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Abstract: In this study, we have applied a generalized successive nicathtechnique to solve the elasticity problem of basedhan t
elastic ground with variable coefficient. In the first stage,have calculated the generalized successive approgimatibeing given
BVP and in the second stage we have transformed it into RaxéiéssAt the end of study a test problem has been given tdycthe
method.
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1 Introduction

The solution of BVPs has a lot of methods in literature. Onéhef most known is the integral equations method. By
using the mentioned method, we can achieve an integraliequahich is equivalent to the BVP. It is well known that
the solution of the integral equation can be defined as theisolof the BVPs. This equation is generally known as
Fredholm equation in the mathematical society. But in oysepave acquire a Fredholm-Volterra integral equation
different from the known as so far.

The elasticity problem based on the elastic ground withaldei coefficients has the following form;

d*x
T Talx=1(),(0<t<T) @)
2 3
ddxt(zo) -, dXt_(30) =B 2
X(T) = Az, d)((i;l') =B ®)

wherea(t) and f(t) are previously given continuous functions on the intervat © < T. At first, the successive
approximations method has been applied to the problem amdcbnverted to Padé series [3, 4].

2 The equivalent integral equation

The following linear equations

X(t) = f(t)+ / K(t,9x(s)ds 4)
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x(t) = f(t) + / K(t,9)x(s)ds (5)

t T
x(t) = (t) + / Ka(t, $)x(s)ds+ / Ka(t, s)x(s)ds )
0 0

are known in the literature as \Volterra, Fredholm and Veodtédtredholm integral equations, respectively. We call the
function f (t) as free term of4)-(5), K(t,s) andK;(t,s) are kernels of equationd)¢(5), andx(t) is an unknown function
defined onthe interval @t <T.

Let C[0, T] be the space which contains all of the continuous functi@fimed on the closed intervi, T]. In this space
the norm ofx(t) € C[0, T] is a real function and given as follows,

X|| = max [X(t)]|.
1] = max|xo)

We can defind~ andV as
T
F= / K(t,s)x(s)ds
0
and

t
V= [ K(t,9)x(s)ds
[

on theC[0, T], and the above operators are called as Fredholm and Votipenators. I/ € C[0, T] for x(t) € C[0, T],
then it is said that operat®y affectsC[0, T].

If the operatoir acts fromC|0, T] to R then we call the operatdi as linear functional. We define degenerated kernel
function as the following

Kt.9 = 5 ab(s ™

If kernel function is degenerated, the integral equatiohiiwhas this sort of kernel are known as integral equatiatis w
a degenerated kernel [5].

Let equation 4) has kernel ) then the equatiord can be arranged as

KO =10+ 3 &) [b(sxsos ®

To geC;j, we can arrange a system as follows

r 0 T
Ci :./ bi(s) f (s)ds+ jzjb/a;(s)bi(s)f(s)dsq(i —1,n)

0
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Let A be the determinant of above systemAHK0, then we find out

>

n T
== 5 & [ bj(9)f(s)d
G ;%,Z’m$<$ s

where4;; is known as algebraic complementbf TheA;j; can be constructed by deletiith row andjth column of the
A. If equation @) has degenerated kernel, the solution of the &owill be

or
a0y (9 | f(sds

n
i.j=1

]
X(t) = f(t)+/
0

3 The green functions and solution of BVPs

We are considering the following BVPs
X' (1) +b(t)X +a(t)x=f(1),0<t<T
aox(0) + Pox (0) = v )
a1x(0) + X (0) = vi.

wherea(t), b(t) and f(t)(0 <t < T) are previously defined functions. Let, B andy (i = 0,1) are constants [6]. We
convert the equatiordj into its homogeneous form as following

X' +bt)X +at)x=0, (0<t<T), (10)
aox(0) + BoX (0) =0, (11)
a1x(0) + Bix'(0) = 0. 12)

Definition 1. Let G(t,s) be function which has the following properties with its kmovalue s= (0,T)
() Ift #s,then Qt,s) is solution of the given probleniQ).
(I Ift = s, then Qt,s) is continuous function with respect to t. Partial derivatiof the Gt,s) with respect to t has
first kind of discontinuity and its jumping number 1.
That is,
G(s+0,s) = G(s—0,s),
G (S+ O,S) -G} (S* O,S) =1
Now, we are going to construct the Green function: Let weklag. (L0) has two distinct solution such asg(t), xo(t)
respectively and satisfies the boundary conditidri} &nd (L2), respectively.

(13)

Let consider the following function

G(x,s):{¢(s)xl(t)’0§tgs’ 14
Y(s)x(t), s<t<T.

