKqL =−uK+L,

p0 = u0

p1 = u1+u0q1

... (17)

pK = uK +uK−1q1+ · · ·+u0qK .
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From (16), we calculate first all the coefficientsqn,1≤ n≤ L, Then, we determine the coefficientspn,0≤ n≤ K, from
(17).

2.3 Laplace-Pad́e reduced differential transform method (LPRDTM)

Some numerical methods give power series solutions. However, this kind of solutions have narrow domains of
convergence. Hence, Laplace-Padé [23–26] resummation method is used to extend the domain of convergence of the
solutions or to obtain exact solutions. We describe the LPRDTM which is combination of RDTM and Laplace-Padé
resummation method as follows.

(i) Firstly, let’s get series as in (2.8) by using RDTM up to a certain iteration for the initial value problem.
(ii) Secondly, we apply Laplace transformation to the obtained series (10).

(iii) Next, we write 1
/

t instead of s in the obtained equation.
(iv) After that, we transform the series obtained from (iii)into a meromorphic function by creating its Padé approximant

of order
[

K
/

L
]

whereK andL are randomly chosen, but they should be smaller than the order of the series. In
this step, the Padé approximant enlarges the domain of the obtained series solution to get better convergence and
accuracy.

(v) Then, we write 1
/

sinstead oft in the obtained equation.
(vi) Finally, we get the approximate or exact solution by using the inverse Laplaces transformation.

3 Numerical consideration

We consider two examples applied to LPRDTM.

Example 1.Considering the following wave equation,

utt =
1
6

(

x2uxx+ y2uyy+ z2uzz
)

(18)

subject to initial conditions:
u(x,y,z,0) = x2y2z2,

ut(x,y,z,0) =−x2y2z2.
(19)

Now we apply the steps(i)-(vi) to our example. If we apply RDTM and Theorem 2.1 in (3.1) it gives us

Uk+2(x,y,z) =
1

6(k+1)(k+2)

(

x2 ∂ 2

∂x2Uk(x,y,z)+ y2 ∂ 2

∂y2Uk(x,y,z)+ z2 ∂ 2

∂z2Uk(x,y,z)

)

(20)

whereUk (x,y,z)’s are the transformed functions. By the initial conditions(19) we write

U0(x,y,z) = x2y2z2

U1(x,y,z) =−x2y2z2.
(21)

By substituting (21) into (20) respectively, we obtain

U2(x,y,z) =
x2y2z2

2
(22)

U3(x,y,z) =−
x2y2z2

6
, (23)

c© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 1, 164-171 (2017) /www.ntmsci.com 168

U4(x,y,z) =
x2y2z2

24
. (24)

By (10)

ũ4(x,y,z, t) =
4

∑
k=0

Uk(x,y,z)t
k. (25)

Substituting (21), (22), (23) and (24) in (25), we get

ũ4(x,y,z, t) = x2y2z2− x2y2z2t +
x2y2z2

2
t2−

x2y2z2

6
t3+

x2y2z2

24
t4. (26)

If we apply Laplace transform to ˜u4(x,y,z, t), it gives

L [ũ4(x,y,z, t)] =
x2y2z2(s4− s3+ s2− s+1)

s5 . (27)

We write 1
/

t instead of s in (27) then

L [ũ4(x,y,z, t)] = x2y2z2(1− t+ t2− t3+ t4)t. (28)

All
[

K
/

L
]

-Padé approximants of (28) withL ≥ 1, K ≥ 1 andK+L ≤ 4 give

[

K
L

]

ũ4

(x,y,z, t) =
x2y2z2t
1+ t

. (29)

Now by changing 1
/

s into t in (3.12), we obtain[K/L]ũ4
in terms ofsas follow,

[

L
M

]

ũ4

(x,y,z, t) =
x2y2z2

1+ s
. (30)

Finally, when we apply the inverse Laplace transform to (3.13), it gives us an approximate solution. In fact, the
approximate solution corresponds the exact solution.

ũ4(x,y,z, t) = u(x,y,z, t) = x2y2z2e−t . (31)

Example 2.Now we consider the following another wave equation.

utt = auxx+buyy+ cuzz (32)

wherea,bandc are constant. Subject to initial conditions.

u(x,y,z,0) = a1x+a2x
2+b1y+b2y

2+ c1z+ c2z
2,

ut(x,y,z,0) = a′1x+a′2x2+b′1y+b′2y2+ c′1z+ c′2z2.
(33)

Now we apply the steps(i)-(vi) to our example. If we apply RDTM and Theorem 1 in (32) it gives us

Uk+2(x,y,z) =
1

(k+1)(k+2)

(

a
∂ 2

∂x2Uk(x,y,z)+b
∂ 2

∂y2Uk(x,y,z)+ c
∂ 2

∂z2Uk(x,y,z)

)

(34)
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whereUk (x,y,z)’s are the transformed functions. By the initial conditions(33) we write

U0(x,y,z) = a1x+a2x2+b1y+b2y
2+ c1z+ c2z2

U1(x,y,z) = a′1x+a′2x2+b′1y+b′2y2+ c′1z+ c′2z2.
(35)

Now, substituting (35) into (34) respectively, we obtain

U2(x,y,z) = aa2+bb2+ cc2 (36)

