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Abstract: In this paper, we take finite difference method with différaigh order approximations for solving Hirota Equation is
presented. The stability analysis using Von-Neumann fgadenshows schemes are unconditionally stable. To testacythe error
norms Ly, Lo are computed. We compute local truncation error for difierechemes. We make comparison between these
approximations through the results that we are get it. Thesglts show that the approximation ofk®+ h?*) introduced here is more
accurate than others and easy to apply.
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1 Introduction

The purpose of this paper is to apply finite difference methith different high order approximations to the Hirota
equation. The Hirota equation in the form [1]

l-'tJF?’a|l-'|2l-'xJr Yuxxx = 0, 1)

whereu is a complex valued function of the spatial coordinatend the time and a, y are positive real constants.
Boundary conditions
u(x,t) = ux(x,t) = 0,|x| = 0,0<t <T. (2)

And initial conditions.
u(x,0) = f(x), —0 < X< 0. (3)

The exact solution of Hitora equatioh)(is

x—bt—s), (4)

wheref is the amplitude of the wavg, is related to the width of the wave envelope anid the velocity. The parameter

a is the wave number of the phase ani$ related to the frequency of the phase. This equation ist@giiable equation
and it is very important because it has many physical apiics, such as the propagation of optical pluses in nematic
liquid crystal waveguides. The Hirota equation is closeyared to both the nonlinear Schrodinger equation and
modified Korteweg-de Vries (MKdV) equations, as it is compleneralization of the mKdV equation and it is a part of
the nonlinear Schrodinger equation hierarchy of the irstelgrequation. Also, its soliton solution has a very sinfitam
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to the nonlinear Schrodinger equation soliton. The Efhés two-parameter soliton family, with amplitude and eéio

The Hirota equation has been solved numerically by Hoseitl Sand Marchant T. R. [1] and the Edl)(has been
studied by W. G. Al.Harbi [2]. The numerical solution of nomdar wave equations has been the subject of many studies
in recent years. Such as the Korteweg-de Vries (KdV) equd8o4, 5, 6] and the nonlinear Schrodinger equation has
been solved by [7, 8]. Numerical solution of coupled padiffierential equations, as an example, the coupled noatine
Schrodinger equation admits soliton solution and it hasynagplications in communication, this system has been dolve
numerically by Ismail [9,10,11,12] and the coupled Kortgvee Vries equation has been solved numerically [13, 14, 15,
16]. The complex nonlinear partial differential equatidrae been solved in [17, 18, 19, 20, 21]. The nonintegrable

variant of Hirota equation in which the nonlinear term 1 is replaced b£|u|2u) , Is solved numerically by [17, 19].
X

The paper is organized as follows. In Section 2, we convertgf). (1) from complex equation to system of nonlinear
equations that have real functions. In Section 3, we havedifierent approximation of finite difference method and we
introduce dissection of stability and local truncationoerfor different schemes. In section 4, numerical results fo
problem and some related figures are given in order to shoveffieency as well as the accuracy of the proposed
method and we introduced the interaction of two and thratasplwaves. Finally, conclusions are followed in Section 5

2 The Hirota equation

In this section we convert the complex Ed) fo system of nonlinear equations that have real functidfesassume that
[19, 20].
u(x,t) = ug(x,t) +iua(x,t), i2 = —1, (5)

whereu; (x,t)andix(x,t)are real functions.
By substituting in Eq.1) we will reduce Hirota equation to the coupled system in thim

(Ul)t + 3a (U% + U%) (Ul)x + V(Ul)xxx =0,

(Uz)t +3a (U% + U%) (Uz)x + V(Uz)xxx =0. ©)

We can write this system in this form
(U)e +3az(u) (u)x + Y(U)xx =0, (7

wherez(u) = (U2 + u3) ,u= [u1,uw]".

3 Derivation of the numerical method

In this section we given theoretically discussed for the aetical method using finite difference method with different
high order approximations.

3.1 The first approximation

In this section we will prove that the method is second ordespace and time. We take approximations for space
derivatives and time derivatives as:

utlogn

ul ,—ul
(w07 =2 o), ®
uf L —2u" u L —uUb
(oo = L2l 2L | oy,
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Now, we assume thdt)] is the exact solution ate the grid poix,t,) and(U)] is the numerical solution at the same
point.

