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1 Introduction

The concept of convergence of a sequence of real numbergbashktended to statistical convergence independently by
H. Fast [4] and I. J. Schoenberg [20]. Any convergent seqeienstatistically convergent but the converse is not triag [1
Moreover, a statistically convergent sequence need nat leedoounded [17]. LeN denotes the set of natural numbers.

If K C N, thenK, will denote the sefk € K : k < n} and|Kp| stands for the cardinality d€,. The natural density df is
defined by

if the limit exists [5,16].

The concept of —convergence of real sequences [6,7] is a generalizatioiatidtical convergence which is based on the
structure of the idedl of subsets of the set of natural numbers. The notion of idelergence for single sequences was
first defined and studied by Kostyrko et al. [6]. Mursaleenl gtl2] defined and studied the notion of ideal convergence
in random 2-normed spaces and construct some interesting examplesabemrks onl —convergence and statistical
convergence have been done in [1,3,6,7,8,11,12,13,18]15,

The idea ofl —convergence of real sequences coincides with the idea ofayydconvergence if is the ideal of all finite
subsets oN and with the statistical convergence if the ideal of subsets &f of natural density zero [9].

The idea ofl —convergence has been extended from real number space fo aspetce [6] and to a normed linear space
[18] in recent works.

Later B. K. Lahiri and P. Das [9] extended the ided eftonvergence to an arbitrary topological space and obsénatd
the basic properties are preserved in a topological spdwsy dlso introduced [10] the idea bf convergence of nets in
a topological space and examined how far it affects the lpasigerties. We start with the following definitions.

Definition 1. Let X be a non-empty set. Then a fandflyc 2% is called afilter on X if
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(i) 0¢ 7,
(i) A,Be .7 implies AABe . and
(i) Ae .Z#,BD Aimplies Be .#.

Definition 2. Let X be a non-empty set. Then a famity PX is called anideal of X if

(i) oel,
(i) A,BelimpliesAuBel and
(i) Ael,BC AimpliesBel.

Definition 3. Let X be a non-empty set. Then afilt8ron X is said to beon-trivial if # £ {X}.
Definition 4. Let X be a non-empty set. Then an ideal | of X is said todretrivial if | # {0} and X¢ I.

Note 1. (i) #=2(1)={ACX:X\Ael}isafilter onX, called thefilter associated with the ideall .
(i) 1=1(F)={ACX:X\Aec Z}is anideal o, called theideal associated with the filter.7.
(iii) A non-trivial ideal | is calledadmissibleif | contains all the singleton sets.

Several examples of non-trivial admissible ideals have lbeasidered in [6].
We give a brief discussion dr-convergence of topological spaces as given by [9].

Let (X, 1) stands for a topological space dnlde a non-trivial ideal of the set of natural numbgits

Definition 5. A sequencéxs}nen in X is said to be +convergentto x € X if for any non-empty open set U containing
X0, {NeEN:x¢U} el
In this case, we write + limx, = Xo and % is called the Flimit of {x,}.

We mention below some usual properties of convergence ipadgical space that are preserved-convergence.
Theorem 1.If X is Hausdorff, then an+convergent sequence has a uniqudimit.
Proof. See [9].

Theorem 2.1If | is an admissible ideal and if there exists a sequefige o Of distinct elements in a set & X which is
| —convergent to xe X, then x is a limit point of E

Proof. See [9].
Theorem 3.A continuous function gX — X preserves-+convergence.
Proof. See [9].

Throughout this papeK = (X, 1) will stand for a topological space ahd-= | (%) will be the ideal ofX associated with
the filter # on X. Most of the work in this paper is inspired from [2,21].

2 |—convergence of filters

Definition 6. A filter .# on X is said to be+4convergentto xp € X if for each nbd U of ¢, {ye X:y¢ U} € 1. In this
case, ¥ is called an limit of .# and is written as - lim.% = xg.
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Example 1. Let X = {1,2,3} and T = {0,{1},X} be a topology onX. Let .7 = {{1},{1,2},{1,3},X}. Then
I ={0,{2},{3},{2,3}}. Itis easy to see that, 2 and 3 are —limits of .%.

Example 2.The nbd filterZ4, at a pointxg in X 1— converges to. Because for each nhidi of o, {ye X :y¢ U} e,
asl = (%)

Example 3.Let .# be a filter on an indiscrete spage Then clearly,# will be | —convergentto eacky € X asX is the
only nbd of eachxg € X and{ye X :y¢ X} =0¢€.

