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Abstract: In this paper, two powerful analytical methods known as modified homotopy perturbation method and Amplitude Frequency
Formulation called respectively MHPM and AFF, are introduced to derive approximate solutions of a system of ordinary differential
equations appear in mechanical applications. These methods convert a difficult problem into a simple one, which can be easily handled.
The obtained solutions are compared with numerical fourth order runge-kutta method to show the applicability and accuracy of both
MHPM and AFF in solving this sample problem. The results attained in this paper confirm the idea that MHPM and AFF are powerful
mathematical tools and they can be applied to linear and nonlinear problems.
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1 Introduction

Most of natural events and phenomena such as oscillation take place nonlinearly. Except for a few number of some
nonlinear equations with solutions which are easy to find, solving these nonlinear problems can make researchers
encounter difficulties in finding the exact analytical solution, thus it may guide authors to use various approximate
analytical methods, such as Parameter expansion Method [1-3], Variational Iteration Method [4-11], Homotopy
Perturbation Method [12-18], Amplitude Frequency Formulation [19-22], the Max-Min Approach [23-25], Modifed
Homotopy Perturbation Method [26-29], energy Balance Method [30], Adomian Decomposition Method [31, 32],
Differential Transformation Method [33, 34] and AmplitudeFrequency Formulation [35].

In this paper, MHPM and MMA are used to solve three kinds of oscillators in the form,

u′′+ f (u(t)) = 0, (1)

where u and t respect to the generalized dimensionless displacement and time variable.

Modified homotopy perturbation method (MHPM) and AmplitudeFrequency Formulation (AFF) suggested by J. H. He
are striking methods to solve nonlinear oscillatory equations. The results obtained by these methods are valid for not
only weakly nonlinear equations, but also strong ones.
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2 Solution procedures

2.1 Basic idea of modified homotopy perturbation method

To suggest the basic ideas of this method, the following equation is considered

ü+1 ·u= u−Ψ (ü, u̇,u, t) (2)

So, the following homotopy can be yield.

ü+1 ·u= p[u−Ψ (ü, u̇,u, t)] , p∈ [0,1] . (3)

Due to the alteration of homotopy parameter p from zero to theunity, whenp = 0, Eq. (3) turns into the linearalized
equation ¨u0+ω2u0 = 0 and when it’s one, equation will be the original one.

The solutionu and 1 as coefficient ofu can be expanded as follows.

u=
n

∑
i=1

pi .ui (4)

1= ω2−
n

∑
i=1

pi.αi . (5)

Replacing Eq. (4) and Eq. (5) into Eq. (3), and equating the terms with the identical powers of p, yields.

p0 : ü0+ω2u0 = 0 (6)

p1 : ü1+ω2u1−N(u, u̇0, ü0, t) = 0. (7)

By inserting the answer of Eq. (6)u0 = Acos(ωt)into Eq. (7), the following equation can be obtained.

ü1+ω2u1−ρ
(

Acos(ωt) ,−Aω sin(ωt) ,−Aω2cos(ωt) , t
)

= 0. (8)

Using Fourier series expansion, the secular term can be achieved.

ρ (ωt) =
∞

∑
n=0

b2n+1cos[(2n+1)ωt]≈ b1cos(ωt) (9)

b1 =
4
π

π
2
∫

0

ρ (ωt)d (ωt). (10)

In order to avoid the secular term the following equation should be considered.

b1 = 0. (11)

Setting p=1 in equation gives.

1= ω2−α1. (12)

So frequencyω can be yield.
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2.2 Basic idea of Frequency Formulation

For a generalized nonlinear oscillator in Eq. (1) two trial functions are considered as follows.

u1 = Acos(t) (13)

u2 = Acos(ωt) . (14)

Substituting Eq. (13) and Eq. (14) into Eq. (1) yields ResidualsR1 (t) andR2 (t2) wheret2 = ωt. Here weighted residuals
can be introduced in the following form.

R̃1 (t) =
4
T1

T1
4
∫

0

R1 (t)cos(t)dt,T1 =
2π
ω1

(15)

R̃2 (t2) =
4
T2

T2
4
∫

0

R2 (t2)cos(ωt)dt2,T2 =
2π
ω2

. (16)

According to He’s frequency formulation the amplitude frequency formulation can be assumed.

ω2 =
ω2

1R̃2 (t2)−ω2
2R̃1 (t)

R̃2 (t2)− R̃1(t)
, (17)

whereω1 = 1andω2 = ω . Substituting Eq. (15) and Eq. (16) into Eq. (17),ωAFF can be obtained.