Substituting 8) into (6) and using Crank-Nicolson formula [22] we get

UDF 41 (@4 @]) (VD3 - U0T3) +r2 (U053 - 20 + 2001 - (U0}

= (U] -1 (@74 @F) (UDf2— UD]) —r2 (U] - 20T + 20011~ (D] o), )

(UZ)?+l+r1((z)?+l+( 2 ) ((Uz)ﬁ; (Uz)m) +r2((u2) T —2(U2) T +2(U) M — (Uz)?i%)
(

= ()] -1 (@] +@]) (UD]2— U] o) —12((V2)] 2~ 2U2)] 1 +2(U)] = (U2)] ), (20)

wherez = (Ul)2 + (Uz)2 1= g 2= 4h3 This system can be solved by many methods.

3.1.1 Stability analysis of first scheme

In this section, the standard Von-Neumann concept is apfdienvestigate the stability analysis of the schemes. At fir
we must linearize the nonlinear term of the Hirota equatlpniaklng(( )”+1+ (z)?) as a local constant;. According
to the Von- Neumann concept, we get
(Up)? = AC"explij @),
(U2)] =B explij @),
Zn+1
Fa
whereA andB are the harmonics amplitude,= kh , k is the mode number= v/—1 andg is the amplification factor of
the schemes. Substitutingjl) into the differenceg), we get

(11)

g:

" IA[L+ 2i ((riAg +12) sin 20— 2rpsing)] = {"A[1— 2i ((r1A1 4 r2)sin2p — 2r;sing)]

we get
~ 1-2i((riAr+r2)sin2p — 2r;sing)
~ 142i((riA+r2)sin2p — 2r;sing)’
from (12) we get|g| < 1, hence the scheme is unconditionally stable. It means tkat ik no restriction on the grid size,
i.e. onh andAt, but we should choose them in such a way that the accuracg sttieme is not degraded. Similar results
can be obtained from the difference).

(12)

3.1.2 Local truncation error of first scheme

To study the accuracy ofL.Q) we replacgU )'j‘by(u)? first, then from Taylor’s series expansion for all termsif)(about
the point(x;,t,) we get

)

31N
Tjn: {%4_302( )dx+y0x3} li(di{ +30{z 0X+V%L
2 53, 2 3

§ 58 +2ah’z(u) & +a"h22( U) 2 + 245 2(U) e+
yh? 95u | W2 g5u

4 T T4 3ot + ..
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the first and second terms is zero by the Hirota equation, ameesnd with local truncation error

K2 93 2 ik a4 3ak? 3
m_|® 23 + 2ah?z(u) 54 + akhPz(u) 55 + 34 2(u) 2o+
i )

T
4 9% 4 gx3at2 "

This means that Crank-Nicolson scheme is second orderamcim space and second order in time, i.ék0r h?).

3.2 The second approximation

In this section we will prove that the method is fourth ordefiist derivative space and second order in third derivative
space and time. We take approximations for space derigaivd time derivatives as:

wi =L+ ope)

) uft k78u'-1 +8u Lu'-“
(g = e tatie 4 o) 13)
(1o = 2t 1 o).

Now, we assume that)'lis the exact solution ate the grid poiix, th)and(U)'is the numerical solution at the same point.
Substituting 13) into (6) and using Crank-Nicolson formula we get

(U] 411 ((z)T+1 + (z)’j‘) ((ul)Ti; ~8(Un) 1 +8(Un)iiE - (ul);‘g)
+r2 (D] - 2D + 2V - (WD) (14)
= (U] -1 (@] + @) ((UD] 2~ 8ULT 1 +8UD] 1~ (V)]

=2 (U2~ 200} 200 1~ (VD] ).

(Ua)] 411 ((z)T“ + (z)T) ((uz)Tj; ~8(U)[ 1 +8(Up)l 1~ (uz)ﬁ;)
+12 (U213 - 2U2) [ +2(U2) ] - (U2)]3) (15)
= ()] -1 (@] + @) (U] 2~ 8L, +8(U2)] 11— (U2

12 ((U2)}2 - 201 +2(U)] 3~ ()] ).

wherez = (U1)2 + (Ug)2 = %(, ro = 4—‘;1k3. This system can be solved by many methods.