Now we choose the functiors(t) andy(t) which satisfy (3.5). That is,
W(s)x2(s) = ¢ ()xa(S), W(8)xa(S) — P (x4 (s) = 1.

If we solve the above system we can get the functip(® and(s). By substitutingg (s) and(s) in (14) we get the
functionG(x, s) as Green function of the problerh@)-(12).
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Theorem 1.Let G(x,s) be the Green functions of the probleh))-(12) and let f(t) be a continuous function, the following

function
T
= /G(t,s)f(s)ds
0

will be the solution for nonhomogeneous problém[6].

4 The equivalent Fredholm Volterra integral equations

LetF(t) = f(t) — a(t)x. When we consider the boundary conditioBsdnd the equation

d*x
o F(t)

has integral order of four, on the interJalt], the following equations can be arrived
t
xX"(t) =x"(0)+ [ F(s)ds
0
t
X'(t) =X"(0) +X"(0)t + [ (t —s)F(s)ds,
0

1" t 2
X(t) = X (0) + X"(0)t + X" O | [ -9 (g)dg

! 2 " 3 t 3
X(t) = X(0) + X ()t + X9 | XTOL , r (S F(g)ds
0

where
A1t2 Bj_t3 ;
X(t) = X(0) +X(0) (15)
0
In addition to this, the boundary conditior,((3) andx(t), X (t) have been used,
T
Ao = X(0) + X (O)T + A% 4 BIT° / T ’F(s)ds
By = X(0) + AT + B +f 0_9°F(s)ds
are gained. The solution of the above system yields theviilig equations,
X(0) = Ap— TBy+ A% 4 BT +f (T—9°32T +9)F(s)ds
(16)

]
X(0)=B,— AT BT | <Tgs>2F(s)ds
0

If we put (16) in (15), in that case we acquire

.
AT2 B,T3 22T s B;T2

X(t) = Ay — TB+ 1 ! +/ ¢ F(s)ds+ (BgAlT 12 )

0

TH(T —9)? A1T2 BlT3 :
- / F(s)ds+ + /
0 0
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or

A T2 BT3
1 + 1
2 3

Xt)=A—TBy+

T
+f
:

for this reason, when we thirfk(t) = f(t) —a(t)x,

5 +

BiT? . AT2 ByTS
2 6

+ (BzAlT —

6

(T-9°@2T+s) (T 5)2] -

A T2 BT3
1 + 1
2 3

2T +9 (T _S)Z] -

B, T2 A T2 BT3
1 )t—l— 1 + 1

X(t) =A2—TBy+ 5 5 5

+ (BZ_AlT -

+

/[
|

2 t
l 2T+S) (TZ ) ]a(s)x(s)ds—/(t (s)ds
0
here
_ AiT?2  B(TS BiT? AiT?  BT®
h(t) =Ae—TB+ ——+—3 +<|32A1T > >t >+
IRy 2
+/ (T-9°@2T+s) t(T-9 ]f(s)
0
we get

T t
X(t) = h(t) 7/ [(T — S)ZéZT 9 @ ; 3)2] a(s)x(s)dsf/ (t- s)x(s)ds (17)
0

The equation 17) is known as linear Volterra Fredholm integral equation mehEredholm operator has degenerated

kernel. Let we define
3

t
x=-J &

J a(s)x(s)ds
Fix= } {72”5)] a(s)x(s)ds
0
= [ ds
= of [ } S)X(9)
So, the equationl(7) can be arranged
X(t) = h(t) +Vx+ Fix+thx (18)

by the reason df1x, Fx Fredholm andly Volterra operators, respectively. Thereby, the probl&+(8) will be equivalent
to the integral equatiori@) [6].

5 The generalized successive approximation method for elasty problem

To obtain the approximation of Volterra-Fredholm integrquation 18), we can use the following formula

Xn(t) = h(t) + Vo1 + FiXn-1 +tFoXq1, (N=1,2, ---) (19)

(© 2017 BISKA Bilisim Technology


www.ntmsci.com

31 BISKA M. Bayram: The generalized successive approximation adé Raproximants method for solving...

hereh(t) = xp(t) is known as discretionary and continuous function.

