(_/
NTMSCI 5, No. 1, 40-50 (2017) BISKA 4

 NewTrendsinMathemaical Science:

http://dx.doi.org/10.20852/ntmsci.2017.124

On the tubular surfaces in E3

Ali Cakmak and Omer Tarak@i

1Department of Mathematics, Faculty of Arts and Sciencetlisiren University, Bitlis, Turkey
2Department of Mathematics, Faculty of Science, Ataturkversity, Erzurum, Turkey

Received: 30 November 2016, Accepted: 17 December 2016
Published online: 5 January 2017.

Abstract: In this study, we obtain surfaces at a constant distance fhenedge of regression on a tubular surface indicatehi! by
condition thatM is denoted by a tubular surface f¥. Firstly, we show thaM is a tubular surface, fok; = 0. Then, we calculate
curvatures oM fand find some relationships between curvatures of surfdcasdM f. Finally, we research curvatures of center curve
of M, for some special cases.

Keywords: Surfaces at a constant distance from the edge of regressiarsarface, Tubular surfaces, Geodesic curve, Asymptotic
curve, Line of curvature.

1 Introduction

First of all, Tarakci and Hacisalihoglu are the first onesteoduce surfaces at a constant distance from the edge of
regression on a surface E?° in 2002[1]. Actually, these surfaces were based on the study whichrigecat a constant
distance from the edge of regression on a curve proposed by YAzgler in 1963. They obtained surfaces at a constant
distance from the edge of regression on a surfacEdinaking a surface instead of a curve and calculated for these
surfaces some properties and theorems known for parafieices P]. Later, conjugate tangent vectors and asymptotic
directions for these surfaces are giver@3n[Euler theorem and Dupin indicatrix for these surfacesgiven inf4]. In
2010, Saglam and Kalkan obtained the some theorems anéniespfor surfaces at a constant distance from edge of
regression on a surfacel:?rf Minkowski 3-spacej]. The same authors examined Euler theorem and Dupin indidat
these surfaces iEf[G]. Also the same authors studied conjugate tangent vectatsaaymptotic directions for these
surfaces irEf[?]. In 2014, Yurttancikmaz and Tarakci investigated thatiehship between focal surfaces and surfaces
at a constant distance from the edge of regression on a suBhcSurface at a constant distance from the edge of
regression on a surface of revolutionEd[9] and the image curves on surfaces at a constant distancetfi@etge of
regression on a surface of revolution are gived@pIn relation to the concept of curvature, in recent times s@uthors
studied Riemannian metrgcand curvature tensor fieR of Riemannian manfolds on tangent bundlgfl2,13).

In differential geometry, tubular surfaces are one of thigiestts that are studied extensively since tubular surfaces
among the surfaces which are easier to describe both aradlytand kinematically. Recently, the studies on the tabul
surfaces are given iff,15,16,17]. Generally, a tubular surface generated by constructingba around a circle is
known as a torus. The purpose of this paper is to introducalya® and compare tubular surfaces and surfaces at a
constant distance from the edge of regression on a tubuftacsunES. LetM be a tubular surface aid' be surface at

a constant distance from the edge of regression on tubutfeceM. We show that ifA; = 0, M is a tubular surface.
Furthermore, we calculate Gauss and mean curvatures, fiidsssecond fundamental forms fdf. Then, we obtain
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these curvatures for some special cases and we show rekifisrbetween curvatures of the surfabeandM . Finally,
we give the conditions of being geodesic curve, asymptaticeand line of curvature of center curve of tubular surface

2 Preliminaries

Definition 1. Let M and M be two surfaces in £and N> be a unit normal vector at a point P of surface M. LeM be
tangent space at B M and{Xp,Yp} be an orthonormal bases opM. Take a unit vector 2= d; Xp + daYp 4 d3Np, where
di,dp,ds € R are constant numbers and € d3 +d3 = 1. If there is a fonction f defined by, M — Mf, f (P) = P+rZp,
r constant, then the surface Ms called the surface at a constant distance from the edgegséssion on M. M and
are shown by the paifM, Mf).lf d; = dy = 0, then we haveZ= Np and so M and M are parallel surfaces.

