

# Computation of growth rates of composite entire and meromorphic functions from the view point of their relative $L^*$ -orders

Sanjib Kumar Datta<sup>1</sup>, Tanmay Biswas<sup>2</sup>, Pulak Sahoo<sup>3</sup>

<sup>1</sup>Department of Mathematics, University of Kalyani, P.O.-Kalyani, Dist.-Nadia, PIN- 741235, West Bengal, India.
 <sup>2</sup>Rajbari, Rabindrapalli, R. N. Tagore Road, P.O.-Krishnagar, Dist.-Nadia, PIN-741101, West Bengal, India.
 <sup>3</sup>Department of Mathematics, University of Kalyani, P.O.-Kalyani, Dist.-Nadia, PIN- 741235, West Bengal, India.

Received: 18 June 2016, Accepted: 14 august 2016 Published online: 5 January 2017.

Abstract: In the paper we establish some new results depending on the comparative growth properties of composite entire or meromorphic functions using relative  $L^*$ -order and relative  $L^*$ -lower order as compared to their corresponding left and right factors.

**Keywords:** Entire function, meromorphic function, composition, growth, relative  $L^*$ -order, relative  $L^*$ -lower order, slowly changing function.

## 1 Introduction, Definitions and Notations.

We denote by  $\mathbb{C}$  the set of all finite complex numbers. Let *f* be a meromorphic function defined on  $\mathbb{C}$ . We use the standard notations and definitions in the theory of entire and meromorphic functions which are available in [2] and [7]. In the sequel we use the following notation :  $\log^{[k]} x = \log(\log^{[k-1]} x)$  for k = 1, 2, 3, ... and  $\log^{[0]} x = x$ .

The following definition is well known.

**Definition 1.** The order  $\rho_f$  and lower order  $\lambda_f$  of an entire function f are defined as

$$\rho_f = \limsup_{r \to \infty} \frac{\log^{[2]} M_f(r)}{\log r} \text{ and } \lambda_f = \liminf_{r \to \infty} \frac{\log^{[2]} M_f(r)}{\log r}$$

when f is meromorphic, one can easily verify that

$$\rho_{f} = \limsup_{r \to \infty} \frac{\log T_{f}(r)}{\log r} \text{ and } \lambda_{f} = \liminf_{r \to \infty} \frac{\log T_{f}(r)}{\log r}$$

Let  $L \equiv L(r)$  be a positive continuous function increasing slowly *i.e.*,  $L(ar) \sim L(r)$  as  $r \to \infty$  for every positive constant *a. Singh and Barker* [5] defined it in the following way.

**Definition 2.** [5] A positive continuous function L(r) is called a slowly changing function if for  $\varepsilon(>0)$ ,

$$\frac{1}{k^{\varepsilon}} \leq \frac{L(kr)}{L(r)} \leq k^{\varepsilon} \text{ for } r \geq r(\varepsilon) \text{ and}$$

<sup>\*</sup> Corresponding author e-mail: sanjib\_kr\_datta@yahoo.co.in



uniformly for  $k (\geq 1)$ . If further, L(r) is differentiable, the above condition is equivalent to

$$\lim_{r \to \infty} \frac{rL'(r)}{L(r)} = 0$$

Somasundaram and Thamizharasi [6] introduced the notions of *L*-order and *L*-lower order for entire functions. The more generalised concept for *L*-order and *L*-lower order for entire and meromorphic functions are  $L^*$ -order and  $L^*$ -lower order respectively. Their definitions are as follows:

**Definition 3.** [6] The  $L^*$ -order  $\rho_f^{L^*}$  and the  $L^*$ -lower order  $\lambda_f^{L^*}$  of an entire function f are defined as

$$\rho_f^{L^*} = \limsup_{r \to \infty} \frac{\log^{[2]} M_f(r)}{\log \left[ re^{L(r)} \right]} \text{ and } \lambda_f^{L^*} = \liminf_{r \to \infty} \frac{\log^{[2]} M_f(r)}{\log \left[ re^{L(r)} \right]}.$$

when f is meromorphic, one can easily verify that

$$\rho_{f}^{L^{*}} = \limsup_{r \to \infty} \frac{\log T_{f}(r)}{\log \left[ re^{L(r)} \right]} \text{ and } \lambda_{f}^{L^{*}} = \liminf_{r \to \infty} \frac{\log T_{f}(r)}{\log \left[ re^{L(r)} \right]}.$$

For an entire function g, the Nevanlinna's characteristic function  $T_g(r) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |g(re^{i\theta})| d\theta$  where  $\log^+ x = \max(0, \log x)$  for x > 0. If g is non-constant then  $T_g(r)$  is strictly increasing and continuous and its inverse  $T_g^{-1}: (T_g(0), \infty) \to (0, \infty)$  exists and is such that  $\lim_{s \to \infty} T_g^{-1}(s) = \infty$ .

Lahiri and Banerjee [4] introduced the definition of relative order of a meromorphic function with respect to an entire function which is as follows.

**Definition 4.** [4] Let f be meromorphic and g be entire. The relative order of f with respect to g denoted by  $\rho_g(f)$  is defined as

$$\rho_{g}(f) = \inf \left\{ \mu > 0 : T_{f}(r) < T_{g}(r^{\mu}) \text{ for all sufficiently large } r \right\}$$
$$= \limsup_{r \to \infty} \frac{\log T_{g}^{-1} T_{f}(r)}{\log r}.$$

The definition coincides with the classical one [4] if  $g(z) = \exp z$ .

Similarly one can define the relative lower order of a meromorphic function f with respect to an entire g denoted by  $\lambda_g(f)$  in the following manner :

$$\lambda_g(f) = \liminf_{r \to \infty} \frac{\log T_g^{-1} T_f(r)}{\log r}.$$

In the line of Somasundaram and Thamizharasi [6] and Lahiri and Banerjee [4] one may define the relative  $L^*$ -order and relative  $L^*$ -lower order of a meromorphic function f with respect to an entire function g in the following manner.

**Definition 5.** The relative  $L^*$ -order  $\rho_g^{L^*}(f)$  and the relative  $L^*$ -lower order  $\lambda_g^{L^*}(f)$  of a meromorphic function f with respect to an entire function g are defined by

$$\rho_{g}^{L^{*}}(f) = \limsup_{r \to \infty} \frac{\log T_{g}^{-1} T_{f}(r)}{\log \left[ r e^{L(r)} \right]} \text{ and } \lambda_{g}^{L^{*}}(f) = \liminf_{r \to \infty} \frac{\log T_{g}^{-1} T_{f}(r)}{\log \left[ r e^{L(r)} \right]}.$$

In this paper we study some growth properties of composition of entire and meromorphic functions with respect to relative  $L^*$ -order and relative  $L^*$ -lower order as compared to the corresponding left and right factors.

<sup>© 2017</sup> BISKA Bilisim Technology



In this section we present a lemma which will be needed in the sequel.

**Lemma 1.** [1] Let f be meromorphic and g be entire and suppose that  $0 < \mu < \rho_g \leq \infty$ . Then for a sequence of values of r tending to infinity,

$$T_{f \circ g}(r) \geq T_f\left(\exp\left(r\right)^{\mu}\right)$$
.