3 Applications of solution procedures

3.1 example

In the first example physical model of nonlinear equation in the following figure is considered.

The equation of motion is written in the following form.

(

1
3

ml2
)

θ̈ +
4
9

kl2 sin(θ )cos(θ ) = F(t)l cos(θ ),θ (0) = 0, θ̇ (0) = 0. (18)
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3.1.1 Applying MHPM to Example 1

By choosing sin(θ ) = θ − θ3

3! +
θ5

5! and cos(θ ) = 1− θ2

2! +
θ4

4! Eq. (18) can be rewritten as follows.

θ̈ +1θ =
−4k(θ − 2θ3

3 + 2
15θ 5)

3m
+

3F0sin(w0t)
(

1− θ2

2 + θ4

24

)

ml
+θ . (19)

Using the homotopy parameterp in Eq. (3), Following homotopy can be established as follows.

θ̈ +1θ = p[
−4k(θ − 2θ3

3 + 2
15θ 5)

3m
+

3F0sin(w0t)
(

1− θ2

2 + θ4

24

)

ml
+θ ]. (20)

Replacing Eq. (4) and Eq. (5) into Eq. (20) and expanding that, first two linear equations can be written as follows.

p0 : θ̈0+ω2.θ0 = 0 (21)

p1 : θ̈1+ω2θ1 = α1θ 0−
4k(θ 0−

2
3θ 0

3+ 2
15θ 0

5)

3m
+

3F0sin(w0t)
(

1− θ0
2

2 + θ0
4

24

)

ml
+θ 0. (22)

Hereθ0 = Acos(ϖt)can be acquire by solving Eq. (21) Substitutingθ0into Eq. (22) yields:

θ̈1+ω2θ1 = ρ (ωt) , (23)

where:

ρ (ωt) = γ1Acosωt +ρ (ωt)

= γ1Acos(ωt)−
4k(Acos(ωt)− 2

3A3cos(ωt)3+ 2
15A5cos(ωt)5)

3m
(24)

+
3F0sin(w0t)

(

1− A2 cos(ωt)2

2 + A4 cos(ωt)4

24

)

ml
+Acos(ωt).

Utilizing the following Fourier expansion series yields.

ρ (ωt) =
∞

∑
n=0

δ2n+1cos[(2n+1)ωt] = δ1 cos(ωt)+ δ3cos(3ωt)+ ... (25)

δ1
∼=

(

4
π

∫ π
2

0
ρ (φ)cos(φ)dφ

)

cos(ωt)

=
1

45πml

(

12F0A4sin(w0t)−60kAlπ+30kA3lπ −5kA5lπ −180F0A2sin(w0t)+540F0sin(w0t)
)

(26)

where,

θ̈1+ω2θ1 =
1

45πml

(

12F0A4sin(w0t)−60kAlπ +30kA3lπ
−5kA5lπ −180F0A2sin(w0t)+540F0sin(w0t)

)

Acos(ωt)

+
∞

∑
n=1

δ2n+1cos[(2n+1)ωt] (27)

c© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 1, 66-82 (2017) /www.ntmsci.com 70

In order to avoid secular term the following equation can be set.

δ1 = 0. (28)

Substitutingp= 1 into Eq. (5) gives.

1= γ1+ω2. (29)

So the first approximation to the angular frequency is.

ωMHPM =
1
15

√

√

√

√5

(
(

180A−12A3

mπ l

)

F0sin(w0t)

+ k
m

(

60−30A2+5A3
)

− 540F0sin(w0t)
Amπ l

)

. (30)

3.1.2 Amplitude Frequency Formulation

In this section AFF is applied to solve Eq. (18). Here Eq. (18)can be written in the following form.

θ̈ +aθ +bθ 2+ cθ 3+dθ 4+eθ 5+ f = 0, (31)

where,

a=
4k
3m

b=
3F0sin(w0t)

2ml

c=
−8k
9m

d =
3F0sin(w0t)

24ml
(32)

e=
8k

45m
f =

3F0sin(w0t)
ml

.

Replacing Eq. (13) and Eq. (14) as two trial functions into Eq. (18) , gives the following Residuals.

R1 (t) =−Acos(t)+aAcos(t)+bA2cos(t)2+ cA3cos(t)3+dA4cos(t)4+eA5cos(t)5+ f (33)

R2 (t2) =−Acos(ωt)ω2+aAcos(ωt)+bA2cos(ωt)2+ cA3cos(ωt)3+dA4cos(ωt)4+eA5cos(ωt)5 (34)

Equatingω1 = 1, ω2 = ω , weighted residuals can be written in the following form.