3.2.1 Stability analysis of second scheme

In this section, the standard Von-Neumann concept is apfdienvestigate the stability analysis of the schemes. At fir
we must linearize the nonlinear term of the Hirota equatipmiaking ((Z)TJrl + (z)’j‘) as a local constanit;. According
to the Von- Neumann concept, we get
(U1)] = Al exp(ij @),
(U2)] = BZ"exp(ij @),
n+1

(16)
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whereA andB are the harmonics amplitude,= kh, k is the mode number= v/—1andg is the amplification factor of
the schemes. Substitutingig) into the difference??), we get

AL+ 2i ((—r1Ag+12)SiN20 — 2(rp — 4riAq) sing)]
={"A[1-2i((—r1A1+r2)sin29—2(r, — 4r1A1) Sing)]

we get
~ 1-2i((—r1A1+r2)sin2p—2(r; — 4riA1) sing)
C 142i((—riA1+r2)Sin2p— 2(rp — 4riAq) sing)’

from (17) we get|g| < 1, hence the scheme is unconditionally stable. It means tkat ik no restriction on the grid size,
i.e. onh andAt, but we should choose them in such a way that the accuracg sttieme is not degraded. Similar results
can be obtained from the differenc}.

(17)

3.2.2 Local truncation error of second scheme

To study the accuracy ofL.g) we replacgU )’j‘by(u)? first, then from Taylor’s series expansion for all termsid)(about
the point(x;,t,)we get

T"= [ +3az(u 0

kd [au u, ,o%ul"
] } + 25t | ot +302(u )"XH/WL
3—(

19_
3
53 T og-4u )axm +

K2 33u | 3ak? *u 3ah d°u
l—k“ . Wi V)r(u u W 0 2 gaxﬁ 7

3a u  3ah’k a%u 35u

182U 590 — “60 AW se + 7 ax5 s+ T a2 T

the first and second terms is zero by the Hirota equation, améesend with local truncation error

K2 93u | 3ak? 3 9%y 3ah?
€§+TSZ( )axzt2+ ( )%ﬁs 38k ( zgxs"i_
3a a 3ah™k J°u J°u

25 2U) 5,90 — “60- AU )0X50t+ T o T A ade T

n__
" =

48

This means that Crank-Nicolson scheme is second orderamcir space and second order in time, i.¢k0r h?).

3.3 The third approximation

In this section we will prove that the method is fourth ordethird derivative space and second order in first derivative
space and time. We take approximations for space derigading time derivatives as:

n+1_n
(W)} = =g+ 0(ke),
()" = 7“2 il +0(M?), (18)
8u? lSu 134" 8
(UXXX)J — J 3 9U; ot ;hs J+1+ UJ+2 UJ+3—|—O(h4).

Now, we assume thdti)] is the exact solution ate the grid poix,t,) and(U)] is the numerical solution at the same
point. Substituting8) into (6) and using Crank-Nicolson formula we get

U]+ (@7 +@F) (L5 - UD])

12 (U3 - 8(UD [ 3+ 13U} - 13U + 8UDLE - (Un)]13)

= (U] -1 (@1 + @5 (U2 — L)) (19)
—ty ((ul)J[3 —8(Uy)] ,+13(Up) ; —13(Un)}, 1 +8(Uy)], 5~ (ul)g‘%) ,
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W)+ (@7 + @) (U255 - (U2]3)

12 ((U2)5 - 8(U) 5+ 13(U) 1 — 13(Un) ] + 8(U2) T3 — (U2)}13)

= (U] -1 (@7 + @) (U2~ U] 2) (20)
12 (U2)] 5~ 8(U2)] 2+ 13(Uz)] 1 — 13(Uz)]s1 + 8(Uz)]z2 — (U2)].s)

wherez = (U1)2 + (Uz) = i‘gﬁ, ro= 1gkh3 This system can be solved by many methods.

