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Abstract: A numerical method based on the finite element method is used for an investigation of viscous, incompressible fluid flowing
in a channel with slowly varying cross-section with absorbing walls. The proposed mathematical model can be applied to understand
the flow behaviour of a fluid in renal tubules. The method is notrestricted by the parameters in the problem such as wave number,
permeability parameter, amplitude ratio and Reynolds number. The effects of these parameters on the transverse velocity and mean
pressure drop is studied and the results are presented graphically. Results show that the parameters cause a significantchange on the
flow.
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1 Introduction

One of the excretory organ of the human body is kidney. Kidneys excrete most of the end products of body metabolism
and they control concentrations of most of the constituentsof body fluids. The basic functional unit of kidney is nephron.
Each kidney contains over a million tiny units (of nephrons), all similar in structure and function. Each nephron
functions independently and in most instances it is sufficient to study the function of nephron to understand the
mechanism of kidney in terms of mathematical models.

In nephrons, the portion after the Bowman’s capsule is called proximal convoluted tubule, which is narrower than rest of
the tube and non-uniform in nature. It is the place where mostof useful substances, like water, glucose and electrolytes
are reabsorbed back into the plasma and unwanted substancespass into urine. Thus it is of interest to study the flow in
proximal tubule using mathematical models.

Study of viscous fluid flow in channels of varying cross section with permeable wall is significant because of its
application to both physiological and engineering flow problems. The flow of fluid in a renal tubule has been studied by
different authors. Macey [1] formulated the problem as the flow of an incompressible viscous fluid through a circular
tube with linear rate of reabsorption at the wall. Whereas, Kelman [2] found that the bulk flow in the proximal tubule
decays exponentially with the axial distance. Then, Macey [3] used this condition to solve the equations of motion and
mentioned that the longitudinal velocity profile is parabolic and the drop in mean pressure is proportional to the mean
axial flow. Marshall and Trowbridge [4] and Palatt et.al [5] used physical conditions existing at the rigid permeable tube
instead of prescribing the flux at the wall as a function of axial distance.

The representation of a proximal tubule as a uniform tube with constant wall permeability is obviously an idealization.
Radhakrishnamacharya et al [6] considered a non-uniform geometry to model renal tubule while the previous studies
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considered it uniform. They made an attempt to understand the flow through the renal tubule by studying the
hydrodynamical aspects of an incompressible viscous fluid in a circular tube of varying cross-section with reabsorption
at the wall. Following similar approach, Chandra and Prasad[7] analyzed fluid flow in rigid tube of slowly varying
cross-section by considering different geometries. Also they investigated the problem by considering fluid exchange
across the permeable wall governed by Starling’s hypothesis. Chaturani and Ranganatha [8] studied fluid flow through a
diverging/converging tube with variable wall permeability. They obtained approximate analytical solution for the case
that the flux at the wall depends on wall permeability and transboundary pressure drop. Recently, Muthu and Tesfahun
[9] have studied the fluid flow in nonuniform rigid wavy channel of varying cross section and presented the effects of
slope parameter, reabsorption coefficient on the transverse velocity and mean pressure drop.

In all the above studies, the method used to solve the governing equations of the fluid motion is perturbation method of
solution by taking small nonuniform tube parameter/curvature parameter. In this paper, the Navier-Stokes equations
governing the flow of an incompressible viscous fluid througha wavy non-uniform permeable channel are solved
numerically by using the finite element method. The effects of wave number (δ ), reabsorption coefficient (α), amplitude
ratio (ε) and Reynolds number on the transverse velocity, stream function and mean pressure drop are studied without
restrictions on the parameters of the problem, in principle.

The boundary of the channel walls are assumed to be symmetricaboutx axis and vary withx. It is taken as

η(x) = d + k1 x + a sin(
2πx
λ

) (1)

whered is the half width of the channel at the inlet (atx = 0 ). k1 is a constant whose magnitude depends on the length
of the channel exit and inlet dimensions,a is the amplitude andλ is the wave length (see Fig.1). Here, we assumek1 ≪ 1
to model the slowly varying slope.
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Fig. 1: Geometry of the problem.

