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Abstract: In this paper, two powerful analytical methods known as riedihomotopy perturbation method and Amplitude Frequency
Formulation called respectively MHPM and AFF, are introellico derive approximate solutions of a system of ordinaffeintial
equations appear in mechanical applications. These metimdert a difficult problem into a simple one, which can kslg&andled.
The obtained solutions are compared with numerical fourtlelorunge-kutta method to show the applicability and aacyiof both
MHPM and AFF in solving this sample problem. The resultsiaétd in this paper confirm the idea that MHPM and AFF are powerf
mathematical tools and they can be applied to linear andmear problems.
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1 Introduction

Most of natural events and phenomena such as oscillatian gidce nonlinearly. Except for a few number of some
nonlinear equations with solutions which are easy to findyisg these nonlinear problems can make researchers
encounter difficulties in finding the exact analytical siot thus it may guide authors to use various approximate
analytical methods, such as Parameter expansion Methd], [Variational Iteration Method [4-11], Homotopy
Perturbation Method [12-18], Amplitude Frequency Forrtiola [19-22], the Max-Min Approach [23-25], Modifed
Homotopy Perturbation Method [26-29], energy Balance Médtifi30], Adomian Decomposition Method [31, 32],
Differential Transformation Method [33, 34] and AmplituBeequency Formulation [35].

In this paper, MHPM and MMA are used to solve three kinds ofllagors in the form,

u’+ f(u(t)) =0, 1)
where u and t respect to the generalized dimensionlessadesplent and time variable.
Modified homotopy perturbation method (MHPM) and Amplituglequency Formulation (AFF) suggested by J. H. He

are striking methods to solve nonlinear oscillatory edquregi The results obtained by these methods are valid for not
only weakly nonlinear equations, but also strong ones.
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2 Solution procedures

2.1 Basic idea of modified homotopy perturbation method

To suggest the basic ideas of this method, the following ggu#s considered
U+1-u=u—W¥(U,u,urt) (2)
So, the following homotopy can be yield.

U+1-u=pu—¥(uut)],pelo1]. (3)

Due to the alteration of homotopy parameter p from zero touthiey, whenp = 0, Eq. (3) turns into the linearalized
equatiornug + w?ug = 0 and when it's one, equation will be the original one.

The solutioru and 1 as coefficient af can be expanded as follows.

u= i p.ui (4)

n
1=w?®-5 p.a. (5)
N
Replacing Eg. (4) and Eq. (5) into Eq. (3), and equating thegevith the identical powers of p, yields.
p0: g+ w’Up =0 (6)
p! : liy + w?uy — N (U, Ug, lip, t) = 0. (7)

By inserting the answer of Eq. (6) = Acos(wt)into Eq. (7), the following equation can be obtained.
U1 + w?uy — p (Acos(wt) , —Awsin(wt) , —Aw? cos(wt) ,t) = 0. (8)

Using Fourier series expansion, the secular term can be\sathi

p(owt) = innJrlcos[(ZnJr 1) wt] ~ by cog wt) 9
by = [ p(et)d (@) (10)
0

In order to avoid the secular term the following equationtide considered.
b; =0. (12)
Setting p=1 in equation gives.
1=w?—a;. (12)

So frequencyw can be yield.

(© 2017 BISKA Bilisim Technology
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2.2 Basic idea of Frequency Formulation

For a generalized nonlinear oscillator in Eq. (1) two trigi€tions are considered as follows.

u; = Acos(t) (13)
Uy = Acos(wt). (14)

Substituting Eq. (13) and Eq. (14) into Eq. (1) yields Reald®; (t) andR; (t2) wheret, = wt. Here weighted residuals
can be introduced in the following form.

L

Re(t) = Til/ Ry (t) cos(t) dt, Ty = %" (15)
0

L]

)
4 2m
R> ('[2) = ?2 / R> ('[2) COS(O[)'[) db, o = @ (16)
0

According to He’s frequency formulation the amplitude fueqcy formulation can be assumed.