3.3.1 Stability analysis of third scheme

In this section, the standard Von-Neumann concept is apfienvestigate the stability analysis of the schemes. At,fir
we must linearize the nonlinear term of the Hirota equatipmiaking (( )”+l+ (z)'j‘) as a local constant;. According
to the Von- Neumann concept, we get
(U1)] = Al explijg),
(U2)} =B{"exp(ij @),
Zn+l
F7
whereAandare the harmonics amplitud@,= kh , k is the mode number,= /—1 andg is the amplification factor of
the schemes. Substitutingl) into the differencel9), we get

(21)

g:

" EA[142i ((reA1 + 8r2) sin2p — 13rpsing — rpsin 3p)]
={"A[1—2i((r1A1+8r2)sin2p— 13rasin@ —rasin 3p)]

we get
~ 1-2i((riA1+8rz)sin2p — 13r;sin@ — r2sin 3p)
~ 1+2i((rgAy+8rp)sin2p — 13rpsing —rasin3p)’
from (22) we get|g| < 1, hence the scheme is unconditionally stable. It means tket ik no restriction on the grid size,

i.e. onh andAt, but we should choose them in such a way that the accuracg sttieme is not degraded. Similar results
can be obtained from the differenc0f

(22)

3.3.2 Local truncation error of third scheme

To study the accuracy o10) we replacgU )’j1 by (u)’j1 first, then from Taylor’s series expansion for all termslf)(@bout
the point(x;,t,) we get

3,1" n
"= [g—?wLSGZ(U)%wLV%ﬂ +52 [ +3az(u )0—+V%L
S ¥ +2ahPz(u) 5y +akh2z + 32 7(y) asttj L1,

a 3
¥ 05 v 06 Wt a7y vk‘? ..
4 9x30t2 12 9x3ot3 = 120 dx7 48 z?xgﬁt

the first and second terms is zero by the Hirota equation, ameesend with local truncation error

3ork2 3u
ax3 ‘ + 2U) g+

4 z?x3z9t2 12 z?x3dt3 120 9x’ 7+ 48 dx3dt4 +

This means that Crank-Nicolson scheme is second orderamcim space and second order in time, i.¢k0r- h?).

(© 2017 BISKA Bilisim Technology
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3.4 The fourth approximation
In this section we will prove that the method is fourth ordespace and second order in time. We take approximations
for space derivatives and time derivatives as:

n+1

(w)r = 4 oge),
+0(hY, (23)

(UX)J ui_p—8ul_y+8ul —ul,
sul ,+13u" 13, +8ul ufl
3~ 2 1 1 27 Y+3
(uXXX)J = J = - 8h3 = = = O(h4)

Now, we assume thdti)] is the exact solution ate the grid poix,t,) and(U)] is the numerical solution at the same
point. SubstitutingZ3) into (6) and using Crank-Nicolson formula we get

Uy >"*1+r1(< 21+ @]) (D] - 8L+ 8T - UD}3)
+ry ((Ul)j 8(U1)n+1Jr 13(U1)n+1 13(U1)Tii + 8(U1)Ti% - (Ul)ﬁ%)

(24)
= (Ul)T —-n ((Z)?+l—|— ( )J) ((Ul)jfz — 8(U1)j—1 + 8(U1)T+1 _ (Ul)T+2)
12 (U075~ 8(UN{ 5 +13(Un)] 4~ 13(Un)1 1 +8(Un)f, — (UD)5)
W2 (@] 4+ @) (V2] - 8L} + (UL - U2]3)
12 (U5 - 8(U2) {5+ 13(U2) 1 - 13(U2)}11 + 8(U)] 15 - (U2)]13) (25)

= (V2] -1 (@] + @) (U] 2~ 8(U] 1 +8(U],1 — (U2)].2)
12 (U2)]_3— 8(U2)}_o+13(Uz)]y — 13(U2)]1 +8(U2)}o— (U2)]ss)

wherez = (Ul)2 + (Uz) = i‘gﬁ, r, = 1Th3 This system can be solved by many methods.