We now give the necessary and sufficient condition for a fifeto bel —convergent at some point.
Theorem 4.A filter . on X is I-convergent to xif and only if for each nbd U ofx {V € Z(X):UNV =0} C .

Proof. First suppose tha# is | —convergent tog. This means that for each niiof xp, {ye X:y¢ U} € I. We shall
show that for each nbd of xg, {V € Z(X) :UNV =0} C |. For this, letU be a nbd ofxg and letV € &?(X) such
thatU NV = 0. ThenV C X\ U. SinceU is a nbd ofxg andV C X\ U, it follows thatV c {ye X:y¢ U}. ThusV € |
and so{V € Z(X) :UnNV = 0} C |. Conversely, suppose for each nbdof xp, {V € £(X):UNV =0} C|. We
have to show that is | —convergent tog. For this, letU be a nbd ofk. Then by the given conditiofV € & (X) :
Uunv=0}cl---(x). Weclaimthafye X:y¢ U} e l. Forthis, letze {ye X:y¢ U}. Thenz¢ U. This implies that
UnN{z} =0. Thus{z} € {V € Z(X):UNV =0} and so by(x), {z} €. Hence{ye X :y ¢ U} € l. This proves that’
is | —convergent tog.

We recall the following definition.
Definition 7. A filter % on X is said to bdiner than afilter4 on X if¢ c ..

Notation. In case more than one filter is involved, we use the notaltich) to denote the ideal associated with the
corresponding filterz .

Lemma 1.Let.# and¥ be two filters on XThen% C ¢ if and only if I(.%#) C 1(¥4).

Proof. Proof is trivial.

We now show that ah—convergent filter# also satisfies some basic properties of filters.
Proposition 1.1f X is Hausdorff, then any-tconvergent filtet on X has a unique-+imit.

Proof. SupposeX is Hausdorff. Let# be anl—convergent filter orX. If possible, supposgy andyg are two distinct
| —limits of .%. SinceX is Hausdorff, there exists two disjoint open sgtandV in X such thaty € U andyp € V. Now,
Xoisl—limitof # = {ye X:y¢U} el.0r,{ye X:yeUC} €l. Similarly,yp is | —limitof .7 = {ye X:yeV°} el.
Further{ye X:ye (UNV)°} c {yeX:yeU tu{ye X:yeVC} €l. Thuswe havdye X :ye (UNV)®} €1. Since
X ¢ |, there existz € X such thaz ¢ (UNV)C. That is,z<€ U NV, which is not possible ad NV = 0. Therefore, our
supposition is wrong. Henc# has a uniqué—Ilimit.

Note 2.The converse of above Proposition is given in Propositioh®?

Proposition 2. Let E C X and.Z be a filter on E which is4convergent to x< X, where |= (%) is an admissible
ideal of E Then ¥ is a limit point of E Conversely, if xis a limit point of E then there is a filter on E {xo} which is
| —convergent to  for some admissible ideal | of.E
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Proof.Let.# be a filter on a seéE C X which isl —convergenttog € X, wherel =1(.%) is an admissible ideal d&&. To
show thatxg is a limit point of E, letU be an open set containing. Sincel —lim# =x inE, {ycE:y¢U} el and
so{yeE:yeU} ¢I(..| =1(%)). Sincel is admissibleE is infinite and so we can chooggec {y€ E:ye U} such
thatyg # xo. Thenyp € U N (E\ {Xo}). Thusxg is a limit point of E. Conversely, supposg is a limit point of E. Then
for arbitrary nbdJ of xg,

UN(E\{X})#0.LetZ ={ACE\{x}:ADUN(E\{X})}. Then clearly,# is a non-empty family of subsets of

E\ {x}-

(i) Clearly, 0¢ .
(i) Let Aj,Ax € #. ThenA DUN(E\ {X}) andA; DUN(E\ {X}). Clearly, AANA DUN(E\ {x}) and so
AlNA € .F.
(iii)y Let Ae # andBD A.

