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Abstract: In this paper, we take finite difference method with different high order approximations for solving Hirota Equation is
presented. The stability analysis using Von-Neumann technique shows schemes are unconditionally stable. To test accuracy the error
norms L2, L∞ are computed. We compute local truncation error for different schemes. We make comparison between these
approximations through the results that we are get it. Theseresults show that the approximation of O(k2+h4) introduced here is more
accurate than others and easy to apply.
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1 Introduction

The purpose of this paper is to apply finite difference methodwith different high order approximations to the Hirota
equation. The Hirota equation in the form [1]

ut +3α |u|2ux+ γuxxx= 0, (1)

whereu is a complex valued function of the spatial coordinatex and the timet and α, γ are positive real constants.
Boundary conditions

u(x, t) = ux(x, t) = 0, |x| → ∞,0≤ t ≤ T. (2)

And initial conditions.
u(x,0) = f (x),−∞ < x< ∞. (3)

The exact solution of Hitora equation (1) is

u(x, t) = β sech[κ (x− s−νt)]exp(iϕ) ,

β =
√

2γ
α κ ,ϕ = a(x−bt− s) ,

ν = γ
(

κ2−3a2
)

,b= γ
(

3κ3−a2
)

,

(4)

whereβ is the amplitude of the wave,κ is related to the width of the wave envelope andν is the velocity. The parameter
a is the wave number of the phase andb is related to the frequency of the phase. This equation is an integrable equation
and it is very important because it has many physical applications, such as the propagation of optical pluses in nematic
liquid crystal waveguides. The Hirota equation is closely related to both the nonlinear Schrodinger equation and
modified Korteweg-de Vries (mKdV) equations, as it is complex generalization of the mKdV equation and it is a part of
the nonlinear Schrodinger equation hierarchy of the integrable equation. Also, its soliton solution has a very similarform
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to the nonlinear Schrodinger equation soliton. The Eq. (1) has two-parameter soliton family, with amplitude and velocity.

The Hirota equation has been solved numerically by Hoseini S. M. and Marchant T. R. [1] and the Eq. (1) has been
studied by W. G. Al.Harbi [2]. The numerical solution of nonlinear wave equations has been the subject of many studies
in recent years. Such as the Korteweg-de Vries (KdV) equation [3, 4, 5, 6] and the nonlinear Schrodinger equation has
been solved by [7, 8]. Numerical solution of coupled partialdifferential equations, as an example, the coupled nonlinear
Schrodinger equation admits soliton solution and it has many applications in communication, this system has been solved
numerically by Ismail [9,10,11,12] and the coupled Korteweg-de Vries equation has been solved numerically [13, 14, 15,
16]. The complex nonlinear partial differential equationshave been solved in [17, 18, 19, 20, 21]. The nonintegrable

variant of Hirota equation in which the nonlinear term in (1) is replaced by
(

|u|2u
)

x
, is solved numerically by [17, 19].

The paper is organized as follows. In Section 2, we convert the Eq. (1) from complex equation to system of nonlinear
equations that have real functions. In Section 3, we have four different approximation of finite difference method and we
introduce dissection of stability and local truncation error for different schemes. In section 4, numerical results for
problem and some related figures are given in order to show theefficiency as well as the accuracy of the proposed
method and we introduced the interaction of two and three solitary waves. Finally, conclusions are followed in Section 5.

2 The Hirota equation

In this section we convert the complex Eq. (1) to system of nonlinear equations that have real functions.We assume that
[19, 20].

u(x, t) = u1(x, t)+ iu2(x, t), i2 =−1, (5)

whereu1(x, t)andu2(x, t)are real functions.

By substituting in Eq. (1) we will reduce Hirota equation to the coupled system in thisform

(u1)t +3α
(

u2
1+u2

2

)

(u1)x+ γ(u1)xxx= 0,
(u2)t +3α

(

u2
1+u2

2

)

(u2)x+ γ(u2)xxx= 0.
(6)

We can write this system in this form
(u)t +3αz(u)(u)x+ γ(u)xxx= 0, (7)

wherez(u) =
(

u2
1+u2

2

)

,u= [u1,u2]
T .

3 Derivation of the numerical method

In this section we given theoretically discussed for the numerical method using finite difference method with different
high order approximations.

3.1 The first approximation

In this section we will prove that the method is second order in space and time. We take approximations for space
derivatives and time derivatives as:

(ut)
n
j =

un+1
j −un

j
k +O(k2),

(ux)
n
j =

un
j+2−un

j−2
4h +O(h2),

(uxxx)
n
j =

un
j+2−2un

j+1+2un
j−1−un

j−2

2h3 +O(h2).

(8)
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Now, we assume that(u)n
j is the exact solution ate the grid point(x j , tn) and(U)n

j is the numerical solution at the same
point.

