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Abstract: In this study, we obtain surfaces at a constant distance fromthe edge of regression on a tubular surface indicated byM f ,
condition thatM is denoted by a tubular surface inE3. Firstly, we show thatM f is a tubular surface, forλ1 = 0. Then, we calculate
curvatures ofM f and find some relationships between curvatures of surfacesM andM f . Finally, we research curvatures of center curve
of M f , for some special cases.
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1 Introduction

First of all, Tarakcı and Hacısalihoğlu are the first ones tointroduce surfaces at a constant distance from the edge of

regression on a surface inE3 in 2002[1]. Actually, these surfaces were based on the study which is curve at a constant

distance from the edge of regression on a curve proposed by Hans Vogler in 1963. They obtained surfaces at a constant

distance from the edge of regression on a surface inE3 taking a surface instead of a curve and calculated for these

surfaces some properties and theorems known for parallel surfaces [2]. Later, conjugate tangent vectors and asymptotic

directions for these surfaces are given in[3]. Euler theorem and Dupin indicatrix for these surfaces aregiven in[4]. In

2010, Sağlam and Kalkan obtained the some theorems and properties for surfaces at a constant distance from edge of

regression on a surface inE3
1 Minkowski 3-space[5]. The same authors examined Euler theorem and Dupin indicatrix for

these surfaces inE3
1[6]. Also the same authors studied conjugate tangent vectors and asymptotic directions for these

surfaces inE3
1[7]. In 2014, Yurttançikmaz and Tarakcı investigated the relationship between focal surfaces and surfaces

at a constant distance from the edge of regression on a surface [8]. Surface at a constant distance from the edge of

regression on a surface of revolution inE3[9] and the image curves on surfaces at a constant distance fromthe edge of

regression on a surface of revolution are given in[10] In relation to the concept of curvature, in recent times some authors

studied Riemannian metricg and curvature tensor fieldR of Riemannian manfolds on tangent bundle[11,12,13].

In differential geometry, tubular surfaces are one of the subjects that are studied extensively since tubular surfacesare

among the surfaces which are easier to describe both analytically and kinematically. Recently, the studies on the tubular

surfaces are given in[14,15,16,17]. Generally, a tubular surface generated by constructing atube around a circle is

known as a torus. The purpose of this paper is to introduce, analyze and compare tubular surfaces and surfaces at a

constant distance from the edge of regression on a tubular surface inE3. Let M be a tubular surface andM f be surface at

a constant distance from the edge of regression on tubular surfaceM. We show that ifλ1 = 0, M f is a tubular surface.

Furthermore, we calculate Gauss and mean curvatures, first and second fundamental forms forM f . Then, we obtain
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these curvatures for some special cases and we show relationships between curvatures of the surfacesM andM f . Finally,

we give the conditions of being geodesic curve, asymptotic curve and line of curvature of center curve of tubular surface.

2 Preliminaries

Definition 1. Let M and Mf be two surfaces in E3 and NP be a unit normal vector at a point P of surface M. Let TPM be

tangent space at P∈M and{XP,YP} be an orthonormal bases of TPM. Take a unit vector ZP = d1XP+d2YP+d3NP, where

d1,d2,d3 ∈ R are constant numbers and d2
1+d2

2+d2
3 = 1. If there is a fonction f defined by, f: M → M f , f (P) = P+ rZP,

r constant, then the surface Mf is called the surface at a constant distance from the edge of regression on M. M and Mf

are shown by the pair(M,M f ).If d1 = d2 = 0, then we have ZP = NP and so M and Mf are parallel surfaces.

Now, we represent parameterization of surfaces at a constant distance from the edge of regression onM. Let (φ ,U) be a

parameterization ofM

φ : U ⊂ E2 → M

(u,v) φ(u,v)

In this case,{φu,φv} is bases vector ofTPM. Let NP be a unit normal vector at a pointP andd1,d2,d3 ∈ R be constant

numbers then we can write thatZP = d1φu+d2φv+d3NP, whereφu andφv are, respectively, partial derivatives ofφ with

respect tou andv. SinceM f = { f (P) : f (P) = P+ rZP}, a parametric representation ofM f is

ψ (u,v) = φ (u,v)+ rZ (u,v) .

Thus, we obtain

M f = {ψ (u,v) : ψ (u,v) = φ (u,v)+ r(d1φu (u,v)+d2φv (u,v)+d3N(u,v)}.

