A Remark on A Fundamental System of Units of Numbers Fields of degree 2, 3, 4 and 6

M'hammed Ziane ${ }^{1}$
Universite Mohammed Premier, Faculte des Sciences,Departement de Math. et Info., Laboratoire "ACSA",60000 Oujda MAROC.

Abstract

Let $M_{n}=\left(D_{n}\right)^{n} \pm D_{n}>1$ where $D_{n}=t v^{n} \pm 1 \neq 0, t, v \in N^{*}$ and $n \in\{4,6\}$. The integer M_{n} is always written as $M_{n}=v^{n} m_{n}$, where m_{n} is a non-zero positive integer; assuming m_{n} square-free, we exhibit a fundamental system of units for families of pure fields $K_{n}=\mathbb{Q}\left(\sqrt[n]{M_{n}}\right)$, including a family already given by H.-J. Stender.

Keywords: Fundamental system of units (FSU), Parametrization, the integral basis.

1. Introduction

There is a closed link between a fundamental system of units of some number fields, the resolution of some Diophantine equations, the cycle of continued fractions, and certain protocols in cryptography, see J. Buchmann [2]. Also, the regulator of a number field K, based on knowledge of a system fundamental of units, is essential to compute the class number of K, and therefore the Hilbert class towers and the construction of a codes on this number field (see V. Guruswami [5]. This, in addition to many other applications, justifies the study of such a system.

If K is an algebraic extension of degree $n=r+2 s$ on \mathbb{Q}, the field of rational numbers, where r is the number of real embeddings and $2 s$ is the number of complex embeddings of K, Dirichlet (1840) established that the unit group U_{k} of K is generated by $r+s-1$ units. The group U_{K} is said to be of rank $r+s-1$. The set $S=\left\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r+s-1}\right\}$ of all generators, form what is called a fundamental system of units of the field K. However, the explicit determination of such a system is very limited.

The methods for determining a fundamental system of units of a number field K are very varied. However, regardless to the method adopted, the way followed by several mathematicians is to find in the field K
(1) Units,
(2) an independent system of units
(3) a maximal independent system of units,
(4) a fundamental system of units.

Such a program can be illustrated as follows: L. Bernstein and H. Hasse [1] considered the field $K=\mathbb{Q}(\omega)$, where $\omega=\sqrt[n]{D^{n} \pm d}$, with $d \mid D$ and they gave a system of units. The result was generalized by F. Halter-Koch and H.-J. Stender [6] for $d \mid D^{n}$. Based on a work of G. Frei and C. Levesque [4] that ensures the maximality of this system for $n \in\{2,3,4,6\}$, H-J Stender studied:
(1) In [11] (page 211), the case $n=4$, where he assumes that $D^{4} \pm d$ is squarefree.
(2) In [13], the case $n=4$ where he assumes that $D^{4} \pm d$ is free of power fourth.
(3) In [12] (page 87), the case $n=6$, where he assumes that $D^{6} \pm d$ is squarefree.

[^0]These assumptions allow him to use directly the Bernstein and H. Hasse units [1] to determine a fundamental unit of the quadratic fields $K_{2,4}=\mathbb{Q}\left(\sqrt{M_{4}}\right)$ and $K_{2,6}=\mathbb{Q}\left(\sqrt{M_{6}}\right)$ and a fundamental unit of the pur cubic field $K_{3}=\mathbb{Q}\left(\sqrt[3]{M_{6}}\right)$ hence the author determines then a fundamental system of units of the fields $K_{6}=\mathbb{Q}\left(\sqrt[6]{M_{6}}\right)$ and $K_{4}=\mathbb{Q}\left(\sqrt[4]{M_{4}}\right)$.