2 Mathematical formulation

In this section we summarize the equation governing the flow of a fluid flowing through channel. Two types of formulation
are discussed, namely thevelocity-pressure andvorticity-stream function. The boundary conditions relevant to the problem
are also presented consistently in both the two formulations.
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2.1 Velocity-pressure formulation

Consider an incompressible fluid flowing through a radially symmetric channel with cross-section varying slowly along
the axis as given by equation1. The motion of the fluid is assumed to be laminar, steady and symmetric. As a result we
consider a section of the channel in 2D with domain denoted byΩ . The channel is long enough to neglect the initial and
end effects. The equations governing the motion of such fluidformulated in terms of the primitive fields (velocity-pressure
formulation) are given by, (see for example [10])

∇ ·uuu = 0

(uuu ·∇)uuu =−∇P+ν∇2uuu,
(2)

where uuu = ui + v j the velocity vector field,P the pressure,ν the kinematic viscosity parameter. The symbols
∇ = (∂/∂x)i+(∂/∂y) j and∇2 = ∇ ·∇ are the gradient and Laplacian differential operators onΩ , respectively. The first
equation of (2) is the continuity accounting for the incompressibility condition. The equations of motion (2) are
subjected to the following boundary conditions

(a) The tangential velocity at the wall is zero. The tangent vector to the boundary atx is TTT = i+ d
dx η(x) j. Then

0= TTT ·uuu = u+
d
dx

η(x)v on the upper wall withy = η(x). (3)

(b) Inlet/Outlet boundaries: Based on our assumption we consider a symmetrical inlet boundary condition. That is,

u(0,y) = f (y). (4)

where f is some function which is symmetrical with respect to thex-axis with f (d) = 1, and the outlet boundary
condition:

u = g(y), (5)

whereg is symmetric with respect to thex-axis.
(c) There-absorption has been accounted for by considering the bulk flow as a decreasing function ofx along the wall.

That is, the flux across a cross-section is given as

Q(x) =
∫ η(x)

0
v(x,y)dy = Q0F(αx), (6)

whereF(αx) = 1 whenα = 0 and decreases withx, the constantα ≥ 0 is the re-absorption coefficient, andQ0 is the
flux across the cross-section atx = 0.

In 2D the Navier-Storckes equations (2) composed of three partial differential equations with three variables (two velocity
components and one pressure field). There have been some simpler formulations developed, among this the most common
is thevorticity-stream function (ψ −ω) formulation. In this formulation, the incompressibilityconstraint (2)1 is satisfied
apriori from the construction itself. As a result the pressure does not appear in the formulation as unknown. Rather, it can
be obtained from the primary unknown fields as a post-process.

2.2 The vorticity-stream function formulation

The stream functionψ and the vorticityω are scalar valued fields defined onΩ , defined by

u =
∂ψ
∂y

, v =−
∂ψ
∂x

, and ω =
∂v
∂x

−
∂u
∂y

. (7)
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To non-dimensionalized the formulation we use the following scaling

x′ =
x
λ
, y′ =

y
d
, η ′ =

η
d
,

ψ ′ =
ψ
Q0

, α ′ = αλ , p′ =
d2

µQ0
p,

wherex′, y′, η ′, ψ ′, α ′, andp′ are the dimensionless counterparts ofx, y, η , ψ , α, andp respectively. The vorticity-stream
function (ψ −ω) formulation of the governing equations (2) in the dimensionless form are given by (after dropping the
primes)

AAA∇2ω = δRe∇ω · (BBB∇ψ)

AAA∇2ψ =−ω ,
(8)

whereδ = d/λ is a constant resulting from differentiation with respect to the non-dimensional spatial variablesx andy,
Re = Q0/ν is the Reynolds number,AAA is symmetric andBBB is anti-symmetric second-order tensors given by

AAA =

[

δ 2 0
0 1

]

, BBB =

[

0 1
−1 0

]

(9)

The non-dimensional form of the boundary boundary conditions, discussed above, in terms of theψ −ω are:

(a) The tangential component of the velocity vector equatesto the normal derivative of the stream function at the
boundary; that is, we recall that the tangent vector to the top section of the wall is given byTTT = i+ d

dx η(x), hence
the outward normal on the boundary isnnn =− d

dx η(x)i+ j so thatTTT ·nnn = 0. To this end, the boundary condition (3) is
translated to free Neumann-type condition of the form