If we takerd1 = λ1, rd2 = λ2, rd3 = λ3, we get

M f =
{

ψ (u,v) : ψ (u,v) = φ (u,v)+λ1φu (u,v)+λ2φv (u,v)+λ3N (u,v) ,λ 2
1 +λ 2

2 +λ 2
3 = r2}

.

Calculation ofψu andψv gives us that
ψu = φu+λ1φuu+λ2φvu+λ3Nu,

ψv = φv+λ1φuv+λ2φvv+λ3Nv.
(1)

Here,φuu,φuv,φvu,Nu,Nv are calculated as like as[1]. If parameter curves are line of curvatures ofM and letu andv be arc

lenght of these line of curvatures, we have following equations.

φuu =−κ1N,

φvv =−κ2N,

φuv = φvu = 0,

Nu = κ1φu,

Nv = κ2φu.

(2)

From the eq. (1) and (2), we get
ψu = (1+λ3κ1)φu−λ1κ1N,

ψv = (1+λ3κ2)φv−λ2κ2N
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and{ψu,ψv} be a bases ofχ(M f ). The unit vector fieldN f of M f is

N f =
ψu×ψv

‖ψu×ψv‖
=

λ1κ1 (1+λ3κ2)φu+λ2κ2(1+λ3κ1)φv+(1+λ3κ1)(1+λ3κ2)N
√

λ 2
1 κ2

1(1+λ3κ2)
2+λ 2

2κ2
2(1+λ3κ1)

2+(1+λ3κ1)
2(1+λ3κ2)

2

where,κ1, κ2 are principal curvatures of the surfaceM. If we take

A=

√

λ 2
1 κ2

1(1+λ3κ2)
2+λ 2

2κ2
2(1+λ3κ1)

2+(1+λ3κ1)
2(1+λ3κ2)

2
,

we can write

N f =
λ1κ1(1+λ3κ2)

A
φu+

λ2κ2 (1+λ3κ1)

A
φv+

(1+λ3κ1) (1+λ3κ2)

A
N.

If κ1 = κ2 andλ3 = − 1
κ1

= − 1
κ2

, sinceψu andψv are not linear independent, soM f is not regular surface. We will not

consider this case [1].

Definition 2. A tube of radius r of a set c is the set of points at a distance r from c. In particular, if c(s) is a regular

space curve parameterized by arc length whose curvature does not vanish, then the normal vector N and binormal vector

B are always perpendicular to c, and the circle cosθN(s)+sinθB(s) is perpendicular to c at c(s). So as the circle moves

around c, it traces out a tube, provided the tube radius r is small enough so that the tube is not self-intersecting. We can

parameterize this surface by

φ (s,θ ) = c(s)+ r(cosθN(s)+ sinθB(s)) (3)

whereθ ∈ [0,2π). Here, c(s) is called the center curve and r is radius of tubular surface.[18].

Thus, by using the equation (3), we can easily calculate very important geometrical quantities. Then, from the

expressions

φθ = r (−sinθN+ cosθB),

φs = (1− rκcosθ )T + τφθ ,

φθθ =−r(cosθN+ sinθB),

φsθ = rκsinθT + τφθθ ,

φss=
(

−rκ ′cosθ + rκτsinθ
)

T +
(

κ − r
(

κ2+ τ2)cosθ − rτ ′sinθ
)

N+
(

−rτ2sinθ + rτ ′cosθ
)

B,

we obtain,

K =
eg− f 2

EG−F2 =
−κcosθ

r (1− rκcosθ )
, (4)

H =
eG−2 f F +gE

2(EG−F2)
=

1
2

(

1
r
+Kr

)

, (5)

and principal curvatures,

κ1 =
−κcosθ

1− rκcosθ
, (6)

κ2 =
1
r
. (7)
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3 Main results

We know that tubular surfaceM of radiusr around a setc is the set of points at a distancer from c, such thatc: I → E3
, a

regular unit speed space curve. LetP be a point onM and{T,N,B} be Frenet frame atP∈ M. We have,

P= c(s)+ r (cosθN(s)+ sinθB(s)) ,

for P∈ M. Thus, we can write

φ : I × [0,2π)→ E3
, φ (s,θ ) = c(s)+ r (cosθN(s)+ sinθB(s)) . (8)

Hence, we haveφ (I × [0,2π)) = M.