2 WfRp(t2) — Wik (1) (17)

@ Bb) R

wherew, = landw, = w. Substituting Eq. (15) and Eq. (16) into Eq. (1@hrr can be obtained.

3 Applications of solution procedures

3.1 example

In the first example physical model of nonlinear equatiommfbllowing figure is considered.

I L/3 K 2173 l

(o)
|
|
|
|
O
SN\

The equation of motion is written in the following form.

(%mﬁ) 6+ gklzsin(e)cos(e) =F(t)lcog8),0(0) =0,6(0) =0. (18)
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3.1.1 Applying MHPM to Example 1

By choosing siff) = 6 — g—? + 95—? and co$6) =1— 92—7 + Z—T Eq. (18) can be rewritten as follows.

. 92 64
) _ak(0— 28 1 205 3Fosinwot) (1- G + %)
6+16= 3 N \

+0. (19)
Using the homotopy parametein Eg. (3), Following homotopy can be established as follows

. 2 64
k(6 28° 4 295 3Fsin(wot) (1-&+5;
(0% +£6°) ( )w].

9+10=rpl 3m ml

(20)

Replacing Eq. (4) and Eq. (5) into Eq. (20) and expanding firat two linear equations can be written as follows.

P o+ w6 =0 (21)
. 2} 2 2] 4
) 4K(0n— 20,3 1+ 2045) 3Fosin(wot) (1— =3+ 2
oLt By + 026; — a8 K(B0— 560" F 1560°) ( 2 24)+90. 22)
3m mi
Here 8, = Acoqmt)can be acquire by solving Eq. (21) Substitutyinto Eq. (22) yields:
01+ w?0, = p (wt), (23)
where:
p (wt) = yrAcoswt + p (wt)
4k(Acog wt) — A3 cos(wt)® + 2 A5 cos(wt)®
— iAcogat) — (Acoqwt) — £ cogsr(n )"+ xA°cos(wt)”) (24)
3Fosin(wgt) (17 Alcostat)® | A4°°§§“")4)
+ + Acoqwt).
mi
Utilizing the following Fourier expansion series yields.
p(wt) = 2052n+100$[(2n + 1) wt] = & coq wt) + dcog3wt) + ... (25)
n=
(4 [z
5= (% [* p(@)cosig)dp ) cosian)
1
= e (12F0A4sin(wot) — BOKAITT+ 30kA3! 77— 5KASI 17— 180FoA2 sin(wit) + 540:0sin(wot)) (26)
where,
. 1 12FpA* sin(wgt ) — 60KAITT+ 30KA3l 1T
2
- = A
Ot Wl = e <—5kA5I7T— 180FoA? sin(wot) + 540Fosin(wgt) | S

+ i Onr1c09[(2n+ 1) wi] (27)
n=1
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In order to avoid secular term the following equation candte s
5 =0. (28)
Substitutingp = 1 into Eq. (5) gives.
1=y + (29)
So the first approximation to the angular frequency is.
1 180-120%) iyt
OMHPM = 15\l ° < ( C o ) 2 ( 2 ) 540y sin(wet) | (30)
+5 (60— 30A% + BA3) — 2>
3.1.2 Amplitude Frequency Formulation
In this section AFF is applied to solve Eq. (18). Here Eq. @) be written in the following form.
6+ af+b6?+co>+do*+ed°+ f =0, (31)
where,
4k 3Fpsin(wot)
3 T T am
-8k 3R sin(wot)
= — - 2
°=%m 9= zami (32)
o 8_k ‘ 3Fosin(wot)
~ 45m ml '
Replacing Eq. (13) and Eg. (14) as two trial functions into @8) , gives the following Residuals.
Ry (t) = —Acos(t) + aAcos(t) + bA>cos(t)? + cAS cos(t) + dA*cos(t)* + eAScos(t)® + f (33)
Rz (t2) = —Acos(wt) w? + aAcos(wt) + bAcos(wt)? + cA>cos(wt)® + dA* cos(wt)* + eAScos(wt)®  (34)
Equatingw; = 1, w, = w, weighted residuals can be written in the following form.
2 7 —Acos(t) +aAcos( )+ bAzcos( )2
== / 3 4 5 5 cos(t)dt
no +cA3cos(t)® + dAtcos(t)? + eAbcos(t)® + f
2(Soma®— AT+ Mt 22 | 3o amhy )
= (35)

T
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3.1.3 Amplitude frequency formulation

Inserting Eq. (13) and Eq. (14) into Eq. (38), gives the foiloy residuals.