Substituting (8) into (6) and using Crank-Nicolson formula [22] we get

(U1)
n+1
j + r1

(

(z)n+1
j +(z)n

j

)(

(U1)
n+1
j+2− (U1)

n+1
j−2

)

+ r2

(

(U1)
n+1
j+2 −2(U1)

n+1
j+1+2(U1)

n+1
j−1 − (U1)

n+1
j−2

)

= (U1)
n
j − r1

(

(z)n+1
j +(z)n

j

)(

(U1)
n
j+2− (U1)

n
j−2

)

− r2

(

(U1)
n
j+2−2(U1)

n
j+1+2(U1)

n
j−1− (U1)

n
j−2

)

, (9)

(U2)
n+1
j + r1

(

(z)n+1
j +(z)n

j

)(

(U2)
n+1
j+2− (U2)

n+1
j−2

)

+ r2

(

(U2)
n+1
j+2 −2(U2)

n+1
j+1+2(U2)

n+1
j−1 − (U2)

n+1
j−2

)

= (U2)
n
j − r1

(

(z)n+1
j +(z)n

j

)(

(U2)
n
j+2− (U2)

n
j−2

)

− r2

(

(U2)
n
j+2−2(U2)

n
j+1+2(U2)

n
j−1− (U2)

n
j−2

)

, (10)

wherez= (U1)
2+(U2)

2
, r1 =

3αk
16h , r2 =

γk
4h3 . This system can be solved by many methods.

3.1.1 Stability analysis of first scheme

In this section, the standard Von-Neumann concept is applied to investigate the stability analysis of the schemes. At first,

we must linearize the nonlinear term of the Hirota equation by making
(

(z)n+1
j +(z)n

j

)

as a local constantλ1. According

to the Von- Neumann concept, we get
(U1)

n
j = Aζ nexp(i j φ),

(U2)
n
j = Bζ nexp(i j φ),

(11)

g=
ζ n+1

ζ n ,

whereA andB are the harmonics amplitude,φ = kh , k is the mode number,i =
√
−1 andg is the amplification factor of

the schemes. Substituting (11) into the difference (9), we get

ζ n+1A[1+2i ((r1λ1+ r2)sin2φ −2r2sinφ)] = ζ nA[1−2i ((r1λ1+ r2)sin2φ −2r2sinφ)]

we get

g=
1−2i ((r1λ1+ r2)sin2φ −2r2sinφ)
1+2i ((r1λ1+ r2)sin2φ −2r2sinφ)

, (12)

from (12) we get|g| ≤ 1, hence the scheme is unconditionally stable. It means that there is no restriction on the grid size,
i.e. onh and∆ t, but we should choose them in such a way that the accuracy of the scheme is not degraded. Similar results
can be obtained from the difference (10).

3.1.2 Local truncation error of first scheme

To study the accuracy of (10) we replace(U)n
j by(u)n

j first, then from Taylor’s series expansion for all terms in (10) about
the point(x j , tn) we get

Tn
j =

[

∂u
∂ t +3αz(u) ∂u

∂x + γ ∂ 3u
∂x3

]n

j
+ k

2
∂
∂ t

[

∂u
∂ t +3αz(u) ∂u

∂x + γ ∂ 3u
∂x3

]n

j

+

[

k2

6
∂ 3u
∂ t3

+2αh2z(u) ∂ 3u
∂x3 +αkh2z(u) ∂ 4u

∂x3∂ t
+ 3αk2

4 z(u) ∂ 3u
∂x∂ t2

+
γh2

4
∂ 5u
∂x5 +

γk2

4
∂ 5u

∂x3∂ t2
+ . . .

]

,
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the first and second terms is zero by the Hirota equation, and so we end with local truncation error

Tn
j =

[

k2

6
∂ 3u
∂ t3

+2αh2z(u) ∂ 3u
∂x3 +αkh2z(u) ∂ 4u

∂x3∂ t
+ 3αk2

4 z(u) ∂ 3u
∂x∂ t2

+
γh2

4
∂ 5u
∂x5 +

γk2

4
∂ 5u

∂x3∂ t2
+ . . .

]

.

This means that Crank-Nicolson scheme is second order accuracy in space and second order in time, i.e. O(k2+h2).

3.2 The second approximation

In this section we will prove that the method is fourth order in first derivative space and second order in third derivative
space and time. We take approximations for space derivatives and time derivatives as:

(ut)
n
j =

un+1
j −un

j
k +O(k2),

(ux)
n
j =

un
j−2−8un

j−1+8un
j+1−un

j+2
12h +O(h4),

(uxxx)
n
j =

un
j+2−2un

j+1+2un
j−1−un

j−2

2h3 +O(h2).