Now, we represent parameterization of surfaces at a cardistance from the edge of regressionMnLet (¢,U) be a
parameterization dfl
@:UCE2=M
(uv)  o(uv)

In this case{q,, @} is bases vector offeM. Let Np be a unit normal vector at a poiRtandd,dy, d; € R be constant
numbers then we can write thas = di@, + d@, + d3sNp, whereq, and @, are, respectively, partial derivatives @fwith
respect tas andv. SinceM’ = {f (P) : f (P) = P+rZp}, a parametric representationMdf is

Y (u,v) = @(u,v)+rZ(u,v).
Thus, we obtain

Mf = {QU(U,V) : ‘l’(UaV) = (p(U,V) + r(dqu-l (U,V) + dZ(»q/ (U,V) +d3N (U,V)}.
If we takerd; = Ay, rd; = Az, rdz = Az, we get
Mf = {4’ (U,V) : 4’ (U,V) = (P(U,V) +A1(ﬂ,l (U,V) +A2(R/ (U,V) +A3N (U,V) 7A]? +A22+A3? = rZ} .
Calculation ofyy, andyx, gives us that
Yu = Qu+A1Q@u+ A2+ A3Ny,
Y= @+ A1@uv+ A2@w+ A3Ny.

Here,@uu, @, @G, Nu, Ny are calculated as like ag[ If parameter curves are line of curvaturedwwfind letu andv be arc
lenght of these line of curvatures, we have following ecuregi

1)

@Qu = —KiN,
@v = —K2N,
Qv =@u=0, ()
Nu = K1Q,
Ny = Ko@.

From the eq.1) and @), we get
Yu= (14 A3K1) @ — A1K1N,
U = (1+A3K2) @ — A2k2N
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and{y, Yx} be a bases gf(MT). The unit vector fiellN' of M is

Nf o YuxX W Ak (14 AsK2) Qut AoKz (14 Asky) @+ (14 Asky) (1+Askz) N
10 O JA2K2(14 Aaka)? + AZKB(L+ Aako)? + (14 Aaka)Z(1+ Aak)?

where k1, K2 are principal curvatures of the surfalge If we take

A= \/AZK2(14 Agkz)? + AZKE(L+ Aak)? + (14 Aakp)2(1+ Aak2)?,

we can write 3 142 3 142 142 142
K1 (14 AzK K2 (14 A3K + A3K + A3K:
N — 1K1 ( 32)%+22( 31)%+( 3K1) ( 32)N.
A A A
If kK1 =K andAz = *Kil = 7%2, sinceyy andyx are not linear independent, 86 is not regular surface. We will not

consider this casdl].

Definition 2. A tube of radius r of a set c is the set of points at a distancemfc. In particular, if ¢s) is a regular
space curve parameterized by arc length whose curvature dokvanish, then the normal vector N and binormal vector
B are always perpendicular to c, and the circle 8d&(s) + sinB(s) is perpendicular to ¢ at(s). So as the circle moves
around c, it traces out a tube, provided the tube radius r islbenough so that the tube is not self-intersecting. We can
parameterize this surface by

©(s,0) =c(s)+r(coHN(s) +sinbB(s)) (3)

where0 € [0,2m). Here, ds) is called the center curve and r is radius of tubular surf@t.g].

Thus, by using the equatiorB)( we can easily calculate very important geometrical gtiast Then, from the
expressions

@ =r (—SinON + coHB),

@=(1—rkcoD)T + T¢p,

@gg = —r(COPN + sinbB),

@p =rksinfT + T@yg,

@s= (—rk'coD +rk1sind) T + (k — 1 (k?+ 12) cosh — r1'sind) N+ (—rtsinf +rr'cosd) B,

we obtain, R
eg— f —KcoY
K = = 4
EG-F2 r(1-rkcos)’ @
eG-2fF+gE 1/1
- = = _ K
2EG_F?) 2 (r + r) ! ®)
and principal curvatures,
o — —kcod ©6)
17 T rkco®’
1
Ko = — (7)
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3 Main results

We know that tubular surfadd of radiusr around a set is the set of points at a distancérom ¢, such that: | — E3, a
regular unit speed space curve. Bdve a point orM and{T,N, B} be Frenet frame & € M. We have,

P =c(s)+r(coHN(s)+sinbB(s)),
for P € M. Thus, we can write
@:1x[0,2m) > E3,  @(s,0) =c(s)+r (COPN(S) +SinBB(S)). (8)
Hence, we have(l x [0,2m)) = M.