Now, A € .% implies thatA D U N (E \ {xo}). Clearly,BDUN(E\ {X}) and soB € .%. This proves that# is a filter on
E\ {x}. Letl =1(.%) be the admissible ideal &. We shall show thalt—lim .%# = xo. For this, letU be a nbd ofk,. We
claimthat{yc E\ {xo}:y¢ U} €l.So, letyc E\ {x} suchthay ¢ U. Nowy ¢ U N (E\ {x}) implies that{y} ¢ .%.
Sincel is admissible{y} € |. Thusl —lim.% = Xo. Hence the proof.

We recall the following from [21]. LeX andY be two topological spaces. Suppose thats a filter onX andf : X —Y
is a map. Therf (%) is afilter onY having for a base the sef$F ),F € .%#.

Proposition 3.Let X and Y be two topological spaces andX — Y be a map. Let? be afilter on X Then f: X —Y
is continuous atxe< X if and only if k —lim.% = Xg in X implies { —lim (%) = f(xg), where k = Ix (%), f(#)isa
filter onY generated by the ba§&(F) : F € .#} and k = Iy(f(.%)).

Proof. First suppose thaf : X — Y is continuous atxg. Supposelx — lim.% = xg. Then for each nbdJ of xg,
{We Z(X):UNW =0} C Ix. We have to show thd — lim f(.#) = f(Xo). For this, letV be a nbd off (Xp). We
claim that{T € Z(Y):VNT =0} C ly. So, letT € Z(Y) such thaV N T = 0. Sincef is continuous axp, for above
nbdV of f(Xg), there exists a nbd of xg such thatf (U) C V. Now,VNT =0 implies thaff CY\V CY\ f(U)---(x).
Now, U N (X\U) = 0 implies thatX \ U € Ix and soU € .#. This further implies thatf(U) € f(.%). Thus
Y\ f(U) €ly. From(x), T € ly. Hencely — lim f (%) = f(xo).

Conversely, suppose the condition holds. We have to shawfthd — Y is continuous axg. For this, letvV be a nbd of
f(xo) in Y. Sincelx —lim.Z = xg, for each nbdJ of Xg, {x € X : x¢ U} € Ix---(xx). Also, ly —lim f(%#) = f(xo)
implies that for above nbd of f(xg), {y€Y :y¢V} € ly---(xxx). Thus clearly, for above nbd of f(xg) in'Y, there
exists a nbdJ of xp in X such thatf(U) C V. For otherwise, iff (U) ¢ V, then there existg € U such thatf (x) ¢ V.
From (xxx), f(x) ¢ V implies that{f(x)} € ly. This means tha{x} € Ix. That is,x ¢ U, which is a contradiction.
Hencef is continuous axg.

2.1 Characterization of closure

Proposition 4.Let E C X. Then x € E if and only if there is a filterZ on X such that E= . and | - lim .% = Xo.

Proof. First supposeg € E. Then each nbd ofy meetsE. Thatis,U NE # 0,V U € %,, whereZ4, is the nbd system at
Xo. Let Z = {UNE:U € %,,}. Then clearly,% is a non-empty family of non-empty subsetsoWhich is closed under
finite intersection and so a filter base for some filter, $agn X.
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SinceE D UNE,V U € %,, we haveE € .%. We shall show thak — lim % = xg. For this, letU be a nbd ofk. Since
U DUNE, we havel € .%. We claim that{V € (X)) :UNV =0} C|. So, letV € #(X) such thatt "V = 0. Now
UNV =0 impliesthay ¢ X\U.NowU € .7 andl =I(.%) implies thatX \ U € |. Sincel is an ideal, it is closed under
subsets and 96 € |. Therefore{V € Z(X):UNV =0} C .

Conversely, suppose there is a filt8ron X such tha€ € .7 and| — lim.% = xo. To show thatg € E, letU be a nbd of
Xo. Sincel —lim.Z% = xp, {V € Z(X): UNV =0} C |. We claim thatU € .#. SinceU N (X\U) = 0, we have
X\U € 1. Sincel =I(.#), we havel € .%. Now, E,U € .% and.Z is a filter implies thall NE € .% and sdJ NE # 0.
This proves thakg € E.

Proposition 5. Let .# be a filter on X such that+ lim % = xq. Then every filtet#’ finer than.# also I-converges to
X0, Where [=[(#).

Proof. SupposeZ is a filter onX such that —lim.% = xg. Let .#' be an arbitrary filter oiX such that#’ > .%. We
claim thatl —lim %’ = xo, wherel = | (%). For this, letU be a nbd of. Sincel —lim.% = xo, for above nbdJ of
X0, {V € Z(X):UNV =0} CI. Thus it follows that for every nbt of xg, {V € 2(X):UNV =0} C |. Therefore,
| —lim.%#' = x.