R̃1(t) =
2
π

π
2
∫

0

(

−Acos(t)+aAcos(t)+bA2cos(t)2

+cA3cos(t)3+dA4cos(t)4+eA5cos(t)5+ f

)

cos(t)dt

=
2
(

5
32eπA5− Aπ

4 + 8dA4

15 + 2bA2

3 + 3cπA3

16 + aπA
4 + f

)

π
(35)
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3.1.3 Amplitude frequency formulation

Inserting Eq. (13) and Eq. (14) into Eq. (38), gives the following residuals.

R̃2(t2) =
2
π

π
2
∫

0

(

−Acos(ϕ)ω2+aAcos(ϕ)+bA2cos(ϕ)2

+cA3cos(ϕ)3+dA4cos(ϕ)4+eA5cos(ϕ)5

)

cos(ϕ)dϕ (36)

=
2
(

5
32eπA5− Aω2π

4 + 8dA4

15 + 2bA2

3 + 3cπA3

16 + aπA
4 + f

)

π

Substituting Eq. (35) and Eq. (36) into Eq. (17) yields Amplitude-frequency equation.

ωAFF =
1
60

√

30

(

120a+75eA4+
256dA3+320bA

π
+

480f
Aπ

+90cA2

)

. (37)

Considering the following value of parameters, the comparison between numerical solution and analytical methods are
illustrated in Fig.1 and Fig.2.

k= 1000
N
m2 ,m= 10kg, l = 1m,F0 = 1,w0 = 1.

As shown below, amplitude frequency formulation and Modified homotopy perturbation method have a high validity in
comparison with runge-kutta method.

R1 (t) =−Acos(t)+
k1Acos(t)−F0sin(w0t)

m
+

k2A3cos(t)3

2mh2

Fig. 1: Comparison of time history response between AFF & MHPM & forth order Runge-Kutta whereA= 0.3.
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Fig. 2: Comparison of time history response between AFF & MHPM & forth order Runge-Kutta whereA= 0.1

Fig. 3: Comparison of phase curve between two different initial conditions.

Example 1. In this example Duffing equation with constant coefficient isconsidered.
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Fig. 4: Comparison of phase curve between two different initial conditions.

Equation of motion of the physical model of nonlinear equation in the following figure is written as follows.

ẍ+
k1

m
x+

k2

2mh2x3−
F0sin(w0t)

m
= 0, x(0) = A, ẋ(0) = 0. (38)

3.2 Applying MHPM to example 2

Eq. (38) can be rewritten in the following form.

ẍ+1x= (1−
k1

m
)x−

k2

2mh2x3+
F0sinw0t

m
. (39)

Utilizing the homotopy parameterp in Eq.(3), Following homotopy can be identified as follows.

ẍ+1x= p[(1−
k1

m
)x−

k2

2mh2x3+
F0sin(w0t)

m
]. (40)

By substituting Eq. (4) and Eq. (5) into Eq. (40) and extending it, first two linear equations can be rewritten in the following
form.

p0 : ẍ0+ω2.x0 = 0 (41)

p1 : ẍ1+ω2x1 = α1x0+(1−
k1

m
)x0−

k2

2mh2x0
3+

F0sin(w0t)
m

. (42)

Herex0 = Acos(ϖt) can be obtained by solving Eq. (41). Substitutingx0into Eq. (42) yields,

ẍ1+ω2x1 = ρ (ωt) (43)
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where,

ρ (ωt) = γ1Acos(ωt)+ (1−
k1

m
)Acos(ωt)−

k2

2mh2A3cos(ωt)3+
F0sin(w0t)

m
(44)

By using the following Fourier expansion series.

ρ (ωt) =
∞

∑
n=0

δ2n+1cos[(2n+1)ωt] = δ1cos(ωt)+ δ3cos(3ωt)+ ...

δ1cong

(

4
π

∫ π
2

0
ρ (φ)cos(φ)dφ

)

cos(ωt) =
1
8
(
32h2F0sinw0t −8k1Ah2π −3k2A3π

πmh2 )+Aω2.

Now,

ẍ1+ω2x1 =

(

1
8
(
32h2F0sin(w0t)−8k1Ah2π −3k2A3π

πmh2 )+Aω2
)

Acos(ωt)+
∞

∑
n=1

δ2n+1cos[(2n+1)ωt]

For avoiding secular term the following equation should be determined.