Now, we represent parameterization of surfaceM f at a constant distance from the edge of regression on tubularsurface.

Let M be a tubular surface inE3 andnP be a unit normal vector andTPM be tangent space at pointP of surfaceM and

{ φs|P, φθ |P} be an orthogonal bases ofTPM. Therefore, from the eq. (3) if we take partial derivative with respect tos

andθ , we have

φs = c′ (s)+ r
(

cosθN′ (s)+ sinθB′ (s)
)

,

φs(s,θ ) = (1− rκcosθ )T − rτsinθN+ rτcosθB,

‖φs‖=
√

1−2rκcosθ + r2κ2cos2θ + r2τ2 = A,

φθ (s,θ ) =−rsinθN+ rcosθB.

Furthermore, we define unit vectorsX andY as

X =
φs

‖φs‖
=

1− rκcosθ
A

T − rτsinθ
A

N+
rτcosθ

A
B,

Y =
φθ
‖φθ‖

=−sinθN+ cosθB,

and the unit normal vectorn as

n=
φs×φθ
‖φs×φθ‖

=−cosθN− sinθB.

Thus, we get parameterization of surfaceM f at a constant distance from the edge of regression on tubularsurface as

follows:

ψ (s,θ ) = φ (s,θ )+λ1X+λ2Y+λ3n,

ψ (s,θ ) = c(s)+
λ1

A
(1− rκcosθ )T +

(

rcosθ − rτλ1

A
sinθ −λ2sinθ −λ3cosθ

)

N

+

(

rsinθ +
rτλ1

A
cosθ +λ2cosθ −λ3sinθ

)

B.

(9)

Also, we write surfaceM f at a constant distance from the edge of regression on tubularsurfaceM

f : M → M f
,

M f = {ψ (s,θ ) = φ (s,θ )+λ1X+λ2Y+λ3n,λ1 = const.,λ2 = const.,λ3 = const.} .
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Theorem 1. Let φ (s,θ ) be a parameterization of tubular surface M in E3, such that

φ(s,θ ) = c(s)+ r (cosθN(s)+ sinθB(s)). Then, Mf is a tubular surface if and only ifλ1 = 0.

Proof.If the equation (9) is a tubular surfaceλ1
A (1− rκcosθ )= 0, where 1− rκcosθ 6= 0 sinceφ (s,θ ) is a regular tubular

surface. For this reasonλ1 = 0. Then, if the valueλ1 = 0 is written instead ofλ1 in the equation (9), we have

ψ(s,θ ) = c(s)+ ((r −λ3)cosθ −λ2sinθ )N+((r −λ3)sinθ +λ2cosθ )B. (10)

By multiplying both sides of the eq. (10) with

√

(r−λ3)
2+λ 2

2
√

(r−λ3)
2+λ 2

2

, we have

ψ(s,θ ) = c(s)+





r −λ3
√

(r −λ3)
2+λ 2

2

cosθ − λ2
√

(r −λ3)
2+λ 2

2

sinθ



N
√

(r −λ3)
2+λ 2

2

+





r −λ3
√

(r −λ3)
2+λ 2

2

sinθ +
λ2

√

(r −λ3)
2+λ 2

2

cosθ



B
√

(r −λ3)
2+λ 2

2 .

(11)

By taking,
r −λ3

√

(r −λ3)
2+λ 2

2

= cosβ (12)

and
λ2

√

(r −λ3)
2+λ 2

2

= sinβ (13)

we get,

ψ(s,θ ) = c(s)+ ((cosθcosβ − sinθsinβ )N+(sinθcosβ + cosθsinβ )B)
√

(r −λ3)
2+λ 2

2 (14)

and if we admit as

cosθcosβ − sinθsinβ = cos(θ +β ) = cosγ, (15)

sinθcosβ + cosθsinβ = sin(θ +β ) = sinγ (16)

and
√

(r −λ3)
2+λ 2

2 = R= const. (17)

we have

ψ(s,γ) = c(s)+R(cosγN(s)+ sinγB(s)) . (18)

Hence, we obtain thatM f is a new tubular surface. Conversely, ifλ1 = 0, we get easily the equation (18) again. Thus, the

proof is completed.