(13)

Now, we assume that(u)n
j is the exact solution ate the grid point(x j , tn)and(U)n

j is the numerical solution at the same point.
Substituting (13) into (6) and using Crank-Nicolson formula we get

(U1)
n+1
j + r1

(

(z)n+1
j +(z)n

j

)(

(U1)
n+1
j−2 −8(U1)

n+1
j−1 +8(U1)

n+1
j+1 − (U1)

n+1
j+2

)

+ r2

(

(U1)
n+1
j+2−2(U1)

n+1
j+1 +2(U1)

n+1
j−1 − (U1)

n+1
j−2

)

(14)

= (U1)
n
j − r1

(

(z)n+1
j +(z)n

j

)(

(U1)
n
j−2−8(U1)

n
j−1+8(U1)

n
j+1− (U1)

n
j+2

)

− r2

(

(U1)
n
j+2−2(U1)

n
j+1+2(U1)

n
j−1− (U1)

n
j−2

)

,

(U2)
n+1
j + r1

(

(z)n+1
j +(z)n

j

)(

(U2)
n+1
j−2 −8(U2)

n+1
j−1 +8(U2)

n+1
j+1 − (U2)

n+1
j+2

)

+ r2

(

(U2)
n+1
j+2−2(U2)

n+1
j+1 +2(U2)

n+1
j−1 − (U2)

n+1
j−2

)

(15)

= (U2)
n
j − r1

(

(z)n+1
j +(z)n

j

)(

(U2)
n
j−2−8(U2)

n
j−1+8(U2)

n
j+1− (U2)

n
j+2

)

− r2

(

(U2)
n
j+2−2(U2)

n
j+1+2(U2)

n
j−1− (U2)

n
j−2

)

,

wherez= (U1)
2+(U2)

2
, r1 =

3αk
48h , r2 =

γk
4h3 . This system can be solved by many methods.

3.2.1 Stability analysis of second scheme

In this section, the standard Von-Neumann concept is applied to investigate the stability analysis of the schemes. At first,

we must linearize the nonlinear term of the Hirota equation by making
(

(z)n+1
j +(z)n

j

)

as a local constantλ1. According

to the Von- Neumann concept, we get
(U1)

n
j = Aζ nexp(i j φ),

(U2)
n
j = Bζ nexp(i j φ), (16)

g=
ζ n+1

ζ n ,
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whereA andB are the harmonics amplitude,φ = kh , k is the mode number,i =
√
−1andg is the amplification factor of

the schemes. Substituting (16) into the difference (??), we get

ζ n+1A[1+2i ((−r1λ1+ r2)sin2φ −2(r2−4r1λ1)sinφ)]
= ζ nA[1−2i ((−r1λ1+ r2)sin2φ −2(r2−4r1λ1)sinφ)]

we get

g=
1−2i ((−r1λ1+ r2)sin2φ −2(r2−4r1λ1)sinφ)
1+2i ((−r1λ1+ r2)sin2φ −2(r2−4r1λ1)sinφ)

, (17)

from (17) we get|g| ≤ 1, hence the scheme is unconditionally stable. It means that there is no restriction on the grid size,
i.e. onh and∆ t, but we should choose them in such a way that the accuracy of the scheme is not degraded. Similar results
can be obtained from the difference (15).

3.2.2 Local truncation error of second scheme

To study the accuracy of (14) we replace(U)n
j by(u)n

j first, then from Taylor’s series expansion for all terms in (14) about
the point(x j , tn)we get

Tn
j =

[

∂u
∂ t +3αz(u) ∂u

∂x + γ ∂ 3u
∂x3

]n

j
+ k

2
∂
∂ t

[

∂u
∂ t +3αz(u) ∂u

∂x + γ ∂ 3u
∂x3

]n

j

+

[

k2

6
∂ 3u
∂ t3

+ 3αk2

4 z(u) ∂ 3u
∂x∂ t2

+ 3αk3

12 z(u) ∂ 4u
∂x∂ t3

− 3αh4

30 z(u) ∂ 5u
∂x5+

3αk4

48 z(u) ∂ 5u
∂x∂ t4

− 3αh4k
60 z(u) ∂ 6u

∂x5∂ t
+ γh2

4
∂ 5u
∂x5 +

γk2

4
∂ 5u

∂x3∂ t2
+ . . .

]

,

the first and second terms is zero by the Hirota equation, and so we end with local truncation error

Tn
j =

[

k2

6
∂ 3u
∂ t3

+ 3αk2

4 z(u) ∂ 3u
∂x∂ t2

+ 3αk3

12 z(u) ∂ 4u
∂x∂ t3

− 3αh4

30 z(u) ∂ 5u
∂x5+

3αk4

48 z(u) ∂ 5u
∂x∂ t4

− 3αh4k
60 z(u) ∂ 6u

∂x5∂ t
+ γh2

4
∂ 5u
∂x5 +

γk2

4
∂ 5u

∂x3∂ t2
+ . . .

]

.

This means that Crank-Nicolson scheme is second order accuracy in space and second order in time, i.e. O(k2+h2).

3.3 The third approximation

In this section we will prove that the method is fourth order in third derivative space and second order in first derivative
space and time. We take approximations for space derivatives and time derivatives as:

(ut)
n
j =

un+1
j −un

j
k +O(k2),

(ux)
n
j =

un
j+2−un

j−2
4h +O(h2),

(uxxx)
n
j =

un
j−3−8un

j−2+13un
j−1−13un

j+1+8un
j+2−un

j+3

8h3 +O(h4).