0=
∂ψ
∂n

= nnn ·∇ψ = TTT ·uuu. (10)

Similarly the same boundary condition is prescribed at the opposite side of the boundary withy =−η(x).
(b) The stream functionψ is also prescribed at the inlet/outlet boundaries so that thex-component of the velocity field is

parabola and conformable with the adjacent boundary conditions (ψ is continuous everywhere). That is,

ψ = f̃ (y), on the inlet boundary, (11)

ψ = g̃(y), on the outlet boundary, (12)

where f̃ andg̃ are anti-derivatives off andg respectively.
(c) The re-absorption boundary condition reads as

ψ = Q0F(αx), on the wall withy = η(x). (13)

Similarly ψ is prescribed, along the wall at the opposite side, a symmetric value,−Q0F(αx).

In this problem, we consider exponentially decaying bulk flow, that is, in equation (13), F is taken as

F(αx) = exp[−αx], (14)

whereα is the permeability coefficient.

c© 2016 BISKA Bilisim Technology



CMMA 1, No. 3, 31-46 (2016) /ntmsci.com/cmma 35

3 Finite element approximation

In this section we present the finite element formulation of the vorticity-stream function form (7). We then continue
to linearize the weak form upon which the Galerkin finite element approximation and its iterative matrix system are also
formulated. In the present analysis, the governing equations (7) together with the boundary conditions (10)-(13) are solved
in the finite region ABCD shown Figure2. Although the boundary conditions for the infinite channel have been given,
the present numerical method requires furthermore the conditions on the entrance section AB and the exit section CD
because the numerical analysis is carried out for the finite region ABCD as discussed by [10,12] and [11]. Due to this, the
following conditions shall be introduced

(i) They-component of the flow velocity vanishes at the inlet and outlet boundaries. That is,v =−∂ψ/∂x = 0.
(ii) The profile of the stream functionψ is given by the prescribed functions̃f (y) andg̃(y) at AB and CD respectively.

(iii) The only boundary condition with respect to the vorticity functionω is free Neumann boundary condition over the
entire boundary. That is,∂ω/∂n = 0 at each point on the boundary ofΩ .

Fig. 2: Domain of the problem.

Therefore, the boundary conditions used in the analysis canbe written as follows:

ψ = h, and
∂ψ
∂n

= 0,
∂ω
∂n

= 0 onΓ = ∂Ω , (15)

whereh is a function defined on the entire boundaryΓ by

h =























f̃ (y) On AB (inflow)

−F(αx) On BC

g̃(y) On CD (outflow)

F(αx) On AD

(16)
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with f̃ (y) and g̃(y) are functions ofy, such thatu is parabolic at AB and CD sections. We assume that these functions
satisfy the boundary conditions so that the solution is freefrom discontinuities.

3.1 Variational formulation

To formulate the weak form of the problem (7) we first define the trial and weighting function spaces for both vorticity,
ω , and stream function,ψ . For formal treatment of finite element procedure see, for example [14]. Stream function trial
space

Sψ = {ψ : ψ ∈ H1(Ω) andψ = h(x,y) on ∂Ω}. (17)

emphVorticity trial space
Sω = {ω : ω ∈ H1(Ω)}. (18)

Stream function weighting space

Vψ = {φ : φ ∈ H1(Ω) andφ = 0 on∂Ω}. (19)

Vorticity weighting space
Vω = {ϕ : ϕ ∈ H1(Ω)}. (20)

Since there is no Dirichelet boundary condition with respect the vorticity,ω , the vorticity trial and weighting spaces are
the same,H1(Ω). The variational problem corresponding to the system (7) together with the boundary conditions (15)
reads as: Find(ψ , ω) ∈ Sψ ×Sω such that for each(φ , ϕ) ∈ Vψ ×Vω

∫

Ω
∇φ · (AAA∇ω)dΩ + δRe

∫

Ω
φ∇ω · (BBB∇ψ)dΩ =

∫

Γ
φ

∂ω
∂n

dΓ
∫

Ω
∇ϕ · (AAA∇ψ)dΩ +

∫

Ω
ϕψdΩ =

∫

Γ
ϕ

∂ψ
∂n

dΓ .