## **3** Theorems

In this section we present the main results of the paper.

**Theorem 1.** Let f be a meromorphic function and g, h be entire such that  $0 < \lambda_h^{L^*}(f) \le \rho_h^{L^*}(f) < \infty$ . Then for any A > 0,

$$\limsup_{r \to \infty} \frac{\log^{[2]} T_h^{-1} T_{f \circ g} \left( \exp\left(r^A\right) \right)}{\log T_h^{-1} T_f \left( \exp\left(r^\mu\right) \right) + K \left(r, A; L\right)} = \infty ,$$

where  $0 < \mu < \rho_g$  and

$$K(r,A;L) = \begin{cases} 0 \text{ if } r^{\mu} = o\left\{L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right)\right\} \\ as \ r \to \infty \\ L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right) \text{ otherwise }. \end{cases}$$

*Proof.* Let  $0 < \mu < \mu' < \rho_g$ . Since  $T_h^{-1}$  is an increasing functions, from the definition of relative  $L^*$ -lower order we obtain in view of Lemma 1, for a sequence of values of *r* tending to infinity that

$$\begin{split} \log T_{h}^{-1}T_{f\circ g}\left(\exp\left(r^{A}\right)\right) &\geq \log T_{h}^{-1}T_{f}\left(\exp\left(\exp\left(r^{A}\right)\right)^{\mu'}\right) \\ &\geq \left(\lambda_{h}^{L^{*}}\left(f\right) - \varepsilon\right) \cdot \log\left\{\exp\left(\exp\left(r^{A}\right)\right)^{\mu'} \cdot \exp L\left(\exp\left(\exp\left(r^{A}\right)\right)^{\mu'}\right)\right\} \\ &\geq \left(\lambda_{h}^{L^{*}}\left(f\right) - \varepsilon\right) \cdot \left\{\left(\exp\left(r^{A}\right)\right)^{\mu'} + L\left(\exp\left(\exp\left(r^{A}\right)\right)^{\mu'}\right)\right\} \\ &\geq \left(\lambda_{h}^{L^{*}}\left(f\right) - \varepsilon\right) \cdot \left\{\left(\exp\left(r^{A}\right)\right)^{\mu'} \left(1 + \frac{L\left(\exp\left(\exp\left(r^{A}\right)\right)^{\mu'}\right)}{\left(\exp\left(r^{A}\right)\right)^{\mu'}}\right)\right\} \right\} \\ &\log^{\left[2\right]}T_{h}^{-1}T_{f\circ g}\left(\exp\left(r^{A}\right)\right) \geq O\left(1\right) + \mu' \log \exp\left(r^{A}\right) + \log\left\{1 + \frac{L\left(\exp\left(\exp\left(r^{A}\right)\right)^{\mu'}\right)}{\left(\exp\left(r^{A}\right)\right)^{\mu'}}\right\} \\ &\geq O\left(1\right) + \mu' r^{A} + \log\left\{1 + \frac{L\left(\exp\left(\exp\left(r^{A}\right)\right)^{\mu'}\right)}{\left(\exp\left(r^{A}\right)\right)^{\mu'}}\right\} \\ &\geq O\left(1\right) + \mu' r^{A} + \log\left[1 + \frac{L\left(\exp\left(\exp\left(\mu' r^{A}\right)\right)\right)}{\exp\left(\mu' r^{A}\right)}\right] \\ &\geq O\left(1\right) + \mu' r^{A} + L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right) - \log\left[\exp\left\{L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right)\right)\right] \\ &\quad + \log\left[1 + \frac{L\left(\exp\left(\exp\left(\mu' r^{A}\right)\right)\right)}{\exp\left(\mu' r^{A}\right)}\right] \end{split}$$

$$\log^{[2]} T_{h}^{-1} T_{f \circ g} \left( \exp \left( r^{A} \right) \right) \ge O(1) + \mu' r^{A} + L \left( \exp \left( \exp \left( \mu r^{A} \right) \right) \right) + \log \left[ \frac{1}{\exp \left\{ L \left( \exp \left( \exp \left( \mu r^{A} \right) \right) \right) \right\}} + \frac{L \left( \exp \left( \exp \left( \mu r^{A} \right) \right) \right)}{\exp \left\{ L \left( \exp \left( \exp \left( \mu r^{A} \right) \right) \right) \right\} \cdot \exp \left( \mu' r^{A} \right)} \right] \\ \ge O(1) + \mu' r^{(A-\mu)} \cdot r^{\mu} + L \left( \exp \left( \exp \left( \mu r^{A} \right) \right) \right).$$
(1)

Again we have for all sufficiently large values of r that

$$\begin{split} \log T_h^{-1} T_f \left( \exp\left(r^{\mu}\right) \right) &\leq \left( \rho_h^{L^*} \left(f\right) + \varepsilon \right) \log \left\{ \exp\left(r^{\mu}\right) e^{L(\exp\left(r^{\mu}\right))} \right\} \\ &\leq \left( \rho_h^{L^*} \left(f\right) + \varepsilon \right) \left\{ \log \exp\left(r^{\mu}\right) + L(\exp\left(r^{\mu}\right)) \right\} \\ &\leq \left( \rho_h^{L^*} \left(f\right) + \varepsilon \right) \left\{ r^{\mu} + L(\exp\left(r^{\mu}\right)) \right\}. \end{split}$$

Thus,

$$\frac{\log T_h^{-1} T_f\left(\exp\left(r^{\mu}\right)\right) - \left(\rho_h^{L^*}\left(f\right) + \varepsilon\right) L\left(\exp\left(r^{\mu}\right)\right)}{\left(\rho_h^{L^*}\left(f\right) + \varepsilon\right)} \le r^{\mu} .$$
<sup>(2)</sup>

Now from (1) and (2) it follows for a sequence of values of *r* tending to infinity that

$$\log^{[2]} T_h^{-1} T_{f \circ g} \left( \exp\left(r^A\right) \right) \ge O\left(1\right) + \left( \frac{\mu' r^{(A-\mu)}}{\rho_h^{L^*}(f) + \varepsilon} \right) \left[ \log T_h^{-1} T_f \left( \exp\left(r^\mu\right) \right) - \left( \rho_h^{L^*}(f) + \varepsilon \right) L\left( \exp\left(r^\mu\right) \right) \right] + L\left( \exp\left(\exp\left(\mu r^A\right) \right) \right).$$
(3)

Therefore

$$\frac{\log^{[2]} T_h^{-1} T_{f \circ g}\left(\exp\left(r^A\right)\right)}{\log T_h^{-1} T_f\left(\exp\left(r^\mu\right)\right)} \ge \frac{L\left(\exp\left(\exp\left(\mu r^A\right)\right)\right) + O(1)}{\log T_h^{-1} T_f\left(\exp\left(r^\mu\right)\right)} + \frac{\mu' r^{(A-\mu)}}{\rho_h^{L^*}(f) + \varepsilon} \left\{1 - \frac{\left(\rho_h^{L^*}(f) + \varepsilon\right) L(\exp\left(r^\mu\right))}{\log T_h^{-1} T_f\left(\exp\left(r^\mu\right)\right)}\right\}.$$
 (4)