- 2 ! —Acos(¢) w? +aAcos(¢) + bA2cos(¢)?
RZ (t2) - 7__[0/ (+CA3COS(¢)3+dA4COS(¢)4+eASCOS(¢)5> COS(¢)d¢ (36)
5

5 Aw? 8dA | 2bA?2 | 3cmA3 | amA
2(3297TA*T"+1—5+T+ 16 +T+f)

T

Substituting Eq. (35) and Eq. (36) into Eq. (17) yields Amhplie-frequency equation.

256d A3 + 32(]3AJr 480f

1
=—,/30( 120a+ 756A%
WAFF 60\/ < + + - AT

+ 90cA2) . (37)

Considering the following value of parameters, the conguaribetween numerical solution and analytical methods are
illustrated in Fig.1 and Fig.2.

k= 1000%,m: 10kg, | =1ImFy=1wy =1
As shown below, amplitude frequency formulation and Modifi®motopy perturbation method have a high validity in
comparison with runge-kutta method.

n kiAcos(t) — Fosin(wot) n koA3cos(t)?

Ry (t) = —Acos(t) - i

0.4 4| —@= MHPM 4 AFF == == Runge Kutta Ii
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Fig. 1: Comparison of time history response between AFF & MHPM &liatder Runge-Kutta where= 0.3.
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0,15 4{ —@— MHPM ¢ AFF = = Runge Kutta |7
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Fig. 2 Comparison of time history response between AFF & MHPM &Hastder Runge-Kutta where= 0.1

du(t)fdt

-0.3 -0,2 -0,1 o 0,1 0,2 0,3
u(t)

Fig. 3: Comparison of phase curve between two different initialditons.

Example 1. In this example Duffing equation with constant coefficierdassidered.
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Fig. 4: Comparison of phase curve between two different initialditons.

Equation of motion of the physical model of nonlinear equatn the following figure is written as follows.

ko 3 Fosin(wot)
2mh? m

Ky =0, x(0) = A, X(0) = 0. (38)

3.2 Applying MHPM to example 2

Eq. (38) can be rewritten in the following form.

kq ko &+ Fosinwgt

x+1x:(1—m)x— i (39)
Utilizing the homotopy parameterin Eq.(3), Following homotopy can be identified as follows.
. B kq ko Fosin(wot)
X+ 1Ix=p[(1 m)x thzX3+ - ] (40)

By substituting Eq. (4) and Eq. (5) into Eq. (40) and exteqdiisfirst two linear equations can be rewritten in the foliog
form.

p0: %o+ w?xg =0 (41)

. k k sin(wot
pl oS+ WP = aXo+ (1— — )Xo — —= 3, M (wot)

m 2mh? m (42)
Herexo = Acogmt) can be obtained by solving Eq. (41). Substitut@mto Eq. (42) yields,
%1+ WXy = p () (43)

