
NTMSCI 3, No. 3, 46-57 (2015) 46

New Trends in Mathematical Sciences
http://www.ntmsci.com

Generalized Kudryashov method for solving some
(3+1)-dimensional nonlinear evolution equations

Md. Shafiqul Islam 1, Kamruzzaman Khan 1 and Ahmed.H.Arnous2

1Department of Mathematics, Pabna University of Science and Technology, Pabna-6600, Bangladesh.
2Department of Engineering Mathematics and Physics, Higher Institute of Engineering, El Shorouk, Egypt.

Received: 12 March 2015, Revised: 21 April 2015, Accepted: 29 May 2015
Published online: 18 June 2015

Abstract: In this work, we have applied the generalized Kudryashov methods to obtain the exact travelling wave solutions for the
(3+1)-dimensional Jimbo-Miwa (JM) equation, the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation and the
(3+1)-dimensional Zakharov-Kuznetsov (ZK). The attained solutions show distinct physical configurations. The constraints that will
guarantee the existence of specific solutions will be investigated. These solutions may be useful and desirable for enlightening specific
nonlinear physical phenomena in genuinely nonlinear dynamical systems.
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1 Introduction

In the last few decades’ nonlinear evolution equations (NLEEs) has become special classes of the category of partial
differential equations (PDEs). It is renowned that finding exact solutions for NLEEs, by using different abundant
methods plays an energetic role in mathematical physics and become one of the furthermost exciting and awfully active
areas of research investigation for mathematicians and physicist. Many important phenomena and dynamic processes in
physics, mechanics, chemistry and biology can be represented by nonlinear partial differential equations. Nonlinear wave
phenomena of dispersion, dissipation, diffusion, reaction and convection are energetic prominence in NLEEs. It is
essential to determine exact traveling solutions for these nonlinear equations to allow us to get an insight through
qualitative and quantifiable properties of these equations. These days the research area of NLEEs has made a significant
progress. There has been a rising concentration in finding exact analytical solutions to nonlinear wave equations by
means of appropriate technique. Particularly, the existence of soliton solutions for NLEEs is of abundant importance
because of their prospective applications in many physics areas such as chaos, mathematical biology, diffusion process,
plasma physics, optical fibers, neural physics, solid state physics etc. In recent years, quite a few methods for obtaining
explicit traveling and solitary wave solutions of NLEEs have been proposed and developed. A variety of powerful
methods such as, homogeneous balance method [1, 2], auxiliary equation method[3, 4], the Exp-function method [5, 6],
Darboux transformation method [7, 8], the tanh-function method [9], the modified extended tanh-function method [10],
Jacobi elliptic function method [11, 12], the first integral method [13, 14], the modified simple equation method [15-17],
the (G′/G)-expansion method [18-25], the homotopy perturbation method [26-30], the exp(−Φ (ξ ))-expansion method
[31], the variational iteration method [32] and the F-expansion method [33-35] and so on.

The Jimbo-Miwa equation was first announced by M. Jimbo and T. Miwa [36] and it is well-known that this model is not
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Painlevé integrable. For many years many expert have researched it and certain explicit solutions have been obtained
[37-39]. Exact three-wave solutions as well as periodic cross-kink wave solutions, doubly periodic solitary wave
solutions and breather type of two-solitary wave solutions for the Jimbo-Miwa equation have been attained using the
generalized three-wave method in [40]. The KP equation is used to model shallow-water waves with weakly non-linear
restoring forces. It is a natural generalization of the KdV equation and it gives multiple soliton solutions. The ZK
equation governs the behavior of weakly nonlinear ion-acoustic waves in plasma comprising cold ions and hot
isothermal electrons in the presence of a uniform magnetic field [41].

In this work we would like to use the generalized Kudryashov methods to seek the exact travelling wave solutions for the
(3+1)-dimensional Jimbo-Miwa (JM) equation, the (3+1)-dimensional Kadomtsev-Petviashvili equation and the
(3+1)-dimensional Zakharov-Kuznetsov (ZK) equation. The main advantage of this method over the existing other
methods is that it provides more new exact traveling wave solutions.

The layout of this paper is systematized as follows. In Section 2, we give the description of the generalized Kudryashov
method. In section 3, we apply this method to the Jimbo-Miwa equations, the Kadomtsev-Petviashvili equation and the
Zakharov-Kuznetsov equation. In section 4, we discuss the graphical representation of some obtained solutions and the
sections 5, we briefly make a summary to the results that have been obtained.