Again from (3) we get for a sequence of values of r tending to infinity that

$$\begin{aligned} \frac{\log^{[2]} T_h^{-1} T_{f \circ g} \left( \exp \left( r^A \right) \right)}{\log T_h^{-1} T_f \left( \exp \left( r^\mu \right) \right) + L \left( \exp \left( \exp \left( \mu r^A \right) \right) \right)} &\geq \frac{O(1) - \mu' r^{(A-\mu)} L \left( \exp \left( r^\mu \right) \right)}{\log T_h^{-1} T_f \left( \exp \left( r^\mu \right) \right) + L \left( \exp \left( \exp \left( \mu r^A \right) \right) \right)} \\ &+ \frac{\left( \frac{\mu' r^{(A-\mu)}}{\rho_h^{L^*}(f) + \varepsilon} \right) \log T_h^{-1} T_f \left( \exp \left( r^\mu \right) \right)}{\log T_h^{-1} T_f \left( \exp \left( r^\mu \right) \right) + L \left( \exp \left( \exp \left( \mu r^A \right) \right) \right)} \\ &+ \frac{L \left( \exp \left( \exp \left( \mu r^A \right) \right) \right)}{\log T_h^{-1} T_f \left( \exp \left( r^\mu \right) \right) + L \left( \exp \left( \exp \left( \mu r^A \right) \right) \right)}. \end{aligned}$$

Therefore

$$\frac{\log^{[2]} T_{h}^{-1} T_{f \circ g} \left( \exp\left(r^{A}\right) \right)}{\log T_{h}^{-1} T_{f} \left( \exp\left(r^{\mu}\right) \right) + L \left( \exp\left(\exp\left(\mu r^{A}\right) \right) \right)} \geq \frac{\frac{O(1) - \mu' r^{(A-\mu)} L (\exp(r^{\mu}))}{L (\exp(\exp\left(\mu r^{A}\right)))}}{\frac{\log T_{h}^{-1} T_{f} \left(\exp\left(\mu r^{A}\right) \right)}{L (\exp(\exp\left(\mu r^{A}\right)))} + 1} + \frac{\left(\frac{\mu' r^{(A-\mu)}}{\rho_{h}^{L^{*}}(f) + \varepsilon}\right) \log T_{h}^{-1} T_{f} \left(\exp\left(r^{\mu}\right)\right)}{1 + \frac{L (\exp(\exp\left(\mu r^{A}\right)))}{\log T_{h}^{-1} T_{f} (\exp(r^{\mu}))}} + \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp(r^{\mu}))}{L (\exp(\exp\left(\mu r^{A}\right)))}} \left( (5) \right)}{1 + \frac{L (\exp(r^{\mu}))}{\log T_{h}^{-1} T_{f} (\exp(r^{\mu}))}} + \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp(r^{\mu}))}{L (\exp(\exp\left(\mu r^{A}\right)))}} \right)} \left( (5) \right) = \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp(r^{\mu}))}{\log T_{h}^{-1} T_{f} (\exp(r^{\mu}))}} + \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp(r^{\mu}))}{L (\exp\left(\exp\left(\mu r^{A}\right)))}} \right)} + \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp(r^{\mu}))}{L (\exp\left(\exp\left(\mu r^{A}\right)))}}} \right)} \right) + \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp(r^{\mu}))}{L (\exp\left(\exp\left(\mu r^{A}\right)))}}} \right)} + \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp\left(\mu r^{A}\right))}{L (\exp\left(\exp\left(\mu r^{A}\right)))}}} \right)} \left( \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp\left(\mu r^{A}\right))}}{L (\exp\left(\exp\left(\mu r^{A}\right)))}} \right)} \right) + \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp\left(\mu r^{A}\right))}{L (\exp\left(\exp\left(\mu r^{A}\right)))}}} \right)} \left( \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp\left(\mu r^{A}\right))}}{L (\exp\left(\exp\left(\mu r^{A}\right))}\right)}} \right)} \right) + \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp\left(\mu r^{A}\right)}}{L (\exp\left(\exp\left(\mu r^{A}\right)))}}} \right)} \right)} + \frac{1}{1 + \frac{1}{1 + \frac{\log T_{h}^{-1} T_{f} (\exp\left(\mu r^{A}\right))}}{L (\exp\left(\exp\left(\mu r^{A}\right))}\right)}} \right)} \left( \frac{1}{1 + \frac{1}{1$$

© 2017 BISKA Bilisim Technology

*Case 1.* If  $r^{\mu} = o\left\{L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right)\right\}$  then it follows from (4) that

$$\limsup_{r \to \infty} \frac{\log^{[2]} T_h^{-1} T_{f \circ g}\left(\exp\left(r^A\right)\right)}{\log T_h^{-1} T_f\left(\exp\left(r^\mu\right)\right)} = \infty .$$

*Case 2.*  $r^{\mu} \neq o\left\{L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right)\right\}$  then two sub cases may arise. **Case 2.1** If  $L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right) = o\left\{\log T_{h}^{-1}T_{f}\left(\exp\left(r^{\mu}\right)\right)\right\}$ , then we get from (5) that

$$\limsup_{r \to \infty} \frac{\log^{[2]} T_h^{-1} T_{f \circ g}\left(\exp\left(r^A\right)\right)}{\log T_h^{-1} T_f\left(\exp\left(r^\mu\right)\right) + L\left(\exp\left(\exp\left(\mu r^A\right)\right)\right)} = \infty$$

**Case 2.2** If  $L\left(\exp\left(\exp\left(\mu r^{\rho_g^{L^*}}\right)\right)\right) \sim \log T_h^{-1}T_f\left(\exp\left(r^{\mu}\right)\right)$  then

$$\lim_{r \to \infty} \frac{L\left\{\exp\left(\exp\left(\mu r^{A}\right)\right)\right\}}{\log T_{h}^{-1}T_{f}\left(\exp\left(r^{\mu}\right)\right)} = 1$$

and we obtain from (5) that

$$\limsup_{r \to \infty} \frac{\log^{[2]} T_h^{-1} T_{f \circ g} \left( \exp\left(r^A\right) \right)}{\log T_h^{-1} T_f \left( \exp\left(r^\mu\right) \right) + L \left( \exp\left(\exp\left(\mu r^A\right) \right) \right)} = \infty$$

Combining Case I and Case II we may obtain that

$$\limsup_{r \to \infty} \frac{\log^{[2]} T_h^{-1} T_{f \circ g}\left(\exp\left(r^A\right)\right)}{\log T_h^{-1} T_f\left(\exp\left(r^\mu\right)\right) + L\left(\exp\left(\exp\left(\mu r^A\right)\right)\right)} = \infty ,$$

where

$$K(r,A;L) = \begin{cases} 0 \text{ if } r^{\mu} = o\left\{L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right)\right\} \\ \text{ as } r \to \infty \\ L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right) \text{ otherwise }. \end{cases}$$

This proves the theorem.