(18)

Now, we assume that(u)n
j is the exact solution ate the grid point(x j , tn) and(U)n

j is the numerical solution at the same
point. Substituting (18) into (6) and using Crank-Nicolson formula we get

(U1)
n+1
j + r1

(

(z)n+1
j +(z)n

j

)(

(U1)
n+1
j+2− (U1)

n+1
j−2

)

+ r2

(

(U1)
n+1
j−3 −8(U1)

n+1
j−2 +13(U1)

n+1
j−1 −13(U1)

n+1
j+1 +8(U1)

n+1
j+2 − (U1)

n+1
j+3

)

= (U1)
n
j − r1

(

(z)n+1
j +(z)n

j

)(

(U1)
n
j+2− (U1)

n
j−2

)

(19)

− r2

(

(U1)
n
j−3−8(U1)

n
j−2+13(U1)

n
j−1−13(U1)

n
j+1+8(U1)

n
j+2− (U1)

n
j+3

)

,
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(U2)
n+1
j + r1

(

(z)n+1
j +(z)n

j

)(

(U2)
n+1
j+2− (U2)

n+1
j−2

)

+ r2

(

(U2)
n+1
j−3 −8(U2)

n+1
j−2 +13(U2)

n+1
j−1 −13(U2)

n+1
j+1 +8(U2)

n+1
j+2 − (U2)

n+1
j+3

)

= (U2)
n
j − r1

(

(z)n+1
j +(z)n

j

)(

(U2)
n
j+2− (U2)

n
j−2

)

(20)

− r2

(

(U2)
n
j−3−8(U2)

n
j−2+13(U2)

n
j−1−13(U2)

n
j+1+8(U2)

n
j+2− (U2)

n
j+3

)

,

wherez= (U1)
2+(U2)

2
, r1 =

3αk
16h , r2 =

γk
16h3 . This system can be solved by many methods.

3.3.1 Stability analysis of third scheme

In this section, the standard Von-Neumann concept is applied to investigate the stability analysis of the schemes. At first,

we must linearize the nonlinear term of the Hirota equation by making
(

(z)n+1
j +(z)n

j

)

as a local constantλ1. According

to the Von- Neumann concept, we get
(U1)

n
j = Aζ nexp(i j φ),

(U2)
n
j = Bζ nexp(i j φ), (21)

g=
ζ n+1

ζ n ,

whereAandBare the harmonics amplitude,φ = kh , k is the mode number,i =
√
−1 andg is the amplification factor of

the schemes. Substituting (21) into the difference (19), we get

ζ n+1A[1+2i ((r1λ1+8r2)sin2φ −13r2sinφ − r2sin3φ)]
= ζ nA[1−2i ((r1λ1+8r2)sin2φ −13r2sinφ − r2sin3φ)]

we get

g=
1−2i ((r1λ1+8r2)sin2φ −13r2sinφ − r2sin3φ)
1+2i ((r1λ1+8r2)sin2φ −13r2sinφ − r2sin3φ)

, (22)

from (22) we get|g| ≤ 1, hence the scheme is unconditionally stable. It means that there is no restriction on the grid size,
i.e. onh and∆ t, but we should choose them in such a way that the accuracy of the scheme is not degraded. Similar results
can be obtained from the difference (20)

3.3.2 Local truncation error of third scheme

To study the accuracy of (19) we replace(U)n
j by (u)n

j first, then from Taylor’s series expansion for all terms in (19) about
the point(x j , tn) we get

Tn
j =

[

∂u
∂ t +3αz(u) ∂u

∂x + γ ∂ 3u
∂x3

]n

j
+ k

2
∂
∂ t

[

∂u
∂ t +3αz(u) ∂u

∂x + γ ∂ 3u
∂x3

]n

j

+

[

k2

6
∂ 3u
∂ t3

+2αh2z(u) ∂ 3u
∂x3 +αkh2z(u) ∂ 4u

∂x3∂ t
+ 3αk2

4 z(u) ∂ 3u
∂x∂ t2

+
γk2

4
∂ 5u

∂x3∂ t2
+ γk3

12
∂ 6u

∂x3∂ t3
− 7γh4

120
∂ 7u
∂x7 +

γk4

48
∂ 7u

∂x3∂ t4
+ . . .

]

,

the first and second terms is zero by the Hirota equation, and so we end with local truncation error

Tn
j =

[

k2

6
∂ 3u
∂ t3

+2αh2z(u) ∂ 3u
∂x3 +αkh2z(u) ∂ 4u

∂x3∂ t
+ 3αk2

4 z(u) ∂ 3u
∂x∂ t2

+
γk2

4
∂ 5u

∂x3∂ t2
+ γk3

12
∂ 6u

∂x3∂ t3
− 7γh4

120
∂ 7u
∂x7 +

γk4

48
∂ 7u

∂x3∂ t4
+ . . .

]

.

This means that Crank-Nicolson scheme is second order accuracy in space and second order in time, i.e. O(k2+h2).
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3.4 The fourth approximation

In this section we will prove that the method is fourth order in space and second order in time. We take approximations
for space derivatives and time derivatives as:

(ut)
n
j =

un+1
j −un

j
k +O(k2),

(ux)
n
j =

un
j−2−8un

j−1+8un
j+1−un

j+2
12h +O(h4),

(uxxx)
n
j =

un
j−3−8un

j−2+13un
j−1−13un

j+1+8un
j+2−un

j+3

8h3 +O(h4).