3.4.1 Stability analysis of fourth scheme

In this section, the standard Von-Neumann concept is appdienvestigate the stability analysis of the schemes. At,fir
we must linearize the nonlinear term of the Hirota equatvymhkmg(( )”+1+ (z)?) as a local constanit;. According
to the Von- Neumann concept, we get

(U1)] = A" explij ),
(U2)] =B explijg),
Zn+1

7;
whereA andB are the harmonics amplitud@,= kh, kis the mode number,= v/—1andg is the amplification factor of
the schemes. Substituting6) into the differenceZ4), we get

(26)

g:

" EA[(r1A1 +8rp) sin2¢+ (8r1A1 — 13r2) Sing — rpsin 3]
= {"A[1—2i((riA1+8rz)sin2p+ (8riA; — 13r2) sing — rasin 3p))

we get
_ 1-2i((rsA+8r2)sin2p+ (8riA; — 13r) sing — rosin 3p)
~ 1+2i((rgAy+8rp)sin2p+ (8riA; — 13rp) sing —rasin3p)’
from (27) we get|g| < 1, hence the scheme is unconditionally stable. It means tkat ik no restriction on the grid size,

i.e. onh andAt, but we should choose them in such a way that the accuracg aictieme is not degraded.
Similar results can be obtained from the differen2® (

(27)
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3.4.2 Local truncation error of fourth scheme

To study the accuracy o) we replacgU )E‘by(u)’j1 first, then from Taylor’s series expansion for all terms2B)(about
the point(x;,t,) we get

3
TN = [@ +3az(u) % + ygxg}

k2 3%u | 3ak? 3ak3 4 3ah?
6&?+ = -2u )dxatz—’— 12 U) 5gt3 g 730 353)0%5+ ,
3a d°u _ 3ah*k 2% ¥k= 9°u fil

+ | a8 AU 50 — 60 W) g5 + 7 a0 T 12 3
oty | W ol
120 gx’ 48 dx30t4

+ koo 93
2E[T?+3az( >19x+Vaxl3J J
z(

the first and second terms is zero by the Hirota equation, améesend with local truncation error

2 53 2 3 4 4
kdu_i_ﬂz(u) +3ak (u)ﬁu 3g8 ()ax5+

6 ff 5 ‘Mf iﬁ e 4 o8
n_ | 3a J°u 3ahk J°u d°u
=% zgu) o — 60 AU )ﬁx5t9t + 1 s T 2 e
vt 97y

120 o7 + 48 m +-

This means that Crank-Nicolson scheme is second orderamgcir space and second order in time, i.ék0r h*).

4 Numerical tests and results of Hirota equation

In this section, we present humerical example to test wglioi our scheme for solving Hirota equation. The norms
L>-norm and_.-norm are used to compare the numerical solution with thé/toal solution [23].

Lo = U — o) = s o — 2,

28
Loo:m_ax’u.E—uE\“,j:0717...,N. (28)
i

J

WhereUuE is the exact solutiom anduN is the approximation solutidhy. And the quantitiesl; and |, are shown to
measure conservation for the schemes.

= [ U t)Pdx=h3 o\un , , (29)
= [Za(G U )~ Ju(x ) P)dx h3 N o($ (U7~ (Ua))

whereu(x,t) = ui(x,t) +iuz(x,t), (U)} = (U)] +i(U2)]. Now we consider this test problem.

Test problem

We assume that the solution of the Hirota equation is ndgégoutside the intervalx_,xg], together with all itsx
derivatives tend to zero at the boundaries. Therefore,imomerical study we replace Ed) by

ut+3a|u|2ux+ YUxxx = 0, X < X < XR. (30)

Whereu is a complex valued function of the spatial coordinged the timet and a, y are positive real constants.
Boundary conditions

u(x,,t) = u(xg,t) = 0

Ux(X,t) = Ux(Xg,t) =0,0<t < T.

(31)

And initial conditions.
u(x,0) = f(X),x. < X< Xr. (32)

(© 2017 BISKA Bilisim Technology
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For our numerical work, we decompose the complex funatigro their real and imaginary parts by writing
u(x,t) = ug(x,t) +iug(xt), i2=—1, (33)
whereu; (x,t)andiy(x,t)are real functions. This will reduce Hirota equation to tbegled system

(up)t + 3a (U% + U%) (U1)x+ yY(U)xxx =0,

(u2)t + 3ar (U2 + U3) (U)x + V(Uz2)xxx = 0. (34)