δ1 = 0. (45)

Substitutingp= 1 into Eq. (5) yields.

1= γ1+ω2. (46)

So the first approximation to the angular frequency is.

ωMHPM =

√

k1

m
+

3k2A2

8mh2 −
4F0sin(w0t)

Amπ
, (47)

R2 (t2) =−Acos(ωt)ω2+
k1Acos(ωt)−F0sin(w0t)

m
+

k2A3cos(ωt)3

2mh2 . (48)

As presented in previous example, following residuals can be obtained as follows,

R̃1 (t) =
2
π

π
2
∫

0

(

−Acos(t)+
k1Acos(t)−F0sin(w0t)

m
+

k2A3cos(t)3

2mh2

)

cos(t)dt (49)

=
8k1Aπh2−32h2F0sin(w0t)−8Aπmh2+3k2A3π

16πmh2

R̃2 (t2) =
2
π

π
2
∫

0

(

−Acos(ϕ)ω2+
k1Acos(ϕ)−F0sin(w0t)

m
+

k2A3cos(ϕ)3

2mh2

)

cos(ϕ)dϕ (50)

=
8k1Aπh2−32h2F0sin(w0t)−8ω2Aπmh2+3k2A3π

16πmh2
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Replacing Eq. (63) and Eq. (64) and solving that, Amplitude-frequency relationship can be obtained in the following
form:

ωAFF =

√

k1

m
+

3k2A2

8mh2 −
4F0sin(w0t)

Amπ
(51)

Considering the following value of parameters, comparisonbetween numerical solution and analytical methods are
illustrated in Fig.3 and Fig.4.

h= 0.5,m= 10(Kg),k1 = 1000,k2 = 1100,F0 = 1,w0 = 1, l = 1(m).

Fig. 5: comparison of time history response between AFF & MHPM & forth order runge-kutta, whereA= 0.1.

Fig. 6: comparison of time history response between AFF & MHPM & forth order runge-kutta, whereA= 0.05.
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Fig. 7: Comparison of phase curve between two different initial conditions.

3.3 Example 3

The physical model of nonlinear oscillation is clarified in the following figure,

The equation of motion can be yield as,

(

m1+
m2x2

l2− x2

)

ẍ+
mlxẋ2

(l2− x2)
+ kx+m2g

x
√

(l2− x2)
= 0 (52)

whereg is the Gravitational acceleration, Letu= x
l then expanding for|u|<< 1, gives,

(

1+
m2

m1
u2
)

ü+

(

m2

m1

)

uu̇2+ω2
0u+

m2g
2lm1

u3+ · · ·= 0 (53)

where

ω2
0 =

k
m1

+
m2g
lm1

. (54)
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Equation (2) can be rewritten in the following form,

ü+1 ·u= au2ü+auu̇2+(1−b)u+ cu3. (55)

wherea= m2
m1

, b= ω2
0 , c= m2g

2lm1
.

3.3.1 Applying MHPM to example 3

Using the homotopy parameter p in above equation, the following homotopy can be established,

ü+1 ·u= p
[

au2ü+auu̇2+(1−b)u+ cu3] . (56)

Inserting Eq. (4) and Eq. (5) into Eq. (71), the linear equations can be written as follows,

p0 : ü0+ω2u0 = 0 (57)

p1 : ü1+ω2u1−α1u0+au2
0ü0+au0u̇

2
0+ cu3

0+(1−b)u0 = 0. (58)

Solving Eq. (73) gives,

u0 = Acos(ωt) . (59)

Substituting Eq. (74) into Eq. (73), obtains,

ü1+ω2u1 =α1Acos(ωt)+aA3cos(ωt)3ω2−aA3cos(ωt)sin(ωt)2ω2 (60)

− cA3cos(ωt)3− (1−b)Acos(ωt) .

Fourier expansion series expansion, gives,

α1Acos(ωt)+aA3cos(ωt)3ω2−aA3cos(ωt)sin(ωt)2ω2 (61)

−cA3cos(ωt)3− (1−b)Acos(ωt) =
∞

∑
n=0

δ2n+1cos[(2n+1)ωt]≈ δ1cos(ωt) .