(23)

Now, we assume that(u)n
j is the exact solution ate the grid point(x j , tn) and(U)n

j is the numerical solution at the same
point. Substituting (23) into (6) and using Crank-Nicolson formula we get

(U1)
n+1
j + r1

(

(z)n+1
j +(z)n

j

)(

(U1)
n+1
j−2 −8(U1)

n+1
j−1 +8(U1)

n+1
j+1 − (U1)

n+1
j+2

)

+r2

(

(U1)
n+1
j−3 −8(U1)

n+1
j−2+13(U1)

n+1
j−1 −13(U1)

n+1
j+1 +8(U1)

n+1
j+2 − (U1)

n+1
j+3

)

= (U1)
n
j − r1

(

(z)n+1
j +(z)n

j

)(

(U1)
n
j−2−8(U1)

n
j−1+8(U1)

n
j+1− (U1)

n
j+2

)

−r2

(

(U1)
n
j−3−8(U1)

n
j−2+13(U1)

n
j−1−13(U1)

n
j+1+8(U1)

n
j+2− (U1)

n
j+3

)

,

(24)

(U2)
n+1
j + r1

(

(z)n+1
j +(z)n

j

)(

(U2)
n+1
j−2 −8(U2)

n+1
j−1 +8(U2)

n+1
j+1 − (U2)

n+1
j+2

)

+r2

(

(U2)
n+1
j−3 −8(U2)

n+1
j−2+13(U2)

n+1
j−1 −13(U2)

n+1
j+1 +8(U2)

n+1
j+2 − (U2)

n+1
j+3

)

= (U2)
n
j − r1

(

(z)n+1
j +(z)n

j

)(

(U2)
n
j−2−8(U2)

n
j−1+8(U2)

n
j+1− (U2)

n
j+2

)

−r2

(

(U2)
n
j−3−8(U2)

n
j−2+13(U2)

n
j−1−13(U2)

n
j+1+8(U2)

n
j+2− (U2)

n
j+3

)

,

(25)

wherez= (U1)
2+(U2)

2
, r1 =

3αk
48h , r2 =

γk
16h3 . This system can be solved by many methods.

3.4.1 Stability analysis of fourth scheme

In this section, the standard Von-Neumann concept is applied to investigate the stability analysis of the schemes. At first,

we must linearize the nonlinear term of the Hirota equation by making
(

(z)n+1
j +(z)n

j

)

as a local constantλ1. According

to the Von- Neumann concept, we get
(U1)

n
j = Aζ nexp(i j φ),

(U2)
n
j = Bζ nexp(i j φ),

(26)

g=
ζ n+1

ζ n ,

whereA andB are the harmonics amplitude,φ = kh , kis the mode number,i =
√
−1andg is the amplification factor of

the schemes. Substituting (26) into the difference (24), we get

ζ n+1A[(r1λ1+8r2)sin2φ +(8r1λ1−13r2)sinφ − r2sin3φ ]
= ζ nA[1−2i ((r1λ1+8r2)sin2φ +(8r1λ1−13r2)sinφ − r2sin3φ)]

we get

g=
1−2i ((r1λ1+8r2)sin2φ +(8r1λ1−13r2)sinφ − r2sin3φ)
1+2i ((r1λ1+8r2)sin2φ +(8r1λ1−13r2)sinφ − r2sin3φ)

, (27)

from (27) we get|g| ≤ 1, hence the scheme is unconditionally stable. It means that there is no restriction on the grid size,
i.e. onh and∆ t, but we should choose them in such a way that the accuracy of the scheme is not degraded.

Similar results can be obtained from the difference (25).
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3.4.2 Local truncation error of fourth scheme

To study the accuracy of (25) we replace(U)n
j by(u)n

j first, then from Taylor’s series expansion for all terms in (25) about
the point(x j , tn) we get

Tn
j =

[

∂u
∂ t +3αz(u) ∂u

∂x + γ ∂ 3u
∂x3

]n

j
+ k

2
∂
∂ t

[

∂u
∂ t +3αz(u) ∂u

∂x + γ ∂ 3u
∂x3

]n

j

+









k2

6
∂ 3u
∂ t3

+ 3αk2

4 z(u) ∂ 3u
∂x∂ t2

+ 3αk3

12 z(u) ∂ 4u
∂x∂ t3

− 3αh4

30 z(u) ∂ 5u
∂x5+

3αk4

48 z(u) ∂ 5u
∂x∂ t4

− 3αh4k
60 z(u) ∂ 6u

∂x5∂ t
+ γk2

4
∂ 5u

∂x3∂ t2
+ γk3

12
∂ 6u

∂x3∂ t3
−

7γh4

120
∂ 7u
∂x7 +

γk4

48
∂ 7u

∂x3∂ t4
+ . . .