**Theorem 2.** Let f be a meromorphic function and g, h be entire such that  $\lambda_h^{L^*}(f) > 0$  and  $\rho_h^{L^*}(g) < \infty$ . Then for any A > 0

$$\limsup_{r \to \infty} \frac{\log^{[2]} T_h^{-1} T_{f \circ g} \left( \exp\left(r^A\right) \right)}{\log T_h^{-1} T_g \left( \exp\left(r^\mu\right) \right) + K\left(r, A; L\right)} = \infty$$

where  $0 < \mu < \rho_g$  and

$$K(r,A;L) = \begin{cases} 0 \text{ if } r^{\mu} = o\left\{L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right)\right\} \\ as \ r \to \infty \\ L\left(\exp\left(\exp\left(\mu r^{A}\right)\right)\right) \text{ otherwise }. \end{cases}$$

The proof is omitted because it can be carried out in the line of Theorem 1.

**Theorem 3.** Let f be meromorphic and g and h be any two entire functions such that  $0 < \lambda_h^{L^*}(f \circ g) \le \rho_h^{L^*}(f \circ g) < \infty$ and  $0 < \lambda_h^{L^*}(f) \le \rho_h^{L^*}(f) < \infty$ . If  $L(r^A) = o\{\log T_h^{-1}T_f(r^A)\}$  as  $r \to \infty$  then for any positive number A,

$$\frac{\lambda_{h}^{L^{*}}(f \circ g)}{A\rho_{h}^{L^{*}}(f)} \leq \liminf_{r \to \infty} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r^{A}) + L(r^{A})} \leq \frac{\lambda_{h}^{L^{*}}(f \circ g)}{A\lambda_{h}^{L^{*}}(f)} \leq \limsup_{r \to \infty} \frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r^{A}) + L(r^{A})} \leq \frac{\rho_{h}^{L^{*}}(f \circ g)}{A\lambda_{h}^{L^{*}}(f)}$$

© 2017 BISKA Bilisim Technology

17



*Proof.* From the definition of relative  $L^*$ -order and relative  $L^*$ -lower order of a meromorphic function with respect to an entire function we have for arbitrary positive  $\varepsilon$  and for all sufficiently large values of r that

$$\log T_{h}^{-1}T_{f\circ g}\left(r\right) \geq \left(\lambda_{h}^{L^{*}}\left(f\circ g\right)-\varepsilon\right)\log\left\{re^{L\left(r\right)}\right\}$$
$$\geq \left(\lambda_{h}^{L^{*}}\left(f\circ g\right)-\varepsilon\right)\left\{\log r+L\left(r\right)\right\}$$
$$\geq \left(\lambda_{h}^{L^{*}}\left(f\circ g\right)-\varepsilon\right)\left\{\log r+\frac{1}{A}L\left(r^{A}\right)\right\}+\left(\lambda_{h}^{L^{*}}\left(f\circ g\right)-\varepsilon\right)\left\{L\left(r\right)-\frac{1}{A}L\left(r^{A}\right)\right\}$$
(6)

and

$$\begin{split} \log T_h^{-1} T_f\left(r^A\right) &\leq \left(\rho_h^{L^*}\left(f\right) + \varepsilon\right) \log\left\{r^A e^{L\left(r^A\right)}\right\} \\ &\leq \left(\rho_h^{L^*}\left(f\right) + \varepsilon\right)\left\{A \log r + L\left(r^A\right)\right\}. \end{split}$$

So we have,

$$\frac{\log T_h^{-1} T_f\left(r^A\right)}{A\left(\rho_h^{L^*}\left(f\right)+\varepsilon\right)} \le \log r + \frac{1}{A} L\left(r^A\right). \tag{7}$$

Now from (6) and (7) it follows for all sufficiently large values of r that

$$\log T_h^{-1}T_{f\circ g}\left(r\right) \geq \frac{\left(\lambda_h^{L^*}\left(f\circ g\right) - \varepsilon\right)}{A\left(\rho_h^{L^*}\left(f\right) + \varepsilon\right)}\log T_h^{-1}T_f\left(r^A\right) + \left(\lambda_h^{L^*}\left(f\circ g\right) - \varepsilon\right)\left\{L\left(r\right) - \frac{1}{A}L\left(r^A\right)\right\},$$

Therefore we write

$$\frac{\log T_{h}^{-1}T_{f\circ g}(r)}{\log T_{h}^{-1}T_{f}(r^{A}) + L(r^{A})} \geq \frac{\left(\lambda_{h}^{L^{*}}(f\circ g) - \varepsilon\right)}{A\left(\rho_{h}^{L^{*}}(f) + \varepsilon\right)} \cdot \frac{\log T_{h}^{-1}T_{f}\left(r^{A}\right)}{\log T_{h}^{-1}T_{f}\left(r^{A}\right) + L(r^{A})} + \frac{\left(\lambda_{h}^{L^{*}}(f\circ g) - \varepsilon\right)\left\{L(r) - \frac{1}{A}L\left(r^{A}\right)\right\}}{\log T_{h}^{-1}T_{f}\left(r^{A}\right) + L(r^{A})}$$

Finally

$$\frac{\log T_{h}^{-1} T_{f \circ g}(r)}{\log T_{h}^{-1} T_{f}(r^{A}) + L(r^{A})} \geq \frac{\frac{\lambda_{h}^{L^{*}}(f \circ g) - \varepsilon}{A(\rho_{h}^{L^{*}}(f) + \varepsilon)}}{1 + \frac{L(r^{A})}{\log T_{h}^{-1} T_{f}(r^{A})}} + \frac{\left(\lambda_{h}^{L^{*}}(f \circ g) - \varepsilon\right) \left\{\frac{L(r)}{L(r^{A})} - \frac{1}{A}\right\}}{1 + \frac{\log T_{h}^{-1} T_{f}(r^{A})}{L(r^{A})}} .$$
(8)

Since  $L(r^A) = o\{\log T_h^{-1}T_f(r^A)\}$  as  $r \to \infty$ , it follows from (8) that

$$\liminf_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \ge \frac{\left(\lambda_h^{L^*}(f \circ g) - \varepsilon\right)}{A\left(\rho_h^{L^*}(f) + \varepsilon\right)} \,. \tag{9}$$

As  $\varepsilon(>0)$  is arbitrary, we get from (9) that

$$\liminf_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \ge \frac{\lambda_h^{L^*}(f \circ g)}{A \rho_h^{L^*}(f)} .$$
(10)

#### © 2017 BISKA Bilisim Technology

Again for a sequence of values of *r* tending to infinity,

$$\log T_{h}^{-1} T_{f \circ g}(r) \leq \left(\lambda_{h}^{L^{*}}(f \circ g) + \varepsilon\right) \log \left\{re^{L(r)}\right\}$$
$$\leq \left(\lambda_{h}^{L^{*}}(f \circ g) + \varepsilon\right) \left\{\log r + \frac{1}{A}L\left(r^{A}\right)\right\} + \left(\lambda_{h}^{L^{*}}(f \circ g) + \varepsilon\right) \left\{L(r) - \frac{1}{A}L\left(r^{A}\right)\right\}$$
(11)

and for all sufficiently large values of r,

$$\log T_h^{-1} T_f(r^A) \ge \left(\lambda_h^{L^*}(f) - \varepsilon\right) \log \left\{r^A e^{L(r^A)}\right\}$$
$$\ge \left(\lambda_h^{L^*}(f) - \varepsilon\right) \left\{A \log r + L(r^A)\right\}.$$