Then the exact solutions of systeB¥) is

up(x,t) = Bsedh[k (x—s—vt)jcos(d),
Uz(x,t) = Bsedh[k (x—s—vt)]sin(¢),

B:\/?K,qb: Xx—bt—s), (35)
v=y(k?—3a?),b=y(3k3-a?%),

B is the amplitude of the wave is related to the width of the wave envelope ani the velocity. The parameteris
the wave number of the phase ands related to the frequency of the phase. Also the soluticat is= s att = 0. In
order to derive a numerical method for solving the systeremgim (34). The regionR = [Xx_. < X< Xg] x [t > Owith its
boundary consisting of the ordinates= x_, Xy = Xg and the axi$ = 0 is covered with a rectangular mesh of points with
coordinates

X=Xj=x+]jh,j=0,12...N.

t=th=nkn=0,1,2,....

whereh andk are the space and time increments, respectively. To igatstihe performance of the proposed schemes
we consider solving the following problem.

4.1 Single soliton

In previous section, we have provided four finite differeackeemes for the Hirota equation, and we can take the follpwin
as an initial condition.

u(x,0) = Bsech[k (x—s)|exp(ig),

B:\/%'K,cp:a(xfbtfs), (36)

v=y(k?-3a2),b=y(3k3-a?).

The normd., andL., are used to compare the numerical results with the analydaes and the quantitiely andl, are
shown to measure conservation for the schemes.

Now, we consider two different cases to study the motionmjlsi soliton.

Case 1. Now, for comparison, we consider a test problem whefde,= 0.05 ao = 2,y = 1,
a= 05k =05x = —30,xr = 30. The simulations are done uptte: 5. The invariantl; approach to zero ant
changed by less than7b x 10~* in the computer program for the first scheme. The invafiaapproach to zero anid
changed by less than® x 10~ for the second scheme. The invaridqnapproach to zero andp changed by less than
3.46 x 10~%for third scheme. The invariants andl,are approach to zero for fourth scheme. Errors, also, at Sirmee
satisfactorily smallLy-error =807047 x 10~*and L,-error = 361238 x 10~ for the first scheme, are satisfactorily
small Lo-error =139931x 103 and Le-error = 554282 x 10~ for the second scheme. And are satisfactorily small
Lo-error = 574713x 10 *and L-error =272002x 10~*for third scheme. And are satisfactorily smah-error =
1.42121x 10-%and Le-error =7.83610x 10 %for fourth scheme. Our results are recorded in Table 1. Théomaf
solitary wave using fourth scheme is plotted at time9, 3,5 in Fig.1. These results illustrate that the fourth scheage h
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a highest accuracy and best conservation than other thneengs. So we use it to study the motion of single solitary

waves and interaction between two and three solitons.

Table 1: Invariants and errors for single solitary wakve- 0.05,a0 =2,y =1a= 0.5,k = 0.5,x. = —30,xr = 30.

Schemes T I [P Lo —norm Lo —Nnorm
First 0.0 1.0000 -0.166526 0.0 0.0
Scheme 1.0 1.0000 -0.166205 1.40351E-4 7.23214E-5
h=10.05 2.0 1.0000 -0.166102 2.90824E-4 1.09485E-4
3.0 0.9999 -0.166989 4.71530E-4 1.74162E-4
4.0 0.9999 -0.166885 6.44279E-4 | 3.09531E-4
5.0 0.9999 -0.166802 8.07047E-4 | 3.61238E-4
Second 0.0 1.0000 -0.166649 0.0 0.0
scheme 1.0 1.0000 -0.166813 3.21264E-4 1.40132E-4
h=0.05 2.0 1.0000 -0.167015 5.94272E-4 2.46535E-4
3.0 1.0000 -0.167209 8.53845E-4 | 4.39482E-4
4.0 1.0000 -0.167378 1.14821E-3 | 4.59472E-4
5.0 1.0000 -0.167502 1.39931E-3 | 5.54282E-4
Third 0.0 1.0000 -0.166551 0.0 0.0
Scheme 1.0 1.0000 -0.166494 1.17149E-5 | 6.55307E-5
h=10.05 2.0 1.0000 -0.166414 2.30553E-4 1.23419E-4
3.0 1.0000 -0.166332 3.48658E-4 1.75536E-4
4.0 1.0000 -0.166259 4.64827E-4 | 2.22999E-4
5.0 1.0000 -0.166205 5.74713E-4 | 2.72002E-4
fourth 0.0 1.0000 -0.166648 0.0 0.0
scheme 1.0 1.0000 -0.166648 4.25079E-6 1.58619E-6
h=0.1 2.0 1.0000 -0.166646 6.74977E-6 | 3.89436E-6
3.0 1.0000 -0.166644 1.07949E-5 | 6.05488E-6
4.0 1.0000 -0.166641 1.68464E-5 | 6.19336E-6
5.0 1.0000 -0.166641 1.42121E-5 | 7.83610E-6
05F ' ]
o4l ]
03f ]
—t—
0z2r -——t=5 ]
01} .
(1 e — ‘
—30 —20 20 30