(21)

Note that, for the problem under discussion, the right hand sides of the above equations vanish as a consequence of the
homogeneous Neumann boundary conditions given in equation(15).

3.2 Linearisation of the weak formulation

The weak formulation in the forms of (21) is non-linear in the unknown fields stream functionψ and vorticityω . An
iterative solution technique of Newton’s type is employed to solve the non-linear problems. The method requires one to
linearise the non-linear problem to generate iterative linear problems that are solved and updated sequentially untila
desired level of convergence is reached (see, for example, [13] and the references therein, for detailed discussion of the
concept of linearisation).

Suppose thatR R = R(ψ , ω) be a sufficiently smooth non-linear function. The linearisation of R is based on the
first-order (Taylor’s) expansion, which expressed as

R(ψ + δψ , ω + δω) = R(ψ , ω)+R
′(ψ , ω ;δψ , δω)+O(δψ , δω), (22)

whereR′(ψ , ω ;δψ , δω), which we also denoted it byDδR(ψ , ω), is the directional derivative ofR at (ψ , ω) in the
direction of(δψ , δω) and it is defined by

DδR(ψ , ω) =R
′(ψ , ω ;δψ , δω) = lim

h→0

R(ψ + hδψ , ω + hδω)−R(ψ , ω)

h
. (23)

c© 2016 BISKA Bilisim Technology



CMMA 1, No. 3, 31-46 (2016) /ntmsci.com/cmma 37

To find the linearisation of the weak form (21) we take an arbitrary trial pair(φ , ϕ) then defineR as a vector-valued
function as

R(ψ , ω) =

[

R1(ψ , ω)

R2(ψ , ω)

]

(24)

where
R1(ψ , ω) =

∫

Ω
∇φ · (AAA∇ω)dΩ + δRe

∫

Ω
φ∇ω · (BBB∇ψ)dΩ

R2(ψ , ω) =
∫

Ω
∇ϕ · (AAA∇ψ)dΩ +

∫

Ω
ϕψdΩ .

(25)

Hence the directional derivativeDδR(ψ , ω) is computed as

DδR(ψ , ω) =

[

DδR1(ψ , ω)

DδR2(ψ , ω)

]

(26)

where
DδR1(ψ , ω) =

∫

Ω
∇φ · (AAA∇ δω)dΩ + δRe

∫

Ω
φ∇ δω · (BBB∇ψ)dΩ + δRe

∫

Ω
φ∇ω · (BBB∇ δψ)dΩ

DδR2(ψ , ω) =

∫

Ω
∇ϕ · (AAA∇ δψ)dΩ +

∫

Ω
ϕ δψdΩ .

(27)

The Newton’s scheme for the problem (21) reads as: Given that thek approximate solution(ψk, ωk). Our objective is to
find an update(δψk, δωk) such that for each(φ , ϕ) ∈ Vψ ×Vω

DδR(ψk, ωk) =−R(ψk, ωk). (28)

Then the next,k+1, approximate solution(δψk+1, δωk+1) is given by

ψk+1 = δψk +ψk, and ωk+1 = δωk +ωk (29)

3.3 Galerkin approximation

Consider a triangulationT of Ω into rectangular elementsΩ e, e = 1,2, . . .Nel such that

Ω =
Nel
⋃

e=1

Ω e. (30)

Consider the finite element bases{φh
i } and{ϕh

i } corresponding to the variationsδψ andδω , respectively. The current
unknown updatesδψk andδωk are expressed as linear combinations of the respective basis elements:

δψk = ∑
i

δψ i φh
i , and δωk = ∑

i
δω i ϕh

i (31)

whereδψ i andδω i are coefficient of expansion forδψk andδωk respectively.