Question: What happens if M_{n} contains one $n t h$ power?
To partially answer to this question, (based on an idea of C. Levesque, laval University, Quebec- Canada), we introduce the parameterizations:

$$
M_{n}=\left(D_{n}\right)^{n} \pm D_{n}>1 \text { with } D_{n}=t v^{n} \pm 1 \neq 0 ; t, v \in \mathbb{N}^{*}
$$

Here the plus sign commutes with the minus sign in the expression of M_{n} and D_{n}, that is to say:

$$
\left\{\begin{array}{l}
\text { Case "-" }: M_{n}=\left(D_{n}\right)^{n}-D_{n} \text { and } D_{n}=t v^{n}+1, \\
\text { Case "+" }: M_{n}=\left(D_{n}\right)^{n}+D_{n} \text { and } D_{n}=t v^{n}-1
\end{array}\right.
$$

Let

$$
m_{6}=a b>1
$$

where

$$
(a, b)=\left\{\begin{array}{l}
\left(t v^{6}+1, t^{5} v^{24}+5 t^{4} v^{18}+10 t^{3} v^{12}+10 t^{2} v^{6}+5 t\right) \text { in Case } "-" \\
\left(t^{5} v^{24}-5 t^{4} v^{18}+10 t^{3} v^{12}-10 t^{2} v^{6}+5 t, t v^{6}-1\right) \text { in Case } "+"
\end{array}\right.
$$

And let

$$
m_{4}=c d>1
$$

where

$$
(c, d)=\left\{\begin{array}{l}
\left(t v^{4}+1, t^{3} v^{8}+3 t^{2} v^{4}+3 t\right) \text { in Case } "-" \\
\left(t^{3} v^{8}-3 t^{2} v^{4}+3 t, t v^{4}-1\right) \text { in Case } "+"
\end{array}\right.
$$

In both cases, we have the form $M_{n}=m_{n} v^{n},(n \in\{4,6\})$. In the following, we assume that m_{n} is square-free, but the M_{n} always, contains an nth power, $(n \in\{4,6\})$, unless $v=1$, (the case $v=1$ coincides with the case of Stender. In the following we always assume $v \geq 2$). Obviously, $K_{n}=\mathbb{Q}\left(\sqrt[n]{M_{n}}\right)=\mathbb{Q}\left(\sqrt[n]{m_{n}}\right)$ but m_{n} no longer admits a parametrization similar to that of M_{n}, therefore the Bernstein units [1] are no longer valid. In this paper, we determine a fundamental systems of units of the number fields

$$
K_{n}=\mathbb{Q}\left(\sqrt[n]{M_{n}}\right), n \in\{4,6\} \text { and } K_{3}=\mathbb{Q}\left(\sqrt[3]{M_{6}}\right)
$$

and obviously those of quadratic sub-fields $K_{2,4}=\mathbb{Q}\left(\sqrt{M_{4}}\right)$ and $K_{2,6}=\mathbb{Q}\left(\sqrt{M_{6}}\right)$.
In T. Nagell [7], T. Nagell [8] and H.-J. Stender [15] we find a full theory dealing with the Diophantine equations of the form $S_{C}: A X^{2}-B Y^{2}=C,(C \in\{1,2,4\})$, in connection with the fundamental unit of a quadratic field; for $\mathrm{C}=1$, we summarize (see [15], theorem 3, page 295):

Theorem 1.1 Given a solution (x, y) of the Diophantine equation $S_{1}: A X^{2}-B Y^{2}=1, A, B \in \mathbb{N},(A, B)=1$ and $A B$ is square-free, such that

$$
x<\frac{1}{4}(A+B)-\frac{1}{2} \text { or } y<\frac{1}{4}(A+B)+\frac{1}{2},
$$

then

$$
\eta=(x \sqrt{A}+y \sqrt{B})^{2}
$$

is a fundamental unit>1 of positive norm of the field $K=\mathbb{Q}(\sqrt{A B})$.
Now we give the main results of this section.
Theorem 1.2 Let t; v be two nonzero positive integers, $D_{6}=t v^{6} \pm 1 \neq 0$. Let

$$
M_{6}=\left(D_{6}\right)^{6} \pm D_{6}=m_{6} v^{6}>1, \quad \omega=\sqrt[6]{m_{6}}
$$

Suppose that m_{6} is square-free. Then

$$
\eta_{2,6}=\frac{D_{6}}{\left(v^{3} w^{3}-\left(D_{6}\right)^{3}\right)^{2}}
$$