Example 1.We consider that

φ (s,θ ) =
(

(1− cosθ )cos
s

5
√

2
+

7

5
√

2
sin

s

5
√

2
sinθ ,(1− cosθ )sin

s

5
√

2
− 7

5
√

2
sinθcos

s

5
√

2
,

7

5
√

2
s+

sinθ
5
√

2

)

,
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Fig. 1: Tubular surface and surfaces at a constant distance from theedge of regression on tubular surface.

where unit speed curvec(s) = (cos s
5
√

2
,sin s

5
√

2
,

7
5
√

2
s) andr = 1. According to this, surface at a constant distance from

the edge of regression onφ (s,θ ) under the condition thatλ1 = 0 as follows:

ψ (s,θ ) =









cos s
5
√

2
(1− cosθ +λ2sinθ +λ3cosθ )+ 7

5
√

2
sin s

5
√

2
(sinθ +λ2cosθ −λ3sinθ ) ,

sin s
5
√

2
(1− cosθ +λ2sinθ +λ3cosθ )− 7

5
√

2
cos s

5
√

2
(sinθ +λ2cosθ −λ3sinθ ) ,

7
5
√

2
s+ 1

5
√

2
(sinθ +λ2cosθ −λ3sinθ )









Now, considering that under the condition thatλ1 = 0, we calculate I, II. fundamental forms and curvatures of surface

at a constant distance from the edge of regression on a tubular surface inE3. From the equation (18), we know that

ψ (s,γ) = c(s)+R(cosγN(s)+ sinγB(s)) is parameterization of surface at a constant distance from the edge of regression

on a tubular surface inE3. Here, by taking

ψγ (s,γ) =−RsinγN+RcosγB,

ψs(s,γ) = (1−Rκcosγ)T −RτsinγN+RτcosγB,

ψs(s,γ) = (1−Rκcosγ)T + τψγ (s,γ) ,

whereψs,ψγ are basis vectors at a pointf (P) of M f , we have

nf =
ψs×ψγ
∥

∥ψs×ψγ
∥

∥

=−cosγN− sinγB, (19)

wherenf is unit normal vector of surface at a constant distance from the edge of regression on tubular surface. Then, first

fundamental form coefficients are obtained as follows:

E = 〈ψs,ψs〉= (1−Rκcosγ)2+R2τ2
,

F =
〈

ψs,ψγ
〉

= R2τ, (20)

G=
〈

ψγ ,ψγ
〉

= R2

In addition, second fundamental form coefficients are calculated as follows:

ψss=
(

−Rκ ′cosγ +Rκτsinγ
)

T +
(

κ −R
(

κ2+ τ2)cosγ −Rτ ′sinγ
)

N+
(

−Rτ2sinγ +Rτ ′cosγ
)

B, (21)

ψsγ = RκsinγT + τψγγ = ψγs,
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ψγγ =−R(cosγN+ sinγB) , (22)

e=
〈

ψss,n
f 〉=−κcosγ (1−Rκcosγ)+Rτ2

, (23)

f =
〈

ψsγ ,n
f 〉= Rτ, (24)

g=
〈

ψγγ ,n
f 〉= R. (25)

Hence, Gauss curvatureK f and mean curvatureH f at an arbitrary point of the surfaceM f are found as

K f =
eg− f 2

EG−F2 =− κcosγ
R(1−Rκcosγ)

, (26)

H f =
eG−2 f F +gE

2(EG−F2)
=

1
2

(

1
R
+RKf

)

. (27)

In this case, principal curvatures ofM f are

κ f
1 =− κcosγ

(1−Rκcosγ)
, (28)

κ f
2 =

1
R
. (29)

Now, we investigateM f for λ1= 0. From the equation (3), we have

φ (s,θ ) = c(s)+ r(cosθN(s)+ sinθB(s)).

Curvatures of tubular surface are given by the eq. (4), (5), (6) and (7). From these equations, we get,

cosθ =
Kr

κ(Kr2−1)
, (30)

sinθ =

√

K2r2 (κ2r2−1)−κ2(2κr2−1)
κ (Kr2−1)

. (31)

From the equations (12), (13), (15), (17), (26), (30) and (31), Gauss curvatureK f of M f is

K f =

−κ

(

r−λ3
R

Kr
κ(Kr2−1)

− λ2
R

√

K2r2(κ2r2−1)−κ2(2κr2−1)

κ(Kr2−1)

)

R

(

1−Rκ

(

r−λ3
R

Kr
κ(Kr2−1)

− λ2
R

√

K2r2(κ2r2−1)−κ2(2κr2−1)

κ(Kr2−1)

)) .