Given thekth approximate finite element solution(ψh
k , ωh

k ). Substitution of the expansions in (31) and weighting
functions by the basis functionsφh

i andϕh
i into the iterative scheme (28) leads to the matrix iterative system

[

Kψψ
k Kψω

k

Kωψ
k Kωω

k

][

δδδ ψψψ
δδδ ωωω

]

=−

[

Rψ
k

Rω
k

]

(32)
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where
[

Kψψ
k

]

i, j = δRe

∫

Ω
φh

i ∇ωh
k · (BBB∇φh

j )dΩ
[

Kψω
k

]

i, j =
∫

Ω
∇ϕh

i · (AAA∇ϕh
j )dΩ + δRe

∫

Ω
ϕh

i ∇ϕh
j · (BBB∇ψh

k )dΩ
[

Kωψ
k

]

i, j =

∫

Ω
∇ϕ · (AAA∇φh

j )dΩ
[

Kωω
k

]

i, j =

∫

Ω
ϕh

i ϕh
j dΩ

[Rψ
k ]i =

∫

Ω
∇φ · (AAA∇ωh

k )dΩ + δRe

∫

Ω
φ∇ωh

k · (BBB∇ψh
k )dΩ

[Rω
k ]i =

∫

Ω
∇ϕ · (AAA∇ψh

k )dΩ +
∫

Ω
ϕψh

k dΩ ,

(33)

andδδδψψψk andδδδωωωk are the vectors of nodal values of thekth finite element update.

3.4 Evaluation of pressure

Piecewise continuous bi-quadratic isoparametric finite element shape functions are used to interpolate the unknown
fieldsψ andω . However, derivatives of such shape functions are no longercontinuous. Particularly, the derivatives are
discontinuous across the element boundaries. Thus quantities that are derivatives ofψ andω are evaluated only at the
quadrature points in the interior of the elements. Gradientof the non-dimensional pressure fieldP can be calculated from
partial derivatives ofψ andω using the formula

∇P = bbb =











Reδ (
∂ψ
∂x

∂ 2ψ
∂y2 −

∂ψ
∂y

∂ 2ψ
∂x∂y

)−
∂ω
∂y

Reδ 3(
∂ψ
∂y

∂ 2ψ
∂x2 +

∂ψ
∂x

∂ 2ψ
∂x∂y

)− δ 2∂ω
∂x











(34)

Instead of the usual way of evaluating pressure at the the quadrature points in the interior of the elements as a post-process,
here we incorporated the weak form of pressure gradient equation (34) into (21). In which case, we are able to evaluate
pressure at the nodal points and it is now piecewise continuous onΩ . The weak form of the pressure gradient equation
(34) is given by

∫

Ω
∇q ·∇PdΩ =

∫

Ω
∇q ·bbbdΩ , (35)

whereq is the pressure trial function. To find the pressure uniquelywe need to have a Dirichlet boundary condition on
either or both the inlet and outlet boundaries.

3.5 Mean pressure drop

Since the channel and the flow are symmetric themean pressure P̄ along any vertical line is equal to the pressure on the
axis of the channel. That is

P̄(x) = P(x,0) (36)

Furthermore, the mean pressure drop betweenx = 0 andx = x0 is calculated using

∆ p̄(x0) = p̄(0)− p̄(x0). (37)

4 Results and discussion

The objective of this analysis is to study the behavior of an incompressible fluid flow through a channel of
converging/diverging and slowly varying cross-section with absorbing walls by numerical approach. It may be recalled
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that k characterize the slope of the converging/diverging wavy walls. k = 1.0 represents a diverging channel,k = 0
represents a normal (sinusoidal) channel andk = −1.0 represents a converging channel.ε andα represents amplitude
and reabsorption coefficient of wavy walls. We discuss the effects of these parameters on the transverse velocity (v(x,y)),
mean pressure drop (∆ p̄(x)) and stream functionψ(x,y). In all our numerical calculations, the following parameters are
fixed asδ = 0.1 andε = 0.1.

Fig. 3: A transverse velocity at k = 0.1, k = 0.0 and k =
-0.1 respectively.

Fig. 4: A transverse velocity atα = 0.5,α = 1.0 andα =
1.5 respectively.
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4.1 The velocity v

The velocity field can be obtained from approximation of the stream function. In this section, we discuss the effects of
the slope parameter (k), reabsorption coefficient (α) and Reynolds number on the transverse velocity. Also, we look into
the behavior of the velocity at different cross sections of the flow field. The effect of slope parameter (k) on the
transverse velocity is shown in Figure (3). The velocity is more for divergent channel than the normal(sinusoidal)
channel, and it is less for convergent channel than the othertwo. The effect of reabsorption coefficientα is presented in
the Fig. (4). It can be observed from the figures that asα increases, the transverse velocity of the flow increases forall
cases ( converging, normal, and diverging channels).