We obtain,

$$\frac{\log T_h^{-1} T_f\left(r^A\right)}{A\left(\lambda_h^{L^*}\left(f\right) - \varepsilon\right)} \ge \log r + \frac{1}{A} L\left(r^A\right).$$
(12)

Combining (11) and (12) we get for a sequence of values of r tending to infinity that

$$\log T_{h}^{-1}T_{f\circ g}\left(r\right) \leq \frac{\left(\lambda_{h}^{L^{*}}\left(f\circ g\right)+\varepsilon\right)}{A\left(\lambda_{h}^{L^{*}}\left(f\right)-\varepsilon\right)}\log T_{h}^{-1}T_{f}\left(r^{A}\right)+\left(\lambda_{h}^{L^{*}}\left(f\circ g\right)+\varepsilon\right)\left\{L\left(r\right)-\frac{1}{A}L\left(r^{A}\right)\right\}$$

That is,

$$\frac{\log T_h^{-1}T_{f\circ g}\left(r\right)}{\log T_h^{-1}T_f\left(r^A\right) + L\left(r^A\right)} \leq \frac{\lambda_h^{L^*}\left(f\circ g\right) + \varepsilon}{A\left(\lambda_h^{L^*}\left(f\right) - \varepsilon\right)} \cdot \frac{\log T_h^{-1}T_f\left(r^A\right)}{\log T_h^{-1}T_f\left(r^A\right) + L\left(r^A\right)} + \frac{\left(\lambda_h^{L^*}\left(f\circ g\right) + \varepsilon\right)\left\{L\left(r\right) - \frac{1}{A}L\left(r^A\right)\right\}}{\log T_h^{-1}T_f\left(r^A\right) + L\left(r^A\right)}.$$

Therefore,

$$\frac{\log T_{h}^{-1}T_{f\circ g}(r)}{\log T_{h}^{-1}T_{f}(r^{A}) + L(r^{A})} \leq \frac{\frac{\lambda_{h}^{L^{*}}(f\circ g) + \varepsilon}{A(\lambda_{h}^{L^{*}}(f) - \varepsilon)}}{1 + \frac{L(r^{A})}{\log T_{h}^{-1}T_{f}(r^{A})}} + \frac{\left(\lambda_{h}^{L^{*}}(f\circ g) + \varepsilon\right)\left\{\frac{L(r)}{L(r^{A})} - \frac{1}{A}\right\}}{1 + \frac{\log T_{h}^{-1}T_{f}(r^{A})}{L(r^{A})}} .$$
(13)

As  $L(r^{A}) = o\left\{\log T_{h}^{-1}T_{f}(r^{A})\right\}$  as  $r \to \infty$  we get from (13) that

$$\liminf_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\lambda_h^{L^*}(f \circ g) + \varepsilon}{A\left(\lambda_h^{L^*}(f) - \varepsilon\right)} \,. \tag{14}$$

Since  $\varepsilon$  (> 0) is arbitrary, it follows from (14) that

$$\liminf_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\lambda_h^{L^*}(f \circ g)}{A \lambda_h^{L^*}(f)} .$$
(15)

Also for a sequence of values of r tending to infinity,

$$\begin{split} \log T_h^{-1} T_f\left(r^A\right) &\leq \left(\lambda_h^{L^*}\left(f\right) + \varepsilon\right) \log\left\{r^A e^{L\left(r^A\right)}\right\} \\ &\leq \left(\lambda_h^{L^*}\left(f\right) + \varepsilon\right)\left\{A \log r + L\left(r^A\right)\right\}, \end{split}$$

19



And we have,

*i.e.*, 
$$\frac{\log T_h^{-1} T_f\left(r^A\right)}{A\left(\lambda_h^{L^*}\left(f\right) + \varepsilon\right)} \le \log r + \frac{1}{A}L\left(r^A\right)$$
(16)

Now from (6) and (16) we obtain for a sequence of values of r tending to infinity that

$$\log T_h^{-1}T_{f\circ g}\left(r\right) \geq \frac{\left(\lambda_h^{L^*}\left(f\circ g\right) - \varepsilon\right)}{A\left(\lambda_h^{L^*}\left(f\right) + \varepsilon\right)}\log T_h^{-1}T_f\left(r^A\right) + \left(\lambda_h^{L^*}\left(f\circ g\right) - \varepsilon\right)\left\{L\left(r\right) - \frac{1}{A}L\left(r^A\right)\right\}.$$

That is,

$$\frac{\log T_{h}^{-1}T_{f\circ g}(r)}{\log T_{h}^{-1}T_{f}(r^{A}) + L(r^{A})} \geq \frac{\lambda_{h}^{L^{*}}(f\circ g) - \varepsilon}{A\left(\lambda_{h}^{L^{*}}(f) + \varepsilon\right)} \cdot \frac{\log M_{h}^{-1}M_{f}\left(r^{A}\right)}{\log T_{h}^{-1}T_{f}\left(r^{A}\right) + L(r^{A})} + \frac{\left(\lambda_{h}^{L^{*}}(f\circ g) - \varepsilon\right)\left\{L(r) - \frac{1}{A}L\left(r^{A}\right)\right\}}{\log T_{h}^{-1}T_{f}\left(r^{A}\right) + L(r^{A})}.$$

So we have

$$\frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \ge \frac{\frac{\lambda_h^{L^*}(f \circ g) - \varepsilon}{A(\lambda_h^{L^*}(f) + \varepsilon)}}{1 + \frac{L(r^A)}{\log T_h^{-1} T_f(r^A)}} + \frac{\left(\lambda_h^{L^*}(f \circ g) - \varepsilon\right) \left\{\frac{L(r)}{L(r^A)} - \frac{1}{A}\right\}}{1 + \frac{\log T_h^{-1} T_f(r^A)}{L(r^A)}} \,. \tag{17}$$

In view of the condition  $L(r^A) = o\{\log T_h^{-1}T_f(r^A)\}$  as  $r \to \infty$  we obtain from (17) that

$$\limsup_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \ge \frac{\lambda_h^{L^*}(f \circ g) - \varepsilon}{A\left(\lambda_h^{L^*}(f) + \varepsilon\right)} .$$
(18)

Since  $\varepsilon$  (> 0) is arbitrary, it follows from (18) that

$$\limsup_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \ge \frac{\lambda_h^{L^*}(f \circ g)}{A\lambda_h^{L^*}(f)} .$$
(19)