If r = 1
κ2

is used, we obtain

K f =
−Kκ2(1−λ3κ2)+λ2κ2

2

√

κ2(κ1−κ2)
2−K2

(

(1−λ3κ2)
2+λ 2

2 κ2
2

)

(

λ3K−κ2+λ2

√

κ2(κ1−κ2)
2−K2

) . (32)
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Similarly, if R=
√

(r −λ3)
2+λ 2

2 , r = 1
κ2

andK f are written at the equation (27), we find

H f =
1
2









−K−κ2
2 +2κ2

(

λ3K+λ2

√

κ2(κ1−κ2)
2−K2

)

√

(1−λ3κ2)
2+λ 2

2 κ2
2

(

−κ2+λ3K+λ2

√

κ2(κ1−κ2)
2−K2

)









. (33)

Then, we have also principal curvatures from the equations (12), (13), (15), (17), (28), (30) and (31)

κ f
1 =

−K (1−λ3κ2)+λ2κ2

√

κ2 (κ1−κ2)
2−K2

√

(1−λ3κ2)
2+λ 2

2 κ2
2

(

λ3K−κ2+λ2

√

κ2(κ1−κ2)
2−K2

) , (34)

and from the equations (17), (29)

κ f
2 =

1
R
=

κ2
√

(1−λ3κ2)
2+λ 2

2 κ2
2

. (35)

Thus, we can express the following theorems.

Theorem 2.Let M be a tubular surface in E3 and Mf be surface at a constant distance from the edge of regressionon M,

under the condition thatλ1 = 0. Gauss and mean curvatures of Mf are respectively,

K f =
−Kκ2(1−λ3κ2)+λ2κ2

2

√

κ2 (κ1−κ2)
2−K2

(

(1−λ3κ2)
2+λ 2

2κ2
2

)

(

λ3K−κ2+λ2

√

κ2 (κ1−κ2)
2−K2

) ,

H f =
1
2









−K−κ2
2 +2κ2

(

λ3K +λ2

√

κ2 (κ1−κ2)
2−K2

)

√

(1−λ3κ2)
2+λ 2

2 κ2
2

(

−κ2+λ3K +λ2

√

κ2 (κ1−κ2)
2−K2

)









,

whereκ1 andκ2 are principal curvatures of tubular surface M.

Theorem 3.Let M be a tubular surface in E3 and Mf be surface at a constant distance from the edge of regressionon M,

under the condition thatλ1 = 0. In this case, principal curvatures of Mf are

κ f
1 =

−K(1−λ3κ2)+λ2κ2

√

κ2 (κ1−κ2)
2−K2

√

(1−λ3κ2)
2+λ 2

2κ2
2

(

λ3K −κ2+λ2

√

κ2 (κ1−κ2)
2−K2

)

and

κ f
2 =

1
R
=

κ2
√

(1−λ3κ2)
2+λ 2

2 κ2
2

.

Theorem 4.Let the pair of tubular surface(M,M f ) be and the center curve c of M be given. In this case, parameter

curves of Mf are line of curvatures if and only if c is planar.

Proof.We consider that tubular surfaceM is given by parameterization

φ (s,θ ) = c(s)+ r(cosθN(s)+ sinθB(s)).
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In this case,M f is given by the equation (18), for λ1 = 0. If parameter curvatures are line of curvatures,F = f = 0,

whereF is coefficient of first fundamental form andf is coefficient of second fundamental form. Then,F = R2τ = 0

and f = Rτ = 0, from the eq. (20) and (24). SinceR=
√

(r −λ3)
2+λ 2

2 , r 6= 0 andλ2 6= 0, λ3 6= 0 andR 6= 0, τ = 0.

Therefore,c is planar.

On the contrary, ifc is planar,τ = 0. Hence,F = f = 0. Thus, parameter curvatures are line of curvatures.

Theorem 5.Let the pair of tubular surface(M,M f ) be and the center curve c of M be given. In this case, s-parameter

curvatures of Mf are given byψ (s,γ) are asymptotic curves if and only if curvatures of center curve c satisfy the condition

τ2

κ
=

(

(r −λ3)cosθ −λ2sinθ
(r −λ3)

2+λ 2
2

)

(1−κ ((r −λ3)cosθ −λ2sinθ )) .