,

the first and second terms is zero by the Hirota equation, and so we end with local truncation error

Tn
j =









k2

6
∂ 3u
∂ t3

+ 3αk2

4 z(u) ∂ 3u
∂x∂ t2

+ 3αk3

12 z(u) ∂ 4u
∂x∂ t3

− 3αh4

30 z(u) ∂ 5u
∂x5+

3αk4

48 z(u) ∂ 5u
∂x∂ t4

− 3αh4k
60 z(u) ∂ 6u

∂x5∂ t
+ γk2

4
∂ 5u

∂x3∂ t2
+ γk3

12
∂ 6u

∂x3∂ t3
−

7γh4

120
∂ 7u
∂x7 +

γk4

48
∂ 7u

∂x3∂ t4
+ . . .









.

This means that Crank-Nicolson scheme is second order accuracy in space and second order in time, i.e. O(k2+h4).

4 Numerical tests and results of Hirota equation

In this section, we present numerical example to test validity of our scheme for solving Hirota equation. The norms
L2-norm andL∞-norm are used to compare the numerical solution with the analytical solution [23].

L2 =
∥

∥uE −uN
∥

∥=
√

h∑N
i=0(u

E
j −uN

j )
2,

L∞ = max
j

∣

∣

∣
uE

j −uN
j

∣

∣

∣
, j = 0,1, · · · ,N.

(28)

WhereuE is the exact solutionu anduN is the approximation solutionUN. And the quantitiesI1 and I2 are shown to
measure conservation for the schemes.

I1 =
∫ ∞
−∞ |u(x, t)|2 dx∼= h∑N

j=0

∣

∣

∣
Un

j

∣

∣

∣

2
,

I2 =
∫ ∞
−∞(

α
2 |u(x, t)|4−|ux(x, t)|2)dx∼= h∑N

j=0(
α
2 (|U |4)n

j − (|Ux|2)n
j )







, (29)

whereu(x, t) = u1(x, t)+ iu2(x, t),(U)n
j = (U1)

n
j + i(U2)

n
j . Now we consider this test problem.

Test problem

We assume that the solution of the Hirota equation is negligible outside the interval[xL,xR] , together with all itsx
derivatives tend to zero at the boundaries. Therefore, in our numerical study we replace Eq. (1) by

ut +3α |u|2ux+ γuxxx= 0,xL < x< xR. (30)

Whereu is a complex valued function of the spatial coordinatexand the timet and α, γ are positive real constants.
Boundary conditions

u(xL, t) = u(xR, t) = 0
ux(xL, t) = ux(xR, t) = 0,0≤ t ≤ T.

(31)

And initial conditions.
u(x,0) = f (x),xL < x< xR. (32)
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For our numerical work, we decompose the complex functionu into their real and imaginary parts by writing

u(x, t) = u1(x, t)+ iu2(x, t), i2 =−1, (33)

whereu1(x, t)andu2(x, t)are real functions. This will reduce Hirota equation to the coupled system

(u1)t +3α
(

u2
1+u2

2

)

(u1)x+ γ(u1)xxx= 0,
(u2)t +3α

(

u2
1+u2

2

)

(u2)x+ γ(u2)xxx= 0.
(34)

Then the exact solutions of system (34) is

u1(x, t) = β sech[κ (x− s−νt)]cos(ϕ) ,
u2(x, t) = β sech[κ (x− s−νt)]sin(ϕ) ,

β =
√

2γ
α κ ,ϕ = a(x−bt− s) ,

ν = γ
(

κ2−3a2
)

,b= γ
(

3κ3−a2
)

,

(35)

β is the amplitude of the wave,κ is related to the width of the wave envelope andν is the velocity. The parametera is
the wave number of the phase andb is related to the frequency of the phase. Also the solution isat x = s at t = 0. In
order to derive a numerical method for solving the system given in (34). The regionR= [xL < x< xR]× [t > 0]with its
boundary consisting of the ordinatesx0 = xL,xN = xR and the axist = 0 is covered with a rectangular mesh of points with
coordinates

x= x j = xL + jh, j = 0,1,2, . . . ,N.

t = tn = nk,n= 0,1,2, . . . .

whereh andk are the space and time increments, respectively. To investigate the performance of the proposed schemes
we consider solving the following problem.

4.1 Single soliton

In previous section, we have provided four finite differenceschemes for the Hirota equation, and we can take the following
as an initial condition.

u(x,0) = β sech[κ (x− s)]exp(iϕ) ,

β =
√

2γ
α κ ,ϕ = a(x−bt− s) ,

ν = γ
(

κ2−3a2
)

,b= γ
(

3κ3−a2
)

.

(36)

The normsL2 andL∞ are used to compare the numerical results with the analytical values and the quantitiesI1 andI2 are
shown to measure conservation for the schemes.

Now, we consider two different cases to study the motion of single soliton.