2 Algorithm of the generalized Kudryashov method

In this section, we describe the generalized Kudryashov method for finding the exact traveling wave solutions of NLEEs.

Suppose that we have NLEEs of the form

Φ(u,
δ u
δ t

,
δ u
δ x

,
δ u
δ y

,
δ u
δ z

,
δ 2u
δ x2 ,

δ 2u
δ y2 ,

δ 2u
δ z2 , · · ·) = 0,x ∈ Φ , t > 0, (1)

where u = u(x,y,z, t)is an unknown function, Φ is a polynomial in uand its various partial derivatives, in which the
highest order derivatives and nonlinear terms are involved.

The foremost steps of generalized Kudryashov method are as follows [42].

Step 1: The traveling wave transformation u(x,y,z, t) = u(ξ ), ξ = x + y + z − ct transform Eq. (1) into an ordinary

differential equation of the form

Θ(u,
du
dξ

,
d2u
dξ 2 . · · ·) = 0, (2)

Step 2: Suppose that the solution of Eq. (3) has the following form

u(ξ ) =

N
∑

i=0
aiQi(ξ )

M
∑
j=0

b jQ j(ξ )
, (3)

where ai(i = 0,1,2, ...,N) and b j( j = 0,1,2, ...,M) are constants to be determined later such aN ̸= 0 and bM ̸= 0, and
Q = Q(ξ ) satisfies the ordinary differential equation

dQ(ξ )
dξ

= Q2(ξ )−Q(ξ ). (4)
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The solutions of Eq. (4) are as follows:

Q(ξ ) =
1

1+Aexp(ξ )
. (5)

Step 3: Determine the positive integer numbers N and M in Eq. (3) by using the homogeneous balance method between

the highest order derivatives and the nonlinear terms in Eq. (2).

Step 4: Substituting Eqs. (3) and (4) into Eq. (2), we obtain a polynomial in Qi− j, (i, j = 0, 1, 2, · · · ). In this polynomial

equating all terms of same power and equating them to zero, we obtain a system of algebraic equations which can be
solved by the Maple or Mathematica to get the unknown parameters ai(i = 0, 1, 2, ...,N) and b j( j = 0, 1, 2, ...,M), ω .
Consequently, we obtain the exact solutions of Eq. (1).

3 Application

3.1 The (3+1)-dimensional Jimbo-Miwa (JM) equation

In this subsection we will find the exact traveling wave solutions of the Jimbo-Miwa (JM) equation through the
generalized Kudryashov method.

Let us consider the (3+1)-dimensional JM equation [38] of the form

uxxxy +3uyuxx +3uxuxy +2uyt −3uxz = 0. (6)

Using the traveling wave transformation of the form

u(ξ ) = u(x,y,z, t) , ξ = x+ y+ z− ct. (7)

Eq. (6) is converted into the following ordinary differential equation

uiv +3
((

u′
)2
)′
− (2c+3) u′′ = 0. (8)

Eq. (8) is integrable, therefore, integrating once Eq. (8) with respect to ξ and neglecting the constant of integration, we
obtain

u′′′+3
(
u′
)2 − (2c+3) u′ = 0. (9)

Considering the homogeneous balance between the highest order nonlinear derivative u′′′ and nonlinear term of the
highest order (u′)2in Eq. (9), we attain N = M+1.

If we choose M = 1then N = 2. Hence for M = 1and N = 2Eq. (3) reduces to

u(ξ ) =
a0 +a1Q+a2Q2

b0 +b1Q
, (10)

where a0, a1, a2, b0and b1are constants to be determined later.

Now substituting Eq. (10) into Eq. (9), we get a polynomial inQ(ξ ), equating the coefficient of same power ofQ(ξ ), we
attain the following system of algebraic equations:
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3a2
2b2