RemarkLet.Z be a filter onX and.#’ be another filter oiX finer than#. Thenl (%') —lim .%’ = %y need not imply
thatl (%) —lim .# = xp. Consider the example: Let = {1,2,3} andt = {0,{2},{1,2},X} be a topology orX. Let

F = {{2,3},X} be a filter on X. Then I(%#) = {0,{1}}. It is easy to see that(#) —Ilim% = 3. Let

F'={{2},{1,2},{2,3},X}. Thenl (#') = {0,{1},{3},{1,3}}. We can easily see thatd and 3 ard (%')—limits of

F'. Also, | (£') —lim.Z = 1. Thus we observe that 1 and 2 &fe#’)— limits of %’ but notl (#)— limits of .%.

Proposition 6. Let .# be a filter on X such that + lim.% = xg. Then every filterZ’ on X coarser thanZ also
| —converges tox where |=1(.%).

Proof.Suppose7 is afilter onX such that —lim .% = Xq. Then for each nbd of X, {V € Z2(X):UNV =0} C I ---(%).
Let.#’ be an arbitrary filter oiX such that#’ c .%. We claim that — lim %" = xo, wherel = 1(.%). So, letU be a nbd
of xo. Then clearly by(x), {V € 2(X) :UNV =0} C |. Therefore] —lim %’ = xo, wherel = |(.%).

Note 3.The above proposition need not be true if we repldc€) — lim .#’ by I (%') — lim %'. Consider the example:
LetX ={1,2,3} andt = {0, {2}, X} be atopology oiX. Let.# = {{2},{1,2},{2,3},X} be afilter onX. Thenl (%) =
{0,{1},{3},{1,3}}. Let.¥#’ = {{1,2},X} be another filter oiX. Then clearly,#’ C #. Also,| (%) = {0,{3}}. We can
easily see that(.%#) —lim.# = 1,2, 3 andl (%') — lim .#' = 1,3. Thus we observe that 2 is 4% )—limit of .# but itis
not anl (#')—limit of .Z".

Proposition 7. Let % be a filter on X and4 be any other filter on X finer thai#. Then (%) — lim¥ = xp implies
[(¢) —lim% = xp. But not conversely.

Proof. Supposd (%) —lim¥ = Xo. Then for each nbtl of xg, {V € Z(X):UNV =0} C |(F). Since&# C ¥4, by
Lemma27,|1(.#) C I(¥). Thus for each nbt of xg, {V € Z(X) :UNV =0} C I(¥¢). Therefore] (¢) —lim¥ = xo.

But converse need not be true. Consider the following exampétX = {1,2,3} andt be the discrete topology oX.
Let.# = {{2,3},X} be afilter onX. Thenl (%) = {0,{1}}. Let¥ = {{2},{1,2},{2,3},X} be a filter onX finer than
ZF. Thenl(¥9) = {0,{1},{3},{1,3}}. We can easily see thaf{.#) —lim¥ = nil and I(¢) —lim¥ = 2. Thus we
observe that 2 is al(¢)—limit of ¢ but not anl (% )—limit of ¢.
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Proposition 8. Let 11 and 1, be two topologies on X such that is coarser thant,. Let .# be a filter on X such that
| —lim.% = xgW.r.t o. Then I-lim.% = xg w.r.t ;. But the converse need not be true.

Proof. LetU be a nbd ofkg w.r.t 11. Sincet; C 1o, U is also a nbd oky w.r.t To. But | —lim.% = xg w.r.t T,. Thus for
above nbdJ of xg, {V € Z(X) :UNV =0} C |. Hencel —lim % = xg w.r.t 11 also. The converse is however not true.
Consider the following example : L&t = {1,2,3}. Let 1> be the discrete topology ot andr; = {0, {2},{3},{2,3},X}.
Thenty C T2. Let.# = {{1,2},X} be afilter onX. It is easy to see that—lim.# = 1 w.r.t1q, but 1 is not arl —lim .#
wW.r.t T.

Lemma2.Let.Z ={¥ : ¥ is a filter on X}. ThenZ = Nyc ¥ ifand only if I(.#) = Ngec. 41 (¥).