Case 1. Now, for comparison, we consider a test problem where,k = 0.05, α = 2,γ = 1,
a = 0.5,κ = 0.5,xL = −30,xR = 30. The simulations are done up tot = 5. The invariantI1 approach to zero andI2
changed by less than 2.76×10−4 in the computer program for the first scheme. The invariantI1 approach to zero andI2
changed by less than 8.53×10−4 for the second scheme. The invariantI1 approach to zero andI2 changed by less than
3.46×10−4for third scheme. The invariantsI1 andI2are approach to zero for fourth scheme. Errors, also, at time5 are
satisfactorily smallL2-error =8.07047× 10−4and L∞-error = 3.61238× 10−4 for the first scheme, are satisfactorily
small L2-error =1.39931× 10−3 andL∞-error = 5.54282× 10−4 for the second scheme. And are satisfactorily small
L2-error = 5.74713× 10−4and L∞-error =2.72002× 10−4for third scheme. And are satisfactorily smallL2-error =
1.42121× 10−5and L∞-error =7.83610× 10−6for fourth scheme. Our results are recorded in Table 1. The motion of
solitary wave using fourth scheme is plotted at timest = 0,3,5 in Fig.1. These results illustrate that the fourth scheme has
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a highest accuracy and best conservation than other three schemes. So we use it to study the motion of single solitary
waves and interaction between two and three solitons.

Table 1: Invariants and errors for single solitary wavek= 0.05,α = 2,γ = 1,a= 0.5,κ = 0.5,xL =−30,xR= 30.

Schemes T I1 I2 L2−norm L∞ −norm
First
Scheme
h= 0.05

0.0
1.0
2.0
3.0
4.0
5.0

1.0000
1.0000
1.0000
0.9999
0.9999
0.9999

-0.166526
-0.166205
-0.166102
-0.166989
-0.166885
-0.166802

0.0
1.40351E-4
2.90824E-4
4.71530E-4
6.44279E-4
8.07047E-4

0.0
7.23214E-5
1.09485E-4
1.74162E-4
3.09531E-4
3.61238E-4

Second
scheme
h= 0.05

0.0
1.0
2.0
3.0
4.0
5.0

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

-0.166649
-0.166813
-0.167015
-0.167209
-0.167378
-0.167502

0.0
3.21264E-4
5.94272E-4
8.53845E-4
1.14821E-3
1.39931E-3

0.0
1.40132E-4
2.46535E-4
4.39482E-4
4.59472E-4
5.54282E-4

Third
Scheme
h= 0.05

0.0
1.0
2.0
3.0
4.0
5.0

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

-0.166551
-0.166494
-0.166414
-0.166332
-0.166259
-0.166205

0.0
1.17149E-5
2.30553E-4
3.48658E-4
4.64827E-4
5.74713E-4

0.0
6.55307E-5
1.23419E-4
1.75536E-4
2.22999E-4
2.72002E-4

fourth
scheme
h= 0.1

0.0
1.0
2.0
3.0
4.0
5.0

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

-0.166648
-0.166648
-0.166646
-0.166644
-0.166641
-0.166641

0.0
4.25079E-6
6.74977E-6
1.07949E-5
1.68464E-5
1.42121E-5

0.0
1.58619E-6
3.89436E-6
6.05488E-6
6.19336E-6
7.83610E-6

Fig. 1: Single solitary wave withh = 0.1,k = 0.05,α = 2,γ = 1, anda = 0.5,κ = 0.5,xL = −30,xR = 30,t = 0,3,5
respectively.

Case 2. In this case we study the motion of single soliton by fourth scheme. In this case, we choosek = 0.1,α = 2,γ =

1,a = 0.5,κ = 0.5,xL = −30,xR = 30, with different values ofh = 0.05,0.1 the simulations are done up tot = 5. The
invariantsI1 and I2approach to zero percent, respectively ath= 0.05,0.5. Errors, also, are satisfactorily smallL2-error
=1.31781× 10−3 andL∞-error =6.24576× 10−4, percent, respectively ath = 0.05. The invariantsI1 and I2approach to
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zero percent, respectively. Errors, also, are satisfactorily small L2-error =5.63371×10−3andL∞-error =2.68608×10−3,
percent, respectively ath= 0.1. Our results are recorded in Table 2 and the motion of solitary wave is plotted at different
time levels in Fig 2.

Table 2: Invariants and errors for single solitary wave by fourth schemek = 0.1,α = 2,γ = 1,a = 0.5,κ = 0.5,xL =
−30,xR= 30.

h T I1 I2 L2−norm L∞ −norm
h= 0.05 0.0

1.0
2.0
3.0
4.0
5.0

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

-0.166597
-0.166757
-0.166944
-0.167123
-0.167276
-0.167389

0.0
3.08344E-4
5.62022E-4
8.24336E-4
1.08278E-3
1.31781E-3

0.0
1.77451E-4
2.93477E-4
4.17184E-4
5.28448E-4
6.24576E-4

h= 0.1 0.0
1.0
2.0
3.0
4.0
5.0

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

-0.166605
-0.167278
-0.168093
-0.168888
-0.169562
-0.170062

0.0
1.28535E-3
2.37453E-3
3.50933E-3
4.60728E-3
5.63371E-3

0.0
7.41369E-4
1.26919E-3
1.83964E-3
2.32914E-3
2.68608E-3

Fig. 2: Single solitary wave by fourth scheme withh= 0.05,k= 0.1,α = 2,γ = 1, anda= 0.5,κ = 0.5,xL =−30,xR= 30,
t = 0,3,5 respectively.