Fig. 1: Single solitary wave witth = 0.1k =0.05,a0 =2,y =1, anda= 0.5,k = 0.5,x,. = —30,xg = 30t = 0,3,5
respectively.

Case 2. In this case we study the motion of single soliton by fourthesue. In this case, we chodse- 0.1,a =2,y =

1,a= 0.5k = 0.5x = —30,xg = 30, with different values oh = 0.05,0.1 the simulations are done upte= 5. The
invariantsl; and l,approach to zero percent, respectivelyat 0.05,0.5. Errors, also, are satisfactorily smbaj-error
=1.31781x 102 andL«-error =624576x 10~4, percent, respectively lat= 0.05. The invariants; andl,approach to
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zero percent, respectively. Errors, also, are satisfigsmall Lo-error =563371x 10-3andL-error =268608x 103,
percent, respectivelyfat= 0.1. Our results are recorded in Table 2 and the motion of sphtave is plotted at different
time levels in Fig 2.

Table 2: Invariants and errors for single solitary wave by fourthesokk = 0.1,a0 =2,y =1a= 0.5k = 0.5,x_ =

~30,xg = 30.

Fig. 2: Single solitary wave by fourth scheme whh=0.05k=0.1,a0 =2,y=1,anda= 0.5,k = 0.5,x. = —30,xgr = 30,

h T I1 lo L, —norm Leo —norm
h=0.05 0.0 1.0000 -0.166597 0.0 0.0
1.0 1.0000 -0.166757 3.08344E-4 | 1.77451E-4
2.0 1.0000 -0.166944 5.62022E-4 | 2.93477E-4
3.0 1.0000 -0.167123 8.24336E-4 | 4.17184E-4
4.0 1.0000 -0.167276 1.08278E-3 | 5.28448E-4
5.0 1.0000 -0.167389 1.31781E-3 | 6.24576E-4
h=0.1 0.0 1.0000 -0.166605 0.0 0.0
1.0 1.0000 -0.167278 1.28535E-3 | 7.41369E-4
2.0 1.0000 -0.168093 2.37453E-3 | 1.26919E-3
3.0 1.0000 -0.168888 3.50933E-3 | 1.83964E-3
4.0 1.0000 -0.169562 4.60728E-3 | 2.32914E-3
5.0 1.0000 -0.170062 5.63371E-3 | 2.68608E-3
05 T g
04 f ]
03F ]
- —_—=3 1
02 — - t=5 _:
o1f .
0.0 :‘ . ‘

t =0, 3,5 respectively.

In the next table we make comparison between the resultsidifecheme and the results have been published in Search

I
—20

[2]. The results of our scheme are accurate than the reaJi$.i

Table 3: Invariants and errors for single solitary wave- 0.05,a0 =2,y=1,a= 0.5,k = 0.5,x,. = —30,xr = 30,t = 4.

Method I I Lo, —norm Lo —Nnorm
Analyticalh=0.1 1.0000 -0.166648 | 0.0 0.0

Our schemeh=0.1 | 1.0000 -0.166648 | 1.68464E-5 | 0.000006
[2lah=10.05 1.0000 -0.166648 | - 0.00001
[2lbh=0.05 1.0000 -0.166648 | - 0.00001
[2lch=0.05 1.0000 -0.166648 | - 0.00014
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4.2 Interaction of two solitary waves

The interaction of two solitary waves having different aitygles and traveling in the same direction is illustrate@. W
consider Hipota equation with initial conditions given Imgtlinear sum of two well separated solitary waves of various
amplitudes

u(x,0) = Bsed[k; (x—s;j)|exp(i¢),

B:\/?Kj,dy:aj(x—bt—sj), (37)

V= y(Kj2—3aj2) b= y(3Kj3—aj2) .

where,j = 1,2, a; andsj, kjare arbitrary constants. In our computational work.