(© 2017 BISKA Bilisim Technology
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where,
- _l O RPN B E L))
p(wt) = yAcogwt) + (1 m)Acos(out) 2mh?A cos(wt)” + p (44)
By using the following Fourier expansion series.
p(wt) = Z)éznﬂcos[(anL 1) wt] = & coq wt) + & cog3wt) + ...
n=
4 3 1, 32h?Fysinwot — 8ki AR IT— 3k A3TT )
Qcong(ﬁ/o p(®) cos((p)d(p) cogwt) = é( p— ) +Aw”.
Now,
; ) 1 ,32h?Fgsin(wot) — 8k ARPTT— 3k A3TT ) i
1+ wx = =( ) +Aw” | Acogwt) + » dpni1c0s|(2n+ 1) wt]
8 mmh? &
For avoiding secular term the following equation should btethined.
6, =0. (45)
Substitutingp = 1 into Eq. (5) yields.
1=y +w? (46)
So the first approximation to the angular frequency is.
_ Jki  3koA?  AFpsin(wot)
MHPM =\ T 8me — T Amm “7)
kiAcos(wt) — Fpsin(wot)  koA3cos(wt)®
- _ 2, X
Rz (t2) = —Acos(wt) w™ + m + >mi? . (48)
As presented in previous example, following residuals eantitained as follows,
T?T
< 2 kiAcos(t) — Fosin(wot)  kaA3cos(t)®
Ri(t) = - 0/ < Acos(t) + o o cos(t)dt (49)
8k Arth? — 32n2Fgsin(wot) — BATMI? + 3koASTT
N 16rmi?
H
~ 2 , kiAcos(¢) — Fpsin(wot)  koA3cos(¢)?
Ry (th) = "o/ < Acos(9) w? + - + 22000 | cosig) dg (50)

8Kk Anth? — 32n2Ry sin(wot) — 8w?Armi? + 3k,ASTT
N 16mmie

(© 2017 BISKA Bilisim Technology


www.ntmsci.com

75 BI1S K A G.H.Enayati, M. Azimi, M. Jouya: Application of modified hatopy perturbation method and amplitude...

Replacing Eq. (63) and Eq. (64) and solving that, Amplitfideruency relationship can be obtained in the following
form:

[k 3koA?  AFpsin(wot)
wAFF_\/E 8mR  Amm (51)

Considering the following value of parameters, comparibetween numerical solution and analytical methods are
illustrated in Fig.3 and Fig.4.

h=0.5m=10(Kg),k; = 1000k, = 1100 Fp = 1,wp = 1,I = 1(m).

0,15 4| == MHP & AFF == = Runge Kutta |7
; :

uft)

Fig. 5: comparison of time history response between AFF & MHPM &lartder runge-kutta, where= 0.1.

0.0z

uft) 1]

0,02

0,04

0,06

Fig. 6: comparison of time history response between AFF & MHPM &tiartder runge-kutta, where= 0.05.
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Fig. 7: Comparison of phase curve between two different initialditons.

3.3 Example 3

The physical model of nonlinear oscillation is clarified lire tfollowing figure,

|——— TRIE LENGTH e

The equation of motion can be yield as,

2 -2
mpX: . mIixx X B

whereg is the Gravitational acceleration, Let= § then expanding foju| << 1, gives,

m -\ . M\ . 2 Mg 3
1 _ < _“ kel e —
( +m1u >u+ <m1) uu +wou+2|m1u + 0 (53)
where
kK  mg
2
= — 4+ —. 4
Wy m1+lm1 (54)
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Equation (2) can be rewritten in the following form,
i+1-u=auvfli+auw?’+ (1-b)u+cu’. (55)

_Mm 2 . Mg
wherea = > b= wy, C= Zim, -

3.3.1 Applying MHPM to example 3

Using the homotopy parameter p in above equation, the foliglwomotopy can be established,
li+1-u= p[ardii+aui®+ (1—b)u-+c®. (56)

Inserting Eqg. (4) and Eq. (5) into Eq. (71), the linear equagican be written as follows,

p0: g+ wup =0 (57)
1. 2 .. .2 N
pt : Uiy + WUy — a1Up + audlip + aupld + clg + (1—b) up = 0. (58)
Solving Eq. (73) gives,
Up = Acos(wt). (59)

Substituting Eq. (74) into Eq. (73), obtains,
N 2 3 3.2 3 : 2.2
U1 + wu; =a1Acos(wt) + aA’cos(wt ) w — aA’ cos(wt) sin(wt)“w (60)
—cA®cos(wt)® — (1—b)Acos(wt) .
Fourier expansion series expansion, gives,
3 3.2 3 i 2,2
o1Acos(wt) + aA’cos(wt)w” — aA®cos(wt) sin(wt)“w (61)

—cA3cos(wt)® — (1— b) Acos(wt) = i@nﬂ cos[(2n+ 1) wt] ~ 4, cos(wt).