Proof. Suppose # = Nyecys¥. Then A € I(F) & X\NA € F = Nyep¥9 © X\AE Y, N G c A
SAcl(9), VY el & AcNgeyl(9). Thusl (F) = Nge x| (9).

Conversely, suppos.¥) = Nge z1(¥). ThenA e F & X\A € (F) = Nge sl (¥) & X\AE (YD), VY € A
SAcY NVYe Ml s AENge y9. ThuS.S = Nye 49 .

Proposition 9. Let .# be a collection of all those filter¥ on a space X which({#)—converges to the same point
Xp € X. Then the intersectior of all the filters in.# | (%) —converges tox

Proof.Here.# = {¥ : ¢ is a filter on X suchthat(¢) —Iim¥ = xo}. Let # = N{¥ : ¢4 € .#}. We shall show that
I(Z)—lim.Z = xg. For this, letU be a nbd oky(w.r.t %). ThenU is a nbd ofxg(w.r.tall¢ € .#). Sincel (¥) —lim¥ =
X0,V¥ € #, itfollowsthat{ye X:y¢U} € (¥),V¥ € .#. Thisimpliesthafyc X :y¢ U} € Ngc 41 (¥4) =1(Z).
Hencel (%) —lim .7 = xo. We are now in a position to prove the converse of Propositid 2

Proposition 10.If every I-convergent filter# on X has a unique-limit, then the space X is Hausdorff.

Proof. Suppose every—convergent filtet# on X has a uniqué—limit. We have to show thaX is a Hausdorff space.
Suppose not. This means that for any two distinct potasdy in X, there are open settsandV in X containingx andy;,
respectively such that NV # 0-- - (x). Let % and%; be the nbd filters at andy, respectively. Then clearly by Example
2-3, U | (%)—converges tx and %y | (%) —converges ty. Now, sinceX is not HausdorffZ4 U % is a filter onX.
This filter is clearly a filter base for some filter, s& on X such that# > % and.% > %,. Since%y | (%)—converges
to x, by Proposition 212, .7 |(%)—converges to. Similarly, .# |(%;)—converges to/. By Proposition 215, .7

| (.#)—converges tx and.# | (.%#)—converges ty. That is,| — lim.# = xandl —lim.% =y, wherel = | (.%), which is

a contradiction to the hypothesis. Heriés Hausdorff.

Lemma 3.1f Ix is an ideal of X= [4en Xa associated with a filter on X, then k = ﬂi"zlpgil(lxai ), where kai is an
ideal of the factor spacegXassociated with g(.%).

Proof. te Ny gt (Ixy, ) St € Pg(lxg ), Vi=1,2,....,n & py(t) €lx, ,Vi=1,2,....,n & pg(t) € Xg; \ Py (F),V i =
1,2,...,n & pg(t) € po(X\ F),Vi=12,...,n&teX\.F &telx Hencelx = NLipgt(ix, )-

Theorem 5. A filter & Ix—converges to X in %= [[gen Xo if and only if py (F) Ix, —converges to p(x),v a, where
Ix = |x(y) and IXa = |xa(pa(y))

Proof. SupposeZ |x—converges tx in X = [[gen Xa- Since each projectiopy : X — Xq is continuous ak in X, by
Proposition 210, we find thatps (%) Ix, —converges t@q(X) in X4,V . Conversely, supposey (%) Ix, —converges
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to pa(X) in X4,V a. We have to show tha# Ix—converges to in X. For this, letU = ﬂ{‘zlpgil(uai) be a basic nbd
of X. This means thdtly, is a nbd ofxg, = pg;(X), fori =1,2,...,nin Xg. We claim that{y e X : y ¢ U} € Ix. So, let
ye Xsuchthay¢ U.Now,y¢ U =y¢ pgil(Uai), forsomei=1,2,...,n= pg (y) ¢ Ug;, for somei =1,2,...,n. Since
Pa (F) Ix, —converges t@q (X) in Xq,V a, we find that for each nbdy of pa(X), {za € Xa : 2y ¢ Ug} € Ix,. Thus
Pa; (Y) & Ug; implies that{pe; (Y)} € Ix,, ,i = 1,2,...n. This further implies thafy} € ]! lpgil(lxai ). By above Lemma

2-20, Ix = ﬁi”:lpgil(lxai )- Thus{y} € Ix. This proves the claim. Henc& |x—converges tXin X = []gea Xa-
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