Now, we represent parameterization of surfitleat a constant distance from the edge of regression on tusuilace.
Let M be a tubular surface iE3 andnp be a unit normal vector arnthM be tangent space at poiRtof surfaceM and
{ @&s|p, ®|p} be an orthogonal bases M. Therefore, from the eq3J if we take partial derivative with respect
and@, we have

@ =c (s)+r (coHN'(s)+sinBB'(s)),

@(s,0) = (1—rkcodD) T —rrsinON + rrcoHB,

|@sl| = /1 — 2rkcosh+ r2k2co$0 +r212 = A,
@ (s,0) = —rsinfN + rcosoB.
Furthermore, we define unit vectofsandY as

08 1-rkcod rtsing rrcod

X = = — N+ B,
llosll A A A
Y= P _ —SinBN + coHB,
el
and the unit normal vectaras "
n= _Bx B = —co¥YN — sindB.
s < gol|

Thus, we get parameterization of surfadé at a constant distance from the edge of regression on tubutéace as
follows:
W(s,0) = (s 0) + A X+ A2Y +Asn,

Y(s,0)=c(s)+ % (1—rkcoH)T + <rcos€ - LA)\\lsinG — A2sing — /\30039) N

rta ©
+ <rsin9 + Tlcose + Ayc0P — Agsine) B.

Also, we write surfacé at a constant distance from the edge of regression on tufuiace\V

f:M—= M,

M = {@(s,0) = @(s,8) + A1 X+ A2Y + Azn, Ay = const, A, = const, A3 = const } .

(© 2017 BISKA Bilisim Technology
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Theorem1. Let @(s,8) be a parameterization of tubular surface M in 3E such that
0(s,8) = c(s)+r(coHN(s) +sindB(s)). Then, M is a tubular surface if and only iA; = 0.

Proof. If the equation ) is a tubular surfac% (1—rkco9) =0, where 1-rkcosh # 0 sincep(s, 0) is a regular tubular
surface. For this reason = 0. Then, if the valud; = 0 is written instead oA, in the equation9), we have

W(s,8) =c(s)+ ((r —Az)coHh — A2sinB) N + ((r — Az) sinb + A,coH) B. (10)

By multiplying both sides of the eq1() with AUl , we have

y/(rng) A2

WS 0) —ce)+ | ———=2 o ——22__sing | N\/(r—2a)?+ A2
(r—A3)2+A2 (r—)\3)2+/\22

11)
r— 3 2
sm9+ cose —A3) + A2
(,/ r—As)? V(1 =Ag)? ) i
By taking,
=X o (12)
(r—23)*+A2
and 3
2 = sinB (13)
(r—A3)® 422
we get,
Y(s,0) =c(s) + ((cosBcoB — sinBsinB) N + (sinfcosB + coPsinB)B) 4/ (r — A3)?+ A2 (14)
and if we admit as
coPcosB — sinbsinB = cog 6 + 3) = coy, (15)
sinfcoB + coPsinf = sin(8 + B) = siny (16)
and
(r—A3)?+ A2 =R=const (17)
we have
W(sy) = o(S) + R(CON(S) + sinyB(s)) . (18)

Hence, we obtain tha#lf is a new tubular surface. Converselydif= 0, we get easily the equatioh) again. Thus, the
proof is completed.

Example 1.We consider that

@(s,6) = ((1 cos)cos: sind, (1— cosf) sin—— — ——=sinBcos 7 sme)

7 . s
f 52 5v2 sf fz 5f 52 | 5v2
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Fig. 1: Tubular surface and surfaces at a constant distance froettie of regression on tubular surface.

where unit speed cun&s) = (0055_\/2’3'”5@’ 5\/25) andr = 1. According to this, surface at a constant distance from

the edge of regression @n(s, 6) under the condition that; = 0 as follows:

c0S 3= (1 — cosB + A2SiN6 4 A3c00) + L=sin=S= (SiN@ 4 A,cos) — Agsing)

5v/2 5y27" 5y2
Y(s6)= sins—jé (1fcos9+)\zsin9+)\30039)f5—%0055%/2 (Sin@ 4 Axcosh — Azsing),

5—\7/§S—|— 5—\1/5 (SinB + A2cosB — Azsing)

Now, considering that under the condition thAat= 0, we calculate I, 1. fundamental forms and curvatures ofeae
at a constant distance from the edge of regression on a tuswitace inE3. From the equation1@), we know that
Y (s,y) =c(s)+ R(cog/N(s) + sinyB(s)) is parameterization of surface at a constant distance fneredge of regression
on a tubular surface iB3. Here, by taking

Wy (sy) = —RsiyN + RcoyB,

Ps(s,y) = (1—Rkcosy) T — RrsinyN + Rrcosy/B,

Ys(sy) = (1—Rkcoy) T + 1y (s,y),

whereyss, Yy are basis vectors at a pointP) of M f. we have

f:M:, s 19
n H‘-/-’sx‘-/-’yH co/N — sinyB, (29)

wherenf is unit normal vector of surface at a constant distance fleretige of regression on tubular surface. Then, first
fundamental form coefficients are obtained as follows:

E = (s, ys) = (1 Rkcosy)” + RT%,

F= <l1USa LtUV> = R2T7 (20)
G= (YY) =R
In addition, second fundamental form coefficients are dated as follows:
Wss= (—Rk’cos/+ Rk tsiny) T + (k — R(k?+ 12) cos/— Rr’siny) N+ (—Rt?siny+ Rt’cos/) B, (21)

(© 2017 BISKA Bilisim Technology
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Wyy = —R(COYN +sinyB), (22)
e= (Yss,n") = —kcog/(1— Rkcosy) + Rr?, (23)
f=(Wg.n") =Rr, (24)
9= {(Yy.n") =R (25)
Hence, Gauss curvatukd and mean curvaturd at an arbitrary point of the surfadé’ are found as
eg— 2 KCOS/
Kf= =— 2
EG-F2 R(1—Rkcoy)’ (26)
f_eG-2fF+gE 1/1 §
H 7—2(EG—F2) =5 R+RK . (27)
In this case, principal curvatures b’ are
PSSt A (28)
! (1-Rkcoy)’
Pl
K =5 (29)
Now, we investigat®!’ for A;= 0. From the equatiors}, we have
©(s,0) =c(s)+r(cobN(s) +sinbB(s)).
Curvatures of tubular surface are given by the @}y.(6), (6) and (7). From these equations, we get,
Kr
CO§ = m, (30)
Sine_\/KZrZ(KZrZ—1)—1(2(2Kr2—1) 31)
B K (Krz —1)
From the equationsl@), (13), (15), (17), (26), (30) and B1), Gauss curvaturéfof M is
Ay Kr A \/Ker(Kzrzfl)sz(ZKrzfl)
KR k(Kr?—1) R K(Kr2—1)
Kf= :
rA K A \/Ker(Kzrzfl)sz(ZKrzfl)
R <1 Rk < R K(Krzrfl) -% K(Kr2—1)
If r = - is used, we obtain
Kf _ fKKz(lf/\ng)+/\2K22\/K2(K17K2)27KZ (32)

(A +366) (R - Dy -k 1)

(© 2017 BISKA Bilisim Technology
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Similarly, if R=/(r f/\3)2+/\2, r= K—12 andK ' are written at the equatio7), we find

;1 —K — K3+ 2K (/\3K+)\2\/K2(K1K2)2K2)
H' =3 : (33)
2
\/(1_ Aakz)? + AZK3 (—Kz +AsK +A2\/K2 (K1—Ka)? — KZ)

Then, we have also principal curvatures from the equatidv®s (13), (15), (17), (28), (30) and 1)

“K (1= A3K2) + Aokor/ K2 (K1 — Kp)? — K2
Kl ( 3K2) 22\/ (K1— K2) , (34)

\/(1_A3K2)2+A22K22 (A?,K — K2+A2\/K2 (Kl — K2)2 _ KZ)

and from the equationd.7), (29

= s (35)

\/(1 — /\3K2)2 + )\22K22

po i

f
Ky, =

Thus, we can express the following theorems.

Theorem 2.Let M be a tubular surface in £and Mf be surface at a constant distance from the edge of regressid,
under the condition tha; = 0. Gauss and mean curvatures of Me respectively,

—KKo (17 /\3K2) + )\2K22\/K2 (Kl — KZ)Z —K?

KM=
(- A+ 366 (R - day - ke 1)

3

f 1 7K7K22+2K2 <)\3K+/\2\/K2(K1K2)2K2>

2

)

\/(1— A3k2)? + A2K2 <K2 +AsK + )\2\/K2 (K1 —K2)® — KZ)

whereki andky are principal curvatures of tubular surface M.

Theorem 3.Let M be a tubular surface in £and M be surface at a constant distance from the edge of regressidf,
under the condition thai; = 0. In this case, principal curvatures of \re

—K(1—Agk2) +A2K2\/K2 (K1 — K2)? — K2

\/(17 )‘3K2)2 +AZK3 <)‘3K - K2+/\2\/K2 (k1 — K2)2 — K2>

f
Ky =

and
K2

\/(1 — /\3K2)2 + )\22K22

po i

K=
Theorem 4. Let the pair of tubular surfacéM, M) be and the center curve ¢ of M be given. In this case, parameter
curves of Mare line of curvatures if and only if ¢ is planar.

Proof. We consider that tubular surfabkis given by parameterization

©(s,0) =c(s)+r(coHN(s) +sinB(s)).