4 ? o1 Acos(9) + aA3cos(¢)>w? — aABcos(¢) sin(¢)?w?
o n./<CA3cos(¢)3(1b)Acos(¢) )d¢ (62)

0
A
=3 (2aA%w? + 4a; +4— 3cA2. — 4b)

Using Eq. (77) and avoiding secular tetm= 0,the first approximation of frequency can be obtained devi!

1/(2+am) (8cB +3cA?)
WMHPM = > >t am (63)
Substituting Eq.(70) into Eq.(79) yields,
1 | (8aflm; +3mgA?)
WVHPM = E\/ (A2 £ 2my) (64)
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3.3.2 Amplitude frequency formulation

Similarly using Eq. (13) and Eg. (14) for Eq. (66), yields fbibowing Residuals.
Ry (t) = — Acos(t) — A3 <@> cos(t)® + A <&> cos(t)sin(t)2
m m

+ Awpcos(t) + A3 (;‘29 ) cos(t)®.

R; (t2) = — Acos(wt) w? — A® (%) cos(wt)3w? + Aw? cos(wt)

h 2l my

+A3 <%> cos(wt) sin(owt)?ew? + A3 <@> cos(wt)®.

Locating atoy = 1, wp = w in Eq. weighted residuals can be obtained as follows,

o
2

Ri(t) = %/ — Acos(t) — A (%) cos(t)®+ A3 (%) cos(t) sin(t)?
0

1 1

+ A cos(t )+A3( )cos(t) ) cos(t) dt

myg 1/m\ 5 1
A=) -2 = )A3-2ZA
(2|m1) 4(m1) 2

/ (A AS(”‘Z)Cos<¢>3w2+Aa€cos<¢>
0
1
A

1 3
= ZAR+ 2
2"t g

+A cos(¢) sin(¢)?w? + A3 <2Im1) cos(¢)®

1 my 1
AP A =) w?+ WA
(2|m1) 4 (ml) W 5%

Substitution of Eq. (82) and Eg. (83) into Eq. (17) yields alagfrequency as follows,

2 %QBZA (2Im1) A — 1A3 (mﬁl) W — %Aw27 w? (la€A+ 8 (ZIml) AR

) cos(¢) do

JOLS

W’ =
1 1 1
—ZA3(%)w2—§Aw2+—< )A3+ A

Solving Eq. (84), Amplitude-frequency relationship carolained,

8c@lmy + 3mpgA?
WAFF = 5
2 | (MpAZ 4+ 2my)

Considering the following value of parameters, comparibetween numerical solution and analytical methods are

illustrated in Fig.5 and Fig.6.

g = 9.81m/s% k = 100N /n?, my = 5kg,mp = 1kg,| = 1m.

As shown below, amplitude frequency formulation and Modifimmotopy perturbation method have a high validity in

comparison with Runge-Kutta method.

(65)

(66)

(67)

(68)

(69)

(70)
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Fig. 8: Comparison of time history response between AFF & MHPM &Hastder Runge-Kuttawhere, whete= 0.3.
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Fig. 9: Comparison of time history response between AFF & MHPM &Hartder Runge-Kutta, where= 0.1.
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Fig. 10: Comparison of phase curve between two different initialditbons

4 Conclusion

In this paper, Modified Homotopy Perturbation Method (MHPaMd Amplitude Frequency Formulation (AFF) which
are proved to be powerful mathematical tools to study nealirvibrating equations have been successfully developed
and tested on three examples of nonlinear vibrating equstibhe obtained results demonstrate that both methods are
accurate, capable and convergent techniques and that ahgyace extremely well with numerical solution. According

to Figures associated with above examples which are the aisop between analytical methods and numerical Runge—
Kutta method of order 4, indicates that these methods peoliighly precise answers for nonlinear equations. These
examples illustrate the efficiency of the modified homotopstyrbation method and Amplitude Frequency Formulation
and also it has been shown that these methods don't have guiyaent for advanced calculus.
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