1 +6a2b3
1 = 0,

−6a2
2b2

1 −12a2b3
1 +12a2

2b0b1 +24a2b0b2
1 = 0,

36a2b2
0b1 −2ca2b3

1 +4a2b3
1 +12a2

2b2
0 −24a2

2b0b1 +6a1a2b0b1 −6a0a2b2
1 +3a2

2b2
1 −48a2b0b2

1 = 0,

12a2
2b0b1 −12a0a2b0b1 +2a2b3

1 −24a2
2b2

0 +12a1a2b2
0 −72a2b2

0b1 +16a2b0b2
1

−8ca2b0b2
1 +2ca2b3

1 −12a1a2b0b1 +24a2b3
0 +12a0a2b2

1 = 0,

12a2
2b2

0 −6a0a2b2
1 +6a1b2

0b1 −6a0b0b2
1 +24a0a2b0b1 −6a0b2

0b1 −10ca2b2
0b1 −6a0a1b0b1

+8a2b0b2
1 +3a2

1b2
0 +3a2

0b2
1 +26a2b2

0b1 +2a0b3
1 +2ca0b3

1 −54a2b3
0 +6a1a2b0b1 +6a1b3

0

−2a1b0b2
1 −2ca1b0b2

1 +8ca2b0b2
1 −24a1a2b2

0 = 0,

−2a0b3
1 +4ca0b0b2

1 −6a2
1b2

0 −2ca0b3
1 −12a0a2b0b1 −16a1b2

0b1 +10a2b2
0b1 −6a2

0b2
1

+2ca1b0b2
1 +12a0b2

0b1 +10ca2b2
0b1 −4ca2b3

0 +12a1a2b2
0 +2a1b0b2

1 +16a0b0b2
1

+12a0a1b0b1 −12a1b3
0 +32a2b3

0 −4ca1b2
0b1 = 0,

−6a0a1b0b1 +4a1b3
0 −4ca0b2

1b0 +3a2
1b2

0 +4ca1b2
0b1 −10a0b0b2

1 −4a0b2
0b1

+2ca0b2
0b1 −2a2b3

0 +10a1b2
0b1 +3a2

0b2
1 +4ca2b3

0 −2ca1b3
0 = 0,

2a1b3
0 −2a0b2

0b1 −2ca0b2
0b1 +2ca1b3

0 = 0,

Solving the above system of equations for a0 , a1 , a2 , b0 ,b1andc, we attain the following values:
Set 1: c =−1 , a0 =

b0(a1+2b0)
b1

, a2 =−2b1.

Set 2: c = 0.50 , a0 =−0.50a1 , a2 = 4b0 , b1 =−2b0.

Set 1 corresponds the following solutions for Jimbo-Miwa equation

u1 (ξ ) =
a1Aexp(ξ )+2b0Aexp(ξ )+2b0 +a1 −2b1

(1+Aexp(ξ )) b1
,

where ξ = x+ y+ z+ t.

Set 2 corresponds the following solutions for Jimbo-Miwa equation

u2 (ξ ) =
1
2

(
a1 −a1A2 exp(2ξ )+8b0

)
(A2 exp(2ξ )−1) b0

,

where ξ = x+ y+ z−0.50t.

Remark: All of these solutions have been verified with Maple by substituting them into the original solutions.

3.2 The (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation

In this subsection we will construct the generalized Kudryashov method to find the exact traveling wave solutions of
the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation which is an important nonlinear equation in mathematical
physics. Let us consider the (3+1)-dimensional KP equation [43]

(ut +6uux +uxxx)x +3uyy +3uzz = 0. (11)

The KP equations describe the dynamics of solitons and nonlinear waves in plasma physics and fluid dynamics [44].

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 3, 46-57 (2015) / www.ntmsci.com 50

We investigate the solutions of the KP equation by the method described in section 2.The wave transformation (7)
reduces Eq. (11) into the following ordinary differential equations

(
−cu′+6uu′+u′′′

)′
+6u′′ = 0. (12)

Eq. (12) is integrable, therefore, integrating twice and neglecting the constant of integration, we obtain

(6− c) u+3u2 +u′′ = 0. (13)

Considering the homogeneous balance between the highest order nonlinear derivative u′′ and nonlinear term of the
highest order u2in Eq. (13), we attain N = M+2.

If we choose M = 1then N = 3. Hence for M = 1and N = 3Eq. (3) reduces to

u(ξ ) =
a0 +a1Q+a2Q2 +a3Q3

b0 +b1Q
, (14)

where a0, a1, a2, a3, b0and b1are constants to be determined later. Now substituting Eq. (14) into Eq. (13), we get a
polynomial inQ(ξ ), equating the coefficient of same power ofQ(ξ ) , we attain the following system of algebraic
equations:

6a3b2
1 +3a2

3b1 = 0,

3a2
3b0 −10a3b2

1 +2a2b2
1 +16a3b0b1 +6a2a3b1 = 0,

10a3b2
1 −27a3b0b1 +6a1a3b1 −3a2b2

1 − ca3b2
1 +3a2

2b1 +6a2b0b1 +12a3b2
0 +6a2a3b0 = 0,

6a1a3b0 −21a3b2
0 − ca2b2

1 +6a0a3b1 −2ca3b0b1 +3a2
2b0 +6a1a2b1 +6a2b2

0 −9a2b0b1 +7a2b2
1 +23a3b0b1 = 0,

6a1a2b0 +3a2
1b1 − ca3b2

0 +6a1b2
1 −10a2b2

0 +2a1b2
0 −2ca2b0b1 +a1b0b1 +6a0a3b0

+15a2b0b1 +15a3b2
0 − ca1b2

1 −a0b2
1 −2a0b0b1 +6a0a2b1 = 0,

−ca2b2
0 +6a0a2b0 +3a2

1b0 +11a1b0b1 +3a0b0b1 +7a0b2
1 +10a2b2

0 +6a0a1b1 − ca0b2
1 −3a1b2

0 −2ca1b0b1 = 0,

6a0a1b0 −2ca0b0b1 +3a2
0b1 +11a0b0b1 +7a1b2

0 − ca1b2
0 = 0,

6a0b2
0 +3a2

0b0 − ca0b2
0 = 0.

Solving the above system of equations for a0, a1, a2,a3, b0,b1andc, we attain the following values:

Set 1: c = 5, a0 =− 1
3 b0, a1 = 2b0 − 1

3 b1, a2 = 2(b1 −b0) , a3 =−2b1 .

Set 2: c = 7, a0 = 0, a2 = 2b1 −a1, a3 =−2b1,b0 = 0.50a1.

Set 1 corresponds the following solutions for KP equation

u1 (ξ ) =
1
3

(
4Aexp(ξ )−A2 exp(2ξ )−1

)
(1+Aexp(ξ ))2 ,

where ξ = x+ y+ z−5t.

Set 2 corresponds the following solutions for KP equation

u2 (ξ ) =
2Aexp(ξ )

(1+Aexp(ξ ))2 ,
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where ξ = x+ y+ z−7t.

Remark: All of these solutions have been verified with Maple by substituting them into the original solutions.

3.3 The (3+1)-dimensional Zakharov-Kuznetsov (ZK) equation

In this subsection, we will apply the generalized Kudryashov method to construct new exact traveling wave solutions to
the Zakharov-Kuznetsov (ZK) equation.

Let us consider the (3+1)-dimensional ZK equation [17] is of the form

ut +auux +uxx +uyy +uzz = 0. (15)

Where a is a positive constant. The ZK equation is a generalization of the KdV equation. The ZK equation governs the
behavior of weakly nonlinear ion-acoustic waves in plasma comprising cold ions and hot isothermal electrons in the
presence of a uniform magnetic field. The ZK equation, which is a more isotropic, was first derived for describing
weakly nonlinear ion-acoustic waves in strongly magnetized lossless plasma in two dimensions. It was found that the
solitary wave solutions of the ZK equation are inelastic.

We investigate the solutions of the ZK equation by the method described in section 2.The wave transformation (7)
reduces Eq. (15) into the following ordinary differential equations

−cu′+auu′+3u′′ = 0. (16)

Integrating once and neglecting the constant of integration, we obtain

−cu+
1
2

au2 +3u′ = 0 , (17)

Taking the homogeneous balance between the highest order term u2 and the derivative term u′ from Eq. (17), yields
N = M+1.

If we choose M = 1 then N = 2. Hence for M = 1 and N = 2 Eq. (3) reduces to

u(ξ ) =
a0 +a1Q+a2Q2

b0 +b1Q
, (18)

where a0 , a1 , a2 , b0and b1are constants to be determined later. Now substituting Eq. (18) into Eq. (17), we get a
polynomial inQ(ξ ), equating the coefficient of same power ofQ(ξ ) , we attain the following system of algebraic
equations:

6a2b1 +aa2
2 = 0,

−6a2b1 −2ca2b1 +2aa1a2 +12a2b0 = 0,

aa2
1 −2ca2b0 −2ca1b1 +2aa0a2 −6a0b1 +6a1b0 −12a2b0 = 0,

−6a1b0 +6a0b1 −2ca0b1 −2ca1b0 +2aa0a1 = 0,

aa2
0 −2ca0b0 = 0.
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Solving the above system of equations for a0 , a1 , a2, b0 ,b1andc, we attain the following values:
Set 1: c =−6, a0 = 0, a1 = 0, b0 =

1
12 aa2, b1 =− 1

6 aa2.

Set 2: c =−3, a0 = 0, a2 = 0, b0 =− 1
6 aa1 −b1.

Set 3:c =−3, a0 = 0, b0 =− 1
6 aa1, b1 =− 1

6 aa2.

Set 4:c = 3, a0 =−a1, a2 = 0, b0 =− 1
6 aa1.