δ1 =
4
π

π
2
∫

0

(

α1Acos(ϕ)+aA3cos(ϕ)3ω2−aA3cos(ϕ)sin(ϕ)2ω2

−cA3cos(ϕ)3− (1−b)Acos(ϕ)

)

dϕ (62)

=
A
4

(

2aA2ω2+4α1+4−3cA2.−4b
)

Using Eq. (77) and avoiding secular termδ1 = 0,the first approximation of frequency can be obtained as follows:

ωMHPM =
1
2

√

(2+aA2)
(

8ω2
0 +3cA2

)

2+aA2 (63)

Substituting Eq.(70) into Eq.(79) yields,

ωMHPM =
1
2

√

(

8ω2
0 lm1+3m2gA2

)

l (m2A2+2m1)
(64)
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3.3.2 Amplitude frequency formulation

Similarly using Eq. (13) and Eq. (14) for Eq. (66), yields thefollowing Residuals.

R1(t) =−Acos(t)−A3
(

m2

m1

)

cos(t)3+A3
(

m2

m1

)

cos(t)sin(t)2 (65)

+Aω2
0 cos(t)+A3

(

m2g
2lm1

)

cos(t)3.

R2 (t2) =−Acos(ωt)ω2−A3
(

m2

m1

)

cos(ωt)3ω2+Aω2
0 cos(ωt)

+A3
(

m2

m1

)

cos(ωt)sin(ωt)2ω2+A3
(

m2g
2lm1

)

cos(ωt)3. (66)

Locating atω1 = 1, ω2 = ω in Eq. weighted residuals can be obtained as follows,

R̃1 (t) =
2
π

π
2
∫

0

(−Acos(t)−A3
(

m2

m1

)

cos(t)3+A3
(

m2

m1

)

cos(t)sin(t)2

+Aω2
0 cos(t)+A3

(

m2g
2lm1

)

cos(t) 3)cos(t)dt (67)

=
1
2

Aω2
0 +

3
8

A3
(

m2g
2lm1

)

−
1
4

(

m2

m1

)

A3−
1
2

A.

R̃2(t2) =
2
π

π
2
∫

0





−Acos(ϕ)ω2−A3
(

m2
m1

)

cos(ϕ)3ω2+Aω2
0 cos(ϕ)

+A3
(

m2
m1

)

cos(ϕ)sin(ϕ)2ω2+A3
(

m2g
2lm1

)

cos(ϕ)3



cos(ϕ)dϕ (68)

=−
1
2

Aω2+
3
8

(

m2g
2lm1

)

A3−
1
4

A3
(

m2

m1

)

ω2+
1
2

ω2
0A.

Substitution of Eq. (82) and Eq. (83) into Eq. (17) yields angular frequency as follows,

ω2 =

1
2ω2

0A+ 3
8

(

m2g
2lm1

)

A3− 1
4A3

(

m2
m1

)

ω2− 1
2Aω2−ω2

(

1
2ω2

0A+ 3
8

(

m2g
2lm1

)

A3− 1
4

(

m2
m1

)

A3− 1
2A
)

− 1
4A3

(

m2
m1

)

ω2− 1
2Aω2+ 1

4

(

m2
m1

)

A3+ 1
2A

(69)

Solving Eq. (84), Amplitude-frequency relationship can beobtained,

ωAFF =
1
2

√

8ω2
0 lm1+3m2gA2

l (m2A2+2m1)
(70)

Considering the following value of parameters, comparisonbetween numerical solution and analytical methods are
illustrated in Fig.5 and Fig.6.

g= 9.81m/s2,k= 100N/m2,m1 = 5kg,m2 = 1kg, l = 1m.

As shown below, amplitude frequency formulation and Modified homotopy perturbation method have a high validity in
comparison with Runge-Kutta method.
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Fig. 8: Comparison of time history response between AFF & MHPM & forth order Runge-Kuttawhere, whereA= 0.3.

Fig. 9: Comparison of time history response between AFF & MHPM & forth order Runge-Kutta, whereA= 0.1.
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Fig. 10: Comparison of phase curve between two different initial conditions

4 Conclusion

In this paper, Modified Homotopy Perturbation Method (MHPM)and Amplitude Frequency Formulation (AFF) which
are proved to be powerful mathematical tools to study nonlinear vibrating equations have been successfully developed
and tested on three examples of nonlinear vibrating equations. The obtained results demonstrate that both methods are
accurate, capable and convergent techniques and that they compare extremely well with numerical solution. According
to Figures associated with above examples which are the comparison between analytical methods and numerical Runge–
Kutta method of order 4, indicates that these methods provide highly precise answers for nonlinear equations. These
examples illustrate the efficiency of the modified homotopy perturbation method and Amplitude Frequency Formulation
and also it has been shown that these methods don’t have any requirement for advanced calculus.
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