In the next table we make comparison between the results of fourth scheme and the results have been published in Search
[2]. The results of our scheme are accurate than the results in [2].

Table 3: Invariants and errors for single solitary wavek= 0.05,α = 2,γ = 1, a= 0.5,κ = 0.5,xL =−30,xR= 30, t = 4.

Method I1 I2 L2−norm L∞ −norm
Analyticalh= 0.1
Our schemeh= 0.1
[2]ah= 0.05
[2]b h= 0.05
[2]c h= 0.05

1.0000
1.0000
1.0000
1.0000
1.0000

-0.166648
-0.166648
-0.166648
-0.166648
-0.166648

0.0
1.68464E-5
-
-
-

0.0
0.000006
0.00001
0.00001
0.00014
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4.2 Interaction of two solitary waves

The interaction of two solitary waves having different amplitudes and traveling in the same direction is illustrated. We
consider Hipota equation with initial conditions given by the linear sum of two well separated solitary waves of various
amplitudes

u(x,0) = β sech[κ j (x− sj)]exp(iϕ) ,

β =
√

2γ
α κ j ,ϕ = a j (x−bt− sj) ,

ν = γ
(

κ2
j −3a2

j

)

,b= γ
(

3κ3
j −a2

j

)

.

(37)

where, j = 1,2, a j andsj ,κ jare arbitrary constants. In our computational work.

Now, we chooses1 = −10,s2 = 10,a1 = 0.1,a2 = 1,κ1 = 0.4,κ2= 0.7,γ = 1, α = 2, h = 0.05,k = 0.05with interval
[-30, 30]. In Fig. 3, the interactions of these solitary waves are plotted at different time levels. We also, observe an
appearance of a tail of small amplitude after interaction and the two invariants for this case are shown in Table 4. The
invariantsI1 andI2are changed by less than2.3×10−4and3×10−4, respectively for the scheme.

Table 4: Invariants of interaction two solitary waves of Hirota equation s1 = −10,s2 = 10, a1 = 0.1, a2 = 1,κ1 = 0.4,
κ2= 0.7,γ = 1, α = 2,−30≤ x≤ 30, h= 0.05,k= 0.05.

T I1 I2
0
2
4
6
8
10

2.19957
2.19957
2.19954
2.19951
2.19924
2.19934

-0.539631
-0.539631
-0.539628
-0.539629
-0.539627
-0.539601

Fig. 3: interaction two solitary waves withs1 = −10,s2 = 10,a1 = 0.1,a2 = 1,κ1 = 0.4,κ2= 0.7,γ = 1, α = 2,h =
0.05,k= 0.05,−30≤ x≤ 30 at timet = 0,14 respectively.

4.3 Interaction of three solitary waves

The interaction of three solitary waves having different amplitudes and traveling in the same direction is illustrated. We
consider the Hirota equation with initial conditions givenby the linear sum of three well separated solitary waves of
various amplitudes.

u(x,0) = β sech[κ j (x− sj)]exp(iϕ) ,

β =
√

2γ
α κ j ,ϕ = a j (x−bt− sj) ,

ν = γ
(

κ2
j −3a2

j

)

,b= γ
(

3κ3
j −a2

j

)

,

(38)
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where,j = 1,2, 3, a j andsj ,κ j are arbitrary constants. In our computational work. Now, wechooses1 =−5,s2 = 5,s3 =

15,a1 = 0.1,a2 = 0.5,a3 = 1,κ1 = 0.3,κ2= 0.4,κ3= 0.8, γ = 1, α = 2, h= 0.05, k= 0.05 with interval [-30, 30]. In Fig.
4. The interactions of these solitary waves are plotted at different time levels. We also, observe an appearance of a tailof
small amplitude after interaction and the two invariants for this case are shown in Table 5. The invariantsI1 and I2 are
changed by less than 1×10−5 and 2.56×10−4, respectively for the scheme.

Table 5: Invariants of interaction three solitary waves of Hirota equation.s1 =−5,s2 = 5,s3 = 15,a1 = 0.1,a2 = 0.5,a3 =
1,κ1 = 0.3,κ2= 0.4,κ3= 0.8, γ = 1,α = 2,h= 0.05,k= 0.05,−30≤ x≤ 30.

T I1 I2
0
2
4
6
8
10

2.98713
2.98701
2.98645
2.98624
2.98589
2.98512

-0.776279
-0.776245
-0.776211
-0.776198
-0.776011
-0.776023

Fig. 4: interaction three solitary waves withs1 =−5,s2 = 5,s3 = 15,a1 = 0.1,a2 = 0.5,a3 = 1,κ1 = 0.3,κ2= 0.4,κ3= 0.8,
γ = 1, α = 2,h= 0.05,k= 0.05,−30≤ x≤ 30 at timest = 0, 14 respectively.

5 Conclusions

In this paper, we applied the finite difference method with different high order approximations to develop a numerical
method for solving Hirota equation and shown that the schemes are unconditionally stable. We tested our schemes through
a single solitary wave in which the analytic solution is known, then extend it to study the interaction of solitons where no
analytic solution is known during the interaction and its accuracy was shown by calculating error normsL2 andL∞.
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