Also for all sufficiently large values of *r*,

$$\log T_{h}^{-1}T_{f\circ g}\left(r\right) \leq \left(\rho_{h}^{L^{*}}\left(f\circ g\right) + \varepsilon\right) \log\left\{re^{L\left(r\right)}\right\}$$

$$\leq \left(\rho_{h}^{L^{*}}\left(f\circ g\right) + \varepsilon\right) \left\{\log r + L\left(r\right)\right\}$$

$$\leq \left(\rho_{h}^{L^{*}}\left(f\circ g\right) + \varepsilon\right) \left\{\log r + \frac{1}{A}L\left(r^{A}\right)\right\} + \left(\rho_{h}^{L^{*}}\left(f\circ g\right) + \varepsilon\right) \left\{L\left(r\right) - \frac{1}{A}L\left(r^{A}\right)\right\}.$$
(20)

So from (12) and (20) it follows for all sufficiently large values of r that

$$\log T_h^{-1}T_{f\circ g}(r) \leq \frac{\left(\rho_h^{L^*}(f\circ g) + \varepsilon\right)}{A\left(\lambda_h^{L^*}(f) - \varepsilon\right)}\log T_h^{-1}T_f\left(r^A\right) + L\left(r^A\right) + \left(\rho_h^{L^*}(f\circ g) + \varepsilon\right)\left\{L(r) - \frac{1}{A}L\left(r^A\right)\right\}.$$

That is,

$$\frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\rho_h^{L^*}(f \circ g) + \varepsilon}{A\left(\lambda_h^{L^*}(f) - \varepsilon\right)} \cdot \frac{\log T_h^{-1} T_f\left(r^A\right)}{\log T_h^{-1} T_f(r^A) + L(r^A)} + \frac{\left(\rho_h^{L^*}(f \circ g) + \varepsilon\right)\left\{L(r) - \frac{1}{A}L\left(r^A\right)\right\}}{\log T_h^{-1} T_f(r^A) + L(r^A)}.$$

© 2017 BISKA Bilisim Technology

So we have,

$$\frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\frac{\rho_h^{L^*}(f \circ g) + \varepsilon}{A(\lambda_h^{L^*}(f) - \varepsilon)}}{1 + \frac{L(r^A)}{\log T_h^{-1} T_f(r^A)}} + \frac{\left(\rho_h^{L^*}(f \circ g) + \varepsilon\right) \left\{\frac{L(r)}{L(r^A)} - \frac{1}{A}\right\}}{1 + \frac{\log T_h^{-1} T_f(r^A)}{L(r^A)}} .$$
(21)

Using  $L(r^A) = o\{\log T_h^{-1}T_f(r^A)\}$  as  $r \to \infty$  we obtain from (21) that

$$\limsup_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\rho_h^{L^*}(f \circ g) + \varepsilon}{A\left(\lambda_h^{L^*}(f) - \varepsilon\right)} \,. \tag{22}$$

As  $\varepsilon$  (> 0) is arbitrary, it follows from (22) that

$$\limsup_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\rho_h^{L^*}(f \circ g)}{A \lambda_h^{L^*}(f)} .$$
(23)

Thus the theorem follows from (10), (15), (19) and (23).

Similarly in view of Theorem 3, we may state the following theorem without proof for the right factor *g* of the composite function  $f \circ g$ .

**Theorem 4.** Let f be a meromorphic and g and h be any two entire functions such that  $0 < \lambda_h^{L^*}(f \circ g) \le \rho_h^{L^*}(f \circ g) < \infty$ and  $0 < \lambda_h^{L^*}(g) \le \rho_h^{L^*}(g) < \infty$ . If  $L(r^A) = o\{\log T_h^{-1}T_g(r^A)\}$  as  $r \to \infty$  then for any positive number A,

$$\frac{\lambda_{h}^{L^{*}}(f \circ g)}{A\rho_{h}^{L^{*}}(g)} \leq \liminf_{r \to \infty} \frac{\log T_{h}^{-1} T_{f \circ g}\left(r\right)}{\log T_{h}^{-1} T_{g}\left(r^{A}\right) + L\left(r^{A}\right)} \leq \frac{\lambda_{h}^{L^{*}}\left(f \circ g\right)}{A\lambda_{h}^{L^{*}}\left(g\right)} \leq \limsup_{r \to \infty} \frac{\log T_{h}^{-1} T_{f \circ g}\left(r\right)}{\log T_{h}^{-1} T_{g}\left(r^{A}\right) + L\left(r^{A}\right)} \leq \frac{\rho_{h}^{L^{*}}\left(f \circ g\right)}{A\lambda_{h}^{L^{*}}\left(g\right)}$$

**Theorem 5.** Let f be a meromorphic and g and h be any two entire functions with  $0 < \rho_h^{L^*}(f \circ g) < \infty$  and  $0 < \rho_h^{L^*}(f) < \infty$ . If  $L(r^A) = o\{\log T_h^{-1}T_f(r^A)\}$  as  $r \to \infty$  then for any positive number A,

$$\liminf_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\rho_h^{L^*}(f \circ g)}{A \rho_h^{L^*}(f)} \le \limsup_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)}.$$

*Proof.* From the definition of  $\rho_h^{L^*}(f)$ , we get for a sequence of values of *r* tending to infinity that

$$\log T_{h}^{-1}T_{f}\left(r^{A}\right) \geq \left(\rho_{h}^{L^{*}}\left(f\right) - \varepsilon\right)\log\left\{r^{A}e^{L\left(r^{A}\right)}\right\}$$
$$\geq \left(\rho_{h}^{L^{*}}\left(f\right) - \varepsilon\right)\left\{A\log r + L\left(r^{A}\right)\right\}.$$

That is,

$$\frac{\log T_h^{-1} T_f\left(r^A\right)}{A\left(\rho_h^{L^*}\left(f\right) - \varepsilon\right)} \ge \log r + \frac{1}{A} L\left(r^A\right) . \tag{24}$$

Now from (20) and (24) it follows for a sequence of values of r tending to infinity that

$$\log T_h^{-1}T_{f\circ g}\left(r\right) \leq \frac{\left(\rho_h^{L^*}\left(f\circ g\right) + \varepsilon\right)}{A\left(\rho_h^{L^*}\left(f\right) - \varepsilon\right)}\log T_h^{-1}T_f\left(r^A\right) + \left(\rho_h^{L^*}\left(f\circ g\right) + \varepsilon\right)\left\{L\left(r\right) - \frac{1}{A}L\left(r^A\right)\right\}.$$

21



That is,

$$\frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\rho_h^{L^*}(f \circ g) + \varepsilon}{A\left(\rho_h^{L^*}(f) - \varepsilon\right)} \cdot \frac{\log T_h^{-1} T_f\left(r^A\right)}{\log T_h^{-1} T_f(r^A) + L(r^A)} + \frac{\left(\rho_h^{L^*}(f \circ g) + \varepsilon\right)\left\{L(r) - \frac{1}{A}L\left(r^A\right)\right\}}{\log T_h^{-1} T_f(r^A) + L(r^A)}.$$