Figure (5) illustrates the effect of Reynolds number on the velocityv versusy. As shown, the Reynolds number produces
significant influence on the transverse velocity. AsRe increases from 0.1 to 100, the velocity increases and the point
where the velocity attains its maximum decreases. Fig.5 also shows the behavior of the velocity as the fluid passes
through the channel at different locations ofx. As the fluid passes from the entrance to exit, the transversevelocity
decreases and it attains the maximum at the point∼= 0.7 at the entrance and it shifts towards the boundary at the exit.

Fig. 5: A transverse velocity at R = 0.1, R = 50
and R = 100 respectively.

4.2 The velocity u

The reabsorption coefficientα and the slope parameterk has the same effect on the longitudinal velocityu. Asα increases
the velocityu decreases and it increases as the channel moves from diverging form to convergent form.
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Fig. 6: A longitudinal velocity atα = 0.5,α = 1.0 andα
= 1.5 respectively.

Fig. 7: A longitudinal velocity atk = 0.1,k = 0.0 andk =
-0.1 respectively.

4.3 Pressure and mean pressure drop ∆ p̄

The values of the mean pressure drop over the length of the channel are calculated for different values ofk andα. As
shown, in Figure8, when the reabsorption coefficientα increases, the mean pressure drop decrease for all three forms
of the channel ( convergent, normal and divergent channels ). Figure9 displays the effect of slope parameterk to mean
pressure drop. We can notice that∆ p̄ is less for the divergent channel than the normal or convergent channels, and it is
more for convergent channel than the normal/divergent channels.
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Fig. 8: Mean Pressure Drop atα = 0.5,α = 1.0 andα = 1.5 respectively.
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Fig. 9: Mean Pressure Drop atk = 0.1,k = 0.0 andk = -0.1 respectively.

Figures10- 13shows the influence ofα andk on the pressurep and mean pressure. These parameters has same effect on
p and mean pressure. As the reabsorption coefficientα and slop parameterk increases the pressure decreases while the
mean pressure rise.
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Fig. 10: Pressure atα = 0.5, α = 1.0 and α = 1.5
respectively.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x10

11

12

13

14

15

MeanP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x10

11

12

13

14

15

MeanP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x10

11

12

13

14

15

MeanP

Fig. 11: Mean Pressure atα = 0.5,α = 1.0 andα = 1.5
respectively.
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Fig. 12: Pressure atk = 0.1, k = 0.0 and k = -0.1
respectively.
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Fig. 13: Mean Pressure atk = 0.1,k = 0.0 andk = −0.1
respectively.

4.4 Stream function

We can observe the flow behavior of the fluid by looking at the contour drawing of the stream function for various values
of reabsorption coefficientα and for the slope parameterk. Fig. (14) shows the effect ofα on the flow behavior of the
fluid. It can be observed that asα increases, the stream lines moves to the boundary because ofmore absorption. Fig.15
are showing the flow pattern for diverging, normal(sinusoidal) and converging channels.
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Fig. 14: Stream function atα = 0.5,α = 1.0 andα = 1.5
respectively.
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Fig. 15: Stream function atk = 0.1,k = 0.0 andk =−0.1
respectively.

5 Conclusions

In the present study, an analysis of mathematical model of incompressible fluid flow in a rigid channel of slowly varying
converging/diverging walls has been presented with possible applications to the flow of fluid in renal tubules. The main
contribution of this study is to use the numerical method to solve the Navier-Stock equations for an incompressible,
steady, viscous flow without imposing any restriction on theparameters of the problem. The reabsorption coefficientα,
the slope parameterk and the Reynolds numberRe have the same effect on the transverse velocity. As they increases,
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the velocity also increases. The mean pressure drop decreases for rise of reabsorption coefficient for all three forms of
the channel (converging, normal(sinusoidal) and diverging channels). It is also less for the divergent channel than the
normal or convergent channels, and it is more for convergentchannel than the normal/divergent channels. The streamlines
shows the general trend of the fluid flow. Physically, as the reabsorption coefficient increases the fluid that come out of
the channel becomes very low.
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