U3(x,y,z) =
1
3

(

aa′2+bb′2+ cc′2
)

, (37)

U4(x,y,z) = 0. (38)

By (10)

ũ4(x,y,z, t) =
4

∑
k=0

Uk(x,y,z)t
k. (39)

Substituting (35), (36), (37) and (38) in (39), we get

ũ4(x,y,z, t) = a1x+a2x
2+b1y+b2y

2+ c1z+ c2z2+
(

a′1x+a′2x2+b′1y+b′2y2+ c′1z+ c′2z2.
)

t

+(aa2+bb2+ cc2)t
2+

1
3

(

aa′2+bb′2+ cc′2
)

t3.
(40)

If we apply Laplace transform to ˜u4(x,y,z, t), it gives

L [ũ4(x,y,z, t)] =
a1x+a2x2+b1y+b2y2+ c1z+ c2z2

s
+

a′1x+a′2x2+b′1y+b′2y2+ c′1z+ c′2z2

s2

+
2aa2+2bb2+2cc2

s3 +
2aa′2+2bb′2+2cc′2

s4 .

(41)

We write 1
/

t instead of s in (27) then

L [ũ4(x,y,z, t)] =

(

a1x+a2x2+b1y+b2y2+ c1z+ c2z2+(a′1x+a′2x2+b′1y+b′2y2+ c′1z+ c′2z2)t
+(2aa2+2bb2+2cc2)t2+(2aa′2+2bb′2+2cc′2)t3

)

t. (42)

All [K/L] t-Padé approximants of (42) withL ≥ 1, K ≥ 1 andK+L ≤ 4 give

[

K
L

]

ũ4

(x,y,z, t) =







2a1b1xy+2a1b2xy2+2a1c1xz+2a1c2xz2+2a2b1x2y+2a2b2x2y2

+2a2c1x2z+2a2c2x2z2+2b1c1yz+2b1c2yz2+2b2c1y2z+2b2c2y2z2+a1
2x2

+a2
2x4+b1

2y2+b2
2y4+ c1

2z2+ c2
2z4+2a1a2x3+2b1b2y3+2c1c2z3






t

a1x+a2x2+b1y+b2y2+ c1z+ c2z2− (a′1x+a′2x2+b′1y+b′2y2+ c′1z+ c′2z2) t
. (43)

Now by changing 1
/

s into t in (3.12), we obtain[K/L]ũ4
in terms ofsas follow:

[

K
L

]

ũ4

(x,y,z, t) =







2a1b1xy+2a1b2xy2+2a1c1xz+2a1c2xz2+2a2b1x2y+2a2b2x2y2

+2a2c1x2z+2a2c2x2z2+2b1c1yz+2b1c2yz2+2b2c1y2z+2b2c2y2z2+a1
2x2

+a2
2x4+b1

2y2+b2
2y4+ c1

2z2+ c2
2z4+2a1a2x3+2b1b2y3+2c1c2z3







(a1x+a2x2+b1y+b2y2+ c1z+ c2z2)s− (a′1x+a′2x2+b′1y+b′2y2+ c′1z+ c′2z2)
. (44)
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Finally, when we apply the inverse Laplace transform to (30), it gives us an approximate solution. In fact, the approximate
solution corresponds the exact solution.

ũ4(x,y,z, t) = u(x,y,z, t) =
(

a1x+a2x
2+b1y+b2y

2+ c1z+ c2z2)e

(

a′1x+a′2x2+b′1y+b′2y2+c′1z+c′2z2

a1x+a2x2+b1y+b2y2+c1z+c2z2

)

t
. (45)

4 Conclusion

In this study, LPRDTM, which is combining Laplace-Padé resummation method as a useful technique to find exact
solutions and the RDTM, has been successfully applied to different types of (1+3) dimensional wave equations. Our
obtained results show that LPRDTM gives exact solutions of the equations by using only two iterations. Hence,
LPRDTM is useful to ease CPU load and it helps us to have higheraccuracy, efficiency and perfect harmony for
solutions. Additionally, we point out that LPRDTM is very powerful and easy applicable mathematical tool for PDEs.
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[22] G.A. Baker Jr, Essentials of Padé approximants, Academic Press, UK, 1975.

[23] A.S.-R. Brahim Benhammouda, Hector Vazquez-Leal, Modified Reduced Differential Transform Method for Partial Differential-

Algebraic Equations, 2014 (2014). doi:http://dx.doi.org/10.1155/2014/279481.

[24] S. Momani, G.H. Erjaee, M.H. Alnasr, The modified homotopy perturbation method for solving strongly nonlinear oscillators,

Comput. Math. with Appl. 58 (2009) 2209–2220.

[25] P.-Y. Tsai, C.-K. Chen, An approximate analytic solution of the nonlinear Riccati differential equation, J. Franklin Inst. 347 (2010)

1850–1862.

[26] A.E. Ebaid, A reliable aftertreatment for improving the differential transformation method and its application to nonlinear

oscillators with fractional nonlinearities, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 528–536.

c© 2017 BISKA Bilisim Technology


	Introduction
	Laplace-Padé reduced differential transform method (LPRDTM)
	Numerical consideration
	Conclusion