Set 5:c = 3, a0 =−a2 −a1, b0 =− 1
6 aa2 − 1

6 aa1, b1 =− 1
6 aa2.

Set 6:c = 6, a0 = a2, a1 =−2a2, b0 =
1

12 aa2, b1 =− 1
6 aa2.

Set 1 corresponds the following solutions for ZK equation

u1 (ξ ) =
12

a (A2 exp(2ξ )−1)
,

where ξ = x+ y+ z+6 t .
Set 2 corresponds the following solutions for ZK equation

u2 (ξ ) =− 6a1

aa1 +aa1Aexp(ξ )+6b1Aexp(ξ )
,

where ξ = x+ y+ z+3 t .
Set 3 corresponds the following solutions for ZK equation

u3 (ξ ) =− 6
a (1+Aexp(ξ ))

,

where ξ = x+ y+ z+3 t .
Set 4 corresponds the following solutions for ZK equation

u4 (ξ ) =
6a1Aexp(ξ )

aa1 +aa1Aexp(ξ )−6b1
,

where ξ = x+ y+ z−3 t .
Set 5 corresponds the following solutions for ZK equation

u5 (ξ ) =
6Aexp(ξ )

a (1+Aexp(ξ ))
,

where ξ = x+ y+ z−3 t .
Set 6 corresponds the following solutions for ZK equation

u6 (ξ ) =
12A2 exp(ξ )

a (A2 exp(2ξ )−1)
,

where ξ = x+ y+ z−6 t.

Remark: All of these solutions have been verified with Maple by substituting them into the original solutions.

4 Graphical representation of some obtained solutions

Graphical representation is a significant instrument for communication and it exemplifies evidently the solutions of the
problems. We plot solutions u1and u4for (3+1)-dimensional Jimbo-Miwa (JM) equation in Figures 1-2, solutions u1and
u2for (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation in Figures 3-4 and solutions u2and u6for
(3+1)-dimensional Zakharov-Kuznetsov (ZK) equation in Figures 5-6 along with y = z = 0. The graphs eagerly have
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shown the solitary wave form of the solutions.

 

 

 

 

 

 

Fig. 1: Kink shaped soliton of JM equation for a1 = 1 , b0 = 2, b1 = 0.50,A = 3 , y = z = 0within the
interval−5 ≤ x , t ≤ 5. (Only shows the shape ofu1(ξ )), the left figure shows the 3D plot and the right figure shows the
2D plot fort = 0.
 

 

 

 

 

 

Fig. 2: Singular Kink soliton of JM equation for a1 = 1 , b0 = 1 , A =−0.50 , y = z = 0within the interval−5 ≤ x , t ≤ 5.
(Only shows the shape ofu2(ξ )), the left figure shows the 3D plot and the right figure shows the 2D plot fort = 0.
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Fig. 3: Bell-shaped soliton of KP equation for A = 2, y = z = 0within the interval−1 ≤ x , t ≤ 1. (Only shows the shape
ofu1(ξ )), the left figure shows the 3D plot and the right figure shows the 2D plot fort = 0.
 

 

 

 

 

 

Fig. 4: Singular soliton of KP equation for A =−0.50 , y = z = 0within the interval−5 ≤ x , t ≤ 5. (Only shows the shape
ofu2(ξ )), the left figure shows the 3D plot and the right figure shows the 2D plot fort = 0.
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Fig. 5: Kink shaped soliton of ZK equation for a = 1 , A = 3 , y = z = 0within the interval−5 ≤ x , t ≤ 5. (Only shows the
shape ofu2(ξ )), the left figure shows the 3D plot and the right figure shows the 2D plot fort = 0.
 

 

 

 

 

 

Fig. 6: Singular Kink soliton of ZK equation for a = 1 , A = 0.10 , y = z = 0within the interval−5 ≤ x , t ≤ 5. (Only
shows the shape ofu6(ξ )), the left figure shows the 3D plot and the right figure shows the 2D plot fort = 0.

5 Conclusions

The generalized Kudryashov method is effectively applied to establish exact traveling wave solutions to the
(3+1)-dimensional Jimbo-Miwa (JM) equation, the (3+1)-dimensional Kadomtsev-Petviashvili equation and the
(3+1)-dimensional Zakharov-Kuznetsov (ZK) equation. The aim of this work is to present a reliable treatment for
studying of these three equations. The generalized Kudryashov method is very effective to construct exact solutions and
gives more general solutions. The attained solutions may be convenient for understanding the mechanism of the intricate
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nonlinear physical phenomena in wave collaboration. These consequences are going to very convenient for leading
research in future.
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