So we have

$$\frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\frac{\rho_h^{L^*}(f \circ g) + \varepsilon}{A(\rho_h^{L^*}(f) - \varepsilon)}}{1 + \frac{L(r^A)}{\log T_h^{-1} T_f(r^A)}} + \frac{\left(\rho_h^{L^*}(f \circ g) + \varepsilon\right) \left\{\frac{L(r)}{L(r^A)} - \frac{1}{A}\right\}}{1 + \frac{\log T_h^{-1} T_f(r^A)}{L(r^A)}} \,. \tag{25}$$

Using  $L(r^A) = o\{\log T_h^{-1}T_f(r^A)\}$  as  $r \to \infty$  we obtain from (25) that

$$\liminf_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\rho_h^{L^*}(f \circ g) + \varepsilon}{A\left(\rho_h^{L^*}(f) - \varepsilon\right)} \,. \tag{26}$$

As  $\varepsilon$  (> 0) is arbitrary, it follows from (26) that

$$\liminf_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \le \frac{\rho_h^{L^*}(f \circ g)}{A \rho_h^{L^*}(f)} .$$
(27)

Again for a sequence of values of *r* tending to infinity,

$$\log T_{h}^{-1}T_{f\circ g}\left(r\right) \geq \left(\rho_{h}^{L^{*}}\left(f\circ g\right)-\varepsilon\right)\log\left\{re^{L\left(r\right)}\right\}$$
$$\geq \left(\rho_{h}^{L^{*}}\left(f\circ g\right)-\varepsilon\right)\left\{\log r+L\left(r\right)\right\}$$
$$\geq \left(\rho_{h}^{L^{*}}\left(f\circ g\right)-\varepsilon\right)\left\{\log r+\frac{1}{A}L\left(r^{A}\right)\right\}+\left(\rho_{h}^{L^{*}}\left(f\circ g\right)-\varepsilon\right)\left\{L\left(r\right)-\frac{1}{A}L\left(r^{A}\right)\right\}$$
(28)

So combining (7) and (28) we get for a sequence of values of *r* tending to infinity that

$$\log T_h^{-1}T_{f\circ g}\left(r\right) \geq \frac{\left(\rho_h^{L^*}\left(f\circ g\right) - \varepsilon\right)}{A\left(\rho_h^{L^*}\left(f\right) + \varepsilon\right)}\log T_h^{-1}T_f\left(r^A\right) + \left(\rho_h^{L^*}\left(f\circ g\right) - \varepsilon\right)\left\{L\left(r\right) - \frac{1}{A}L\left(r^A\right)\right\},$$

That is,

$$-\frac{\log T_{h}^{-1}T_{f\circ g}(r)}{\log T_{h}^{-1}T_{f}(r^{A})+L(r^{A})} \geq \frac{\left(\rho_{h}^{L^{*}}(f\circ g)-\varepsilon\right)}{A\left(\rho_{h}^{L^{*}}(f)+\varepsilon\right)} \cdot \frac{\log T_{h}^{-1}T_{f}\left(r^{A}\right)}{\log T_{h}^{-1}T_{f}\left(r^{A}\right)+L(r^{A})} + \frac{\left(\rho_{h}^{L^{*}}(f\circ g)-\varepsilon\right)\left\{L(r)-\frac{1}{A}L\left(r^{A}\right)\right\}}{\log T_{h}^{-1}T_{f}\left(r^{A}\right)+L(r^{A})}.$$

So we have,

$$\frac{\log T_{h}^{-1}T_{f\circ g}(r)}{\log T_{h}^{-1}T_{f}(r^{A}) + L(r^{A})} \geq \frac{\frac{\rho_{h}^{L^{*}}(f\circ g) - \varepsilon}{A(\rho_{h}^{L^{*}}(f) + \varepsilon)}}{1 + \frac{L(r^{A})}{\log T_{h}^{-1}T_{f}(r^{A})}} + \frac{\left(\rho_{h}^{L^{*}}(f\circ g) - \varepsilon\right)\left\{\frac{L(r)}{L(r^{A})} - \frac{1}{A}\right\}}{1 + \frac{\log T_{h}^{-1}T_{f}(r^{A})}{L(r^{A})}} .$$
(29)

Since  $L(r^A) = o\{\log T_h^{-1}T_f(r^A)\}$  as  $r \to \infty$ , it follows from (29) that

$$\limsup_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \ge \frac{\rho_h^{L^*}(f \circ g) - \varepsilon}{A\left(\rho_h^{L^*}(f) + \varepsilon\right)} \,. \tag{30}$$

<sup>© 2017</sup> BISKA Bilisim Technology

As  $\varepsilon$  (> 0) is arbitrary, we get from (30) that

$$\limsup_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r^A) + L(r^A)} \ge \frac{\rho_h^{L^*}(f \circ g)}{A \rho_h^{L^*}(f)} .$$
(31)

23

Thus the theorem follows from (27) and (31).

**Theorem 6.** Let f be a meromorphic and g and h be any two entire functions such that  $0 < \rho_h^{L^*}(f \circ g) < \infty$  and  $0 < \rho_h^{L^*}(g) < \infty$ . If  $L(r^A) = o\{\log T_h^{-1}T_g(r^A)\}$  as  $r \to \infty$  then for any positive number A,

$$\liminf_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_g(r^A) + L(r^A)} \le \frac{\rho_h^{L^*}(f \circ g)}{A \rho_h^{L^*}(g)} \le \limsup_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_g(r^A) + L(r^A)} .$$

The proof is omitted.

The following theorem is a natural consequence of Theorem 3 and Theorem 5.

**Theorem 7.** Let f be a meromorphic and g and h be any two entire functions such that  $0 < \lambda_h^{L^*}(f \circ g) \le \rho_h^{L^*}(f \circ g) < \infty$ and  $0 < \lambda_h^{L^*}(f) \le \rho_h^{L^*}(f) < \infty$ . If  $L(r^A) = o\{\log T_h^{-1}T_f(r^A)\}$  as  $r \to \infty$  then for any positive number A,

$$\begin{split} \frac{\lambda_{h}^{L^{*}}\left(f\circ g\right)}{A\rho_{h}^{L^{*}}\left(f\right)} &\leq \liminf_{r\to\infty} \frac{\log T_{h}^{-1}T_{f\circ g}\left(r\right)}{\log T_{h}^{-1}T_{f}\left(r^{A}\right) + L\left(r^{A}\right)} \leq \min\left\{\frac{\lambda_{h}^{L^{*}}\left(f\circ g\right)}{A\lambda_{h}^{L^{*}}\left(f\right)}, \frac{\rho_{h}^{L^{*}}\left(f\circ g\right)}{A\rho_{h}^{L^{*}}\left(f\right)}\right\} \\ &\leq \max\left\{\frac{\lambda_{h}^{L^{*}}\left(f\circ g\right)}{A\lambda_{h}^{L^{*}}\left(f\right)}, \frac{\rho_{h}^{L^{*}}\left(f\circ g\right)}{A\rho_{h}^{L^{*}}\left(f\right)}\right\} \leq \limsup_{r\to\infty} \frac{\log T_{h}^{-1}T_{f\circ g}\left(r\right)}{\log T_{h}^{-1}T_{f}\left(r^{A}\right) + L\left(r^{A}\right)} \\ &\leq \frac{\rho_{h}^{L^{*}}\left(f\circ g\right)}{A\lambda_{h}^{L^{*}}\left(f\right)}. \end{split}$$

The proof is omitted.