(© 2017 BISKA Bilisim Technology
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In this caseM" is given by the equationl@), for Ay = 0. If parameter curvatures are line of curvatufess f = 0,
whereF is coefficient of first fundamental form arfdis coefficient of second fundamental form. Thén= R*T = 0

and f = Rt =0, from the eq.20) and @4). SinceR= 4/(r —A3)2+A2 ,r#0andA; #0,A3#0andR+#0,7=0.

Thereforec is planar.

On the contrary, it is planar,r = 0. HenceF = f = 0. Thus, parameter curvatures are line of curvatures.

Theorem 5. Let the pair of tubular surfacéM, M) be and the center curve c of M be given. In this case, s-pa@met
curvatures of M are given by (s, y) are asymptotic curves if and only if curvatures of centeveur satisfy the condition

o ((r — Ag) cosh) — Agsind

K (= Ao+ A2 ) (1=K ((r—A3)cos — Asind)).

Proof. We consider that tubular surfabkis given by parameterization,
@ (s,0) =c(s)+r(coBN(s) +sinbB(s)).

In this caseM is given by the equatiori), for A; = 0. If parameter curvatures are asymptotic curvatigesg = 0,
wheree, g are coefficients of second fundamental form. Thers;pfarameter curvatures 8’ are asymptotic curves,
from the equationq3), we have

e= —kcos/(1— Rkcosy)+ Rr? = 0.

Using the equationdl@), (13), (15 and (L7), for cosy, we obtain the following equation:

o ((r — Ag) cosh — Agsing

K (=321 A2 ) (1=K ((r—A3)cosh — Asind)).

This finish the proof.

Corollary 1. Let the pair of tubular and parallel surfagg,M") be and the center curve ¢ of M be given. In this case,
s— parametercurvatures of Mis given byy (s, y) are asymptotic curves if and only if curvatures of centevew satisfy
the condition

72 _ <cos€(1K(r)\3)COS9)) _

K r—As

Proposition 1.Let the pair of tubular surfacéM,M") be and the center curve ¢ of M be given. In this cgsgarameter
curvatures of M are given by (s, y) are not asymptotic curves.

Proof. If parameter curvatures are asymptotic curvatere g = 0. From the equatior2f), we can writeg = <¢,uw, nf> =
R # 0. Hence,y-parameter curvatures are not asymptotic curves.

Theorem 6. Let the pair of tubular surfacéM,M") be and the center curve c of M be given. In this case, s-paemet
curvatures of M is given byy (s, y) are geodesic curves if and only if curvatures of center carsatisfy the condition

2
—-A A
\(r—=A3)%+A2 B o 22 sing | k2
V(r=23)2 + A2 (r—A3)?+ A2
2 (#cose #sine) K+1/(r=A3)2+ 212 =a,
(r=23)"+2] (r=A3)* +A3

where a is a constant.

(© 2017 BISKA Bilisim Technology
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Proof. For a curvea on a surfacévl, condition of being geodesic is characterized byrthea” = 0. From the eq.X9)
and 1), we get,

n’ x Yes= (ksiny— Rk?sinycosy — Rt') T + (Rksinycosy — Rk Tsinfy )N + (—Rk’cogy + Rk Tsinycosy) B.
Here, ifsparameter curvatures are geodesic curves, the followjngtén system is satisfied

Ksiny — Rksinycos/— Rt’ = 0,
Rk'sinycosy— Rk Tsin’y = 0,
—Rk’cogy+ RkTsinycos/ = 0.

From the solution of this equation system, we have,
/ / /
k'cosy— Rkk'cofy—RTT =0

and finally, we get
Rk?cogy—2kcoyy+Rr? =a (acR).

If values ofRandcosy in the above equation are written, the proof is completed.

Corollary 2. Let the pair of tubular and parallel surfacgM,M") be and the center curve ¢ of M be given. In this case,
s-parameter curvatures of Mis given byy (s,y) are geodesic curves if and only if curvatures of center carsatisfy
the condition

(r—A3)co€O k2 — 2coPKk + (r—A3) T2 = a,

where ac R.

4 Conclusion

The paper deals with tubular surface and surfaces at a camistance from the edge of regression on a tubular surface
in E3. Firstly, we show that surface at a constant distance freeretige of regression on a tubular surface under the
condition thatA;=0 is also a tubular surface. Later, by calculating curvatue these surfaces, we obtain some
relationships between curvatures. Finally, we give thedd@@mns geodesic curve, asymptotic curve and line of cumeat

of center curve of M'.
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