Now, we choose; = —10,s, = 10,81 = 0.1,a, = 1,k; = 0.4, kp,=0.7,y = 1, a = 2, h = 0.05,k = 0.05with interval
[-30, 30]. In Fig. 3, the interactions of these solitary wawae plotted at different time levels. We also, observe an
appearance of a tail of small amplitude after interactiod #e two invariants for this case are shown in Table 4. The
invariantsl; andl,are changed by less thaB3< 10~%and3x 104, respectively for the scheme.

Table 4: Invariants of interaction two solitary waves of Hirota etjoas; = —10,s, = 10, a3 = 0.1, a, = 1,k1 = 0.4,
Ko=07,y=1 a=2,—-30<x< 30, h=0.05k=0.05

T 11 I>

0 2.19957 -0.539631
2 2.19957 -0.539631
4 2.19954 -0.539628
6 2.19951 -0.539629
8 2.19924 -0.539627
10 2.19934 -0.539601
0.7] 0.7
0.6] 0.6
05| 0.5
0.45 0.4
|]3 | 03
02| loz
I].lé 0.1

320 0 N I T 30 20 10 (1;) 10 20 30

(2)

Fig. 3: interaction two solitary waves withs; = —10,s, = 10,a; = 0.1,a0 = 1,K1 = 0.4, k,=0.7,y =1, a = 2,h =
0.05,k=10.05,—-30< x < 30 at timet = 0,14 respectively.

4.3 Interaction of three solitary waves

The interaction of three solitary waves having differenpéitndes and traveling in the same direction is illustratdg
consider the Hirota equation with initial conditions given the linear sum of three well separated solitary waves of
various amplitudes.

u(x,0) = Bsech[kj (x—sj)|exp(i¢),

B= /2K =aj(x—bt—s). (38)

v= V(KJZfSaJ-Z) b= y(3Kj37aj2) ,
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where,j = 1,2, 3, a; ands;j, kj are arbitrary constants. In our computational work. Nowgcheoses; = —5,5 =5, =
15a; =0.1,a=0.5,a3=1,k1 = 0.3,k2= 0.4,k3= 0.8, y=1, a = 2, h=0.05, k= 0.05 with interval [-30, 30]. In Fig.
4. The interactions of these solitary waves are plottedftgréint time levels. We also, observe an appearance of aftail
small amplitude after interaction and the two invariantstfos case are shown in Table 5. The invaridatandl, are
changed by less thanxd10~° and 256 x 104, respectively for the scheme.

Table5: Invariants of interaction three solitary waves of Hirotaiation.s; = —5,5, =5, = 15,a; = 0.1,a, = 0.5,a3 =
1, k1 =0.3,k=04k3=0.8y=1a =2h=0.05k=0.05-30< x< 30.

I

I

2.98713
2.98701
2.98645
2.98624
2.98589
0 2.98512

RO R~ANOH

-0.776279
-0.776245
-0.776211
-0.776198
-0.776011
-0.776023

0.8

0.6

0.4

T T 10 0 3

(a)

(b)

Fig. 4: interaction three solitary waves wigh= —5,5 = 5,53 =15a; =0.1,a, = 0.5,a3 = 1, k1 = 0.3, k= 0.4,k3= 0.8,
y=1 a=2h=0.05k=0.05-30<x < 30 at timeg = 0, 14 respectively.

5 Conclusions

In this paper, we applied the finite difference method witlfiedént high order approximations to develop a numerical

method for solving Hirota equation and shown that the sclseareunconditionally stable. We tested our schemes through

a single solitary wave in which the analytic solution is kmythen extend it to study the interaction of solitons whearye n
analytic solution is known during the interaction and itswacy was shown by calculating error norinsandL.,.
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