Combining Theorem a4nd Theorem 6 we may state the following theorem.

**Theorem 8.** Let f be a meromorphic and g and h be any two entire functions such that  $0 < \lambda_h^{L^*}(f \circ g) \le \rho_h^{L^*}(f \circ g) < \infty$ , and  $0 < \lambda_h^{L^*}(g) \le \rho_h^{L^*}(g) < \infty$ . If  $L(r^A) = o\{\log M_h^{-1}M_g(r^A)\}$  as  $r \to \infty$  then for any positive number A,

$$\begin{split} \frac{\lambda_{h}^{L^{*}}\left(f\circ g\right)}{A\rho_{h}^{L^{*}}\left(g\right)} &\leq \liminf_{r\to\infty} \frac{\log T_{h}^{-1}T_{f\circ g}\left(r\right)}{\log T_{h}^{-1}T_{g}\left(r^{A}\right) + L\left(r^{A}\right)} \leq \min\left\{\frac{\lambda_{h}^{L^{*}}\left(f\circ g\right)}{A\lambda_{h}^{L^{*}}\left(g\right)}, \frac{\rho_{h}^{L^{*}}\left(f\circ g\right)}{A\rho_{h}^{L^{*}}\left(g\right)}\right\} \\ &\leq \max\left\{\frac{\lambda_{h}^{L^{*}}\left(f\circ g\right)}{A\lambda_{h}^{L^{*}}\left(g\right)}, \frac{\rho_{h}^{L^{*}}\left(f\circ g\right)}{A\rho_{h}^{L^{*}}\left(g\right)}\right\} \leq \limsup_{r\to\infty} \frac{\log T_{h}^{-1}T_{f\circ g}\left(r\right)}{\log T_{h}^{-1}T_{g}\left(r^{A}\right) + L\left(r^{A}\right)} \\ &\leq \frac{\rho_{h}^{L^{*}}\left(f\circ g\right)}{A\lambda_{h}^{L^{*}}\left(g\right)}. \end{split}$$

**Theorem 9.** Let f be a meromorphic and g and h be any two entire functions such that  $\rho_h^{L^*}(f) < \infty$ . Also let g be entire. If  $\lambda_h^{L^*}(f \circ g) = \infty$  then

$$\lim_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_f(r)} = \infty.$$



*Proof.* Let us suppose that the conclusion of the theorem do not hold. Then we can find a constant  $\beta > 0$  such that for a sequence of values of *r* tending to infinity

$$\log T_{h}^{-1} T_{f \circ g}(r) \le \beta \log T_{h}^{-1} T_{f}(r).$$
(32)

Again from the definition of  $\rho_h^{L^*}(f)$  it follows for all sufficiently large values of *r* that

$$\log T_h^{-1} T_f(r) \le \left( \rho_h^{L^*}(f) + \varepsilon \right) \log \left( r e^{L(r)} \right).$$
(33)

Thus from (32) and (33) we have for a sequence of values of r tending to infinity that

$$\log T_{h}^{-1}T_{f\circ g}\left(r\right) \leq \beta\left(\rho_{h}^{L^{*}}\left(f\right) + \varepsilon\right)\log\left\{re^{L\left(r\right)}\right\}.$$

That is,

$$\frac{\log T_h^{-1}T_{f\circ g}\left(r\right)}{\log\left(re^{L\left(r\right)}\right)} \leq \frac{\beta\left(\rho_h^{L^*}\left(f\right) + \varepsilon\right)\log\left\{re^{L\left(r\right)}\right\}}{\log\left\{re^{L\left(r\right)}\right\}}.$$

So we have,

$$\liminf_{r\to\infty}\frac{\log T_h^{-1}T_{f\circ g}\left(r\right)}{\log r}=\lambda_h^{L^*}\left(f\circ g\right)<\infty.$$

This is a contradiction.

This proves the theorem.

*Remark.* Theorem 9 is also valid with "limit superior" instead of "limit" if  $\lambda_h^{L^*}(f \circ g) = \infty$  is replaced by  $\rho_h^{L^*}(f \circ g) = \infty$  and the other conditions remaining the same.

Corollary 1. Under the assumptions of Theorem 9 or Remark 3,

$$\limsup_{r \to \infty} \frac{T_h^{-1} T_{f \circ g}(r)}{T_h^{-1} T_f(r)} = \infty$$

*Proof.* From Theorem 9 or Remark 3 we obtain for all sufficiently large values of r and for K > 1 that

$$\log T_{h}^{-1} T_{f \circ g}(r) > K \log T_{h}^{-1} T_{f}(r) > \left\{ T_{h}^{-1} T_{f}(r) \right\}^{K},$$

from which the corollary follows.

**Theorem 10.** Let f be a meromorphic and g and h be any two entire functions such that  $\rho_h^{L^*}(g) < \infty$ . Also let g be entire. If  $\lambda_h^{L^*}(f \circ g) = \infty$  then

$$\lim_{r \to \infty} \frac{\log T_h^{-1} T_{f \circ g}(r)}{\log T_h^{-1} T_g(r)} = \infty$$

We omit the proof of Theorem 10 because it can be carried out in the line of Theorem 9.

*Remark.* Theorem 10 is also valid with "limit superior" instead of "limit" if  $\lambda_h^{L^*}(f \circ g) = \infty$  is replaced by  $\rho_h^{L^*}(f \circ g) = \infty$  and the other conditions remaining the same.

<sup>© 2017</sup> BISKA Bilisim Technology



Corollary 2. Under the assumptions of Theorem 10 or Remark 3,

$$\limsup_{r \to \infty} \frac{T_h^{-1} T_{f \circ g}(r)}{T_h^{-1} T_g(r)} = \infty$$

The proof is omitted because it may be carried out in the line of Corollary 1.

# **Competing interests**

The authors declare that they have no competing interests.

# Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

### References

- [1] W. Bergweiler : On the growth rate of composite meromorphic functions, Complex Variables, Vol. 14 (1990), pp.187-196.
- [2] W. K. Hayman : Meromorphic Functions, The Clarendon Press, Oxford, 1964.
- [3] T.V. Lakshminarasimhan : A note on entire functions of bounded index, J. Indian Math. Soc., Vol. 38 (1974), pp. 43-49.
- [4] B. K. Lahiri and D. Banerjee : Relative order of entire and meromorphic functions, Proc. Nat. Acad. Sci. India, Vol. 61(A) (2004) No. III, pp.339-354.
- [5] S. K. Singh and G. P. Barker : Slowly changing functions and their applications, Indian J. Math., Vol. 19 (1977), No. 1, pp 1-6.
- [6] D. Somasundaram and R. Thamizharasi : A note on the entire functions of L-bounded index and L-type, Indian J. Pure Appl.Math., Vol.19 (March 1988), No. 3, pp. 284-293.
- [7] G. Valiron : Lectures on the General Theory of Integral Functions, Chelsea Publishing Company, 1949.