Proof.We consider that tubular surfaceM is given by parameterization,

φ (s,θ ) = c(s)+ r(cosθN(s)+ sinθB(s)).

In this case,M f is given by the equation (18), for λ1 = 0. If parameter curvatures are asymptotic curvatures,e= g= 0,

wheree, g are coefficients of second fundamental form. Then, ifs-parameter curvatures ofM f are asymptotic curves,

from the equation (23), we have

e=−κcosγ (1−Rκcosγ)+Rτ2 = 0.

Using the equations (12), (13), (15) and (17), for cosγ, we obtain the following equation:

τ2

κ
=

(

(r −λ3)cosθ −λ2sinθ
(r −λ3)

2+λ 2
2

)

(1−κ ((r −λ3)cosθ −λ2sinθ )) .

This finish the proof.

Corollary 1. Let the pair of tubular and parallel surface(M,M f ) be and the center curve c of M be given. In this case,

s− parametercurvatures of Mf is given byψ (s,γ) are asymptotic curves if and only if curvatures of center curve c satisfy

the condition
τ2

κ
=

(

cosθ (1−κ (r −λ3)cosθ )
r −λ3

)

.

Proposition 1.Let the pair of tubular surface(M,M f ) be and the center curve c of M be given. In this case,γ-parameter

curvatures of Mf are given byψ (s,γ) are not asymptotic curves.

Proof. If parameter curvatures are asymptotic curvature,e= g= 0. From the equation (25), we can writeg=
〈

ψγγ ,nf
〉

=

R 6= 0. Hence,γ-parameter curvatures are not asymptotic curves.

Theorem 6.Let the pair of tubular surface(M,M f ) be and the center curve c of M be given. In this case, s-parameter

curvatures of Mf is given byψ (s,γ) are geodesic curves if and only if curvatures of center curvec satisfy the condition

√

(r −λ3)
2+λ 2

2





r −λ3
√

(r −λ3)
2+λ 2

2

cosθ − λ2
√

(r −λ3)
2+λ 2

2

sinθ





2

κ2

−2





r −λ3
√

(r −λ3)
2+λ 2

2

cosθ − λ2
√

(r −λ3)
2+λ 2

2

sinθ



κ +

√

(r −λ3)
2+λ 2

2 τ2 = a,

where a is a constant.
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Proof. For a curveα on a surfaceM, condition of being geodesic is characterized by then×α ′′ = 0. From the eq. (19)

and (21), we get,

nf ×ψss=
(

κsinγ −Rκ2sinγcosγ −Rτ ′
)

T +(Rκ ′sinγcosγ −Rκτsin2γ )N+
(

−Rκ ′cos2γ + Rκτsinγcosγ
)

B.

Here, ifs-parameter curvatures are geodesic curves, the following equation system is satisfied

κsinγ −Rκ2sinγcosγ −Rτ ′ = 0,

Rκ ′sinγcosγ −Rκτsin2γ = 0,

−Rκ ′cos2γ + Rκτsinγcosγ = 0.

From the solution of this equation system, we have,

κ ′cosγ −Rκκ ′cos2γ −Rττ ′= 0

and finally, we get

Rκ2cos2γ −2κcosγ +Rτ2 = a (a∈ R) .

If values ofR andcosγ in the above equation are written, the proof is completed.

Corollary 2. Let the pair of tubular and parallel surface(M,M f ) be and the center curve c of M be given. In this case,

s-parameter curvatures of Mf is given byψ (s,γ) are geodesic curves if and only if curvatures of center curvec satisfy

the condition

(r −λ3)cos2θ κ2−2cosθκ +(r −λ3)τ2 = a,

where a∈R.

4 Conclusion

The paper deals with tubular surface and surfaces at a constant distance from the edge of regression on a tubular surface

in E3. Firstly, we show that surface at a constant distance from the edge of regression on a tubular surface under the

condition thatλ1= 0 is also a tubular surface. Later, by calculating curvatures of these surfaces, we obtain some

relationships between curvatures. Finally, we give the conditions geodesic curve, asymptotic curve and line of curvature

of center curvec of M f .
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