By solving the linear Volterra-Fredholm integral equataam calculate the approximatiar(t),

y(t) = h(t) + Fry +tFy (20)

where Q0) has a degenerated kernel and has a solution

y(t) =h(t) +C +tC; (21)
In addition to that we can calculate the unknown te@nsindC, by solving the following linear equation system

(1-F1)Cy — (Fit)C, = Fih

. 22
— (R1)Cy + (1— Fat) Cp = Foh (22)
If we assume the determinant of the coefficient matrix2®) {s not zero, namely
A=(1-Fl) (1-Fat)— (Fut) (
1 J 1 7
0 0
1 T T
+1—2</( $2(2T + s)a( )(/ )7&0.
0 0
We can calculat€; andC; as follows
= % [(Fuh) (1—Fat) + (Fut) (Foh)|
=2 [(1=F11)(Rh) + (Fih) (Fo1)]
If we put into placeC; andC; into the equationq1) we achieve the solution of the equati@t) as
1 ~ 1 -
y( ) th [1 Fot thle] (Fj_h) + A [(17 Fll)t + Flt] (th). (23)

To get the approximation of,(t) we can useX9) and the equalityi(t) = h(t) +Vx,_1 thus it yields the following
approximation formula,

N 1-Ft+tHl 1-F1)t+Fqt
Xn(t) =h (t)Jr#FlVanH (1+F2V)‘n—l+vxn—l (24)
here 1-Ft+thl 1-FHDt+ Rt
— ot + — +

To guarantee that the approximationsxgft) is convergent to the solution of the problet3), the following linear

operator

- R+ Fot
LRl Ly B RS RL vk

AX) = A A

must satisfy the inequalities

[AG) < B,

(© 2017 BISKA Bilisim Technology
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T
T|1—Fid| + [Fut]

(T —9)(2T +s)[a(s)|ds+ 2]

T
6|A|

(T —9)%|a(s)|ds+ 1) o<1
0

T
where® = (% [(T=9)3as)| ds) . The convergence speed of the above approximations satlsfiésequalities
0

1% = X[ < B [0 = X]|

or
Bn
(% —X|| < 18 X1 —Xo| -
6 Pack series
The Padé series is defined as follows.
M
2o+ arx+ apl ... = PO PaX e PuX (26)

14 qux+---+auxt

After we multiply both sides 0f6) by the denominator of right side a2§) and compatre to the coefficients of both sides
in (26). We obtain following equations

M
aIJFZaIkaIk:va(IZOa"'aM) (27)
k=1
L
k=1

By solving the linear equation ir2g), we can acquire the valuesqf, (k=1,---,L). Furthermore by substitutingi into
(26), we obtain the values gdy, (I =0,--- ,M)[1, 2].

7 Test problem

Let think the following elasticity problem with homogenexoundary conditions and elasticift) = 1. According to
these, the BVP can be given as

o+ x=t2
X"(0) =0, X"(0) =0 (29)
x(1)=0,X(1)=1

If we calculate the approximate solution @9 by using "The Generalized Successive Approximation” gire(24) we
arrive at a solution as follows

xa(t) = 0.000002° — 0.0000228 + 0.002777% — 0.007242°+ 0.037593* + 0.869141 — 0.902233

This is the approximate solution of the proble2®) with the determinant valud = 1.083680556¢% 0.

(© 2017 BISKA Bilisim Technology
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Furthermore the solution o(t) can be transformed into Padé series as follows

Table 1: The comparison of the generalized successive approximaith the exact solution on the interval 1].

—0.9022336418-0.8562379857-+ 0.00816689678t2+ 0.004239419666
+0.03726935617 — 0.00651366025¢ + 0.0028497476088

[na<

1+ 0.01430226798+ 0.004725831968
—0.0001463043916 + 0.000217851555% — 0.000002415627288

t; X(ti )Exact Sol. X3(ti)7/6) X(ti) —X3(ti) 7/

0 -0.9024272572 -0.90223364180000 0.00019361540000
0.1 -0.8154922514 -0.81531575450000 0.00017649690000
0.2 -0.7285066050 -0.72834723770000 0.00015936730000
0.3 -0.6413443218 -0.64120212250000 0.00014219930000
0.4 -0.5538022241 -0.55367727310000 0.00012495100000
0.5 -0.4656036731 -0.46549610760000 0.00010756550000
0.6 -0.3764003272 -0.37631035510000 0.00008997210000
0.7 -0.2857719684 -0.28569987650000 0.00007209190000
0.8 -0.1932244274 -0.19317059350000 0.00005383390000
0.9 -0.0981856585 -0.09815055403000 0.00003510447000
1.0 0.0000000000 +0.00001580208197 0.00001580208197

8 Conclusion

The aim of this paper is to construct an approximate solutiothe equation®) which is elastic ground problem with
variable coefficients. Iifable 1the solution of 9) is seen in detailed. The numerical outputs inTable 1 show us that
the approximate solution is very close to the exact solstufi(29).
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