is a fundamental unit of

$$
K_{2,6}=\mathbb{Q}\left(\sqrt{M_{6}}\right)
$$

Proof: Consider the equation

$$
S_{1}: a X^{2}-b Y^{2}=1
$$

First of all $(a, b)=1$, indeed:
Case "-": Let d an integer such that $d \mid \alpha$ and $d \mid b=t\left[\left(t v^{6}+1\right)^{4}+\left(t v^{6}+1\right)^{3}+\left(t v^{6}+1\right)^{2}+\left(t v^{6}+1\right)+1\right]=$ $t\left(a^{4}+a^{3}+a^{2}+a+1\right)$. Then $d \mid\left(b-t\left(a^{4}+a^{3}+a^{2}+a\right)=t\right.$.
an then $d \mid\left(a-t v^{6}\right)=1$. Thus $(a, b)=1$.
Case "+": Let d an integer such that $d \mid b$ and $d \mid a=t\left[\left(t v^{6}-1\right)^{4}-\left(t v^{6}-1\right)^{3}+\left(t v^{6}-1\right)^{2}-\left(t v^{6}-1\right)+1\right]=$ $t\left(b^{4}-b^{3}+b^{2}-b+1\right)$. Then $d \mid\left(a-t\left(b^{4}-b^{3}-a^{2}+b\right)=t\right.$.
$d \mid\left(b-t v^{6}\right)=1$. Thus $(a, b)=1$. In addition the equation $\left(S_{1}\right)$ has the solution,

$$
(x, y)=\left\{\begin{array}{c}
\left(\left(t v^{6}+1\right)^{2}, v^{3}\right) \text { in }\left(\text { Case" -" }^{2}\right), \text { with: } \\
\frac{1}{4}(a+b)-\frac{1}{2}>\frac{1}{4}\left(10 t^{3} v^{12}+10 t^{2} v^{6}+5 t-1\right)>\left(t v^{6}+1\right)^{2}=x \\
\text { or } \\
\left(v^{3},\left(t v^{6}-1\right)^{2}\right) \text { in }(\text { Case "+" }), \text { with: } \\
\frac{1}{4}(a+b)-\frac{1}{2}=\frac{1}{4}\left(t^{5} v^{24}-5 t^{4} v^{18}+10 t^{3} v^{12}-10 t^{2} v^{6}+t v^{6}+5 t-1\right)-\frac{1}{2}>v^{3}=x .
\end{array}\right.
$$

So in both cases, and by theorem 1.1,

$$
\eta_{2,6}=\frac{D_{6}}{\left(v^{3} w^{3}-\left(D_{6}\right)^{3}\right)^{2}}
$$

is the fundamental unit of the quadratic field $K_{2,6}=\mathbb{Q}\left(\sqrt{M_{6}}\right)$.
Theorem 1.3 Let t; v be two nonzero positive integers, $D_{4}=t v^{4} \pm 1 \neq 0$. Let

$$
M_{4}=\left(D_{4}\right)^{4} \mp D_{4}=m_{4} v^{4}>1, \quad \omega=\sqrt{m_{4}}
$$

Suppose that m_{4} is square-free.Then

$$
\eta_{2,4}=\frac{\left(v^{2} w^{2}-\left(D_{4}\right)^{2}\right)^{2}}{D_{4}}
$$

is a fundamental unit of

$$
K_{2,4}=\mathbb{Q}\left(\sqrt{M_{4}}\right) .
$$

Proof: Consider the equation

$$
S_{1}: c X^{2}-d Y^{2}=1
$$

First of all $(c, d)=1$, indeed:
Case "-": Let l an integer such that $l \mid c$ and $l \mid d=t a^{2}+t a+t$; then $l \mid\left(b-t a^{2}-t a\right)=t$.
But $l \mid a$, Then $l \mid\left(a-t v^{2}\right)=1$.
Case " + ": is such. In addition the equation $\left(S_{1}\right)$ has the solution,

$$
(x, y)=\left\{\begin{array}{c}
\left(t v^{4}+1, v^{2}\right) \text { in }(\text { Case "-" }), \text { with: } \\
2(a+b)-1=2 t^{3} v^{8}+\left(6 t^{2}+2 t\right) v^{4}+6 t+1>t v^{6}+1=x_{1} \\
\text { or } \\
\left(v^{2}, t v^{4}-1\right) \text { in }(\text { Case "+" }), \text { with: } \\
2(a+b)-1=2 t^{3} v^{8}+\left(2 t-6 t^{2}\right) v^{4}-6 t-3>v^{2}=x_{2}
\end{array}\right.
$$

So in both cases, and by theorem 1.1,

$$
\eta_{2,4}=\frac{\left(v^{2} w^{2}-\left(D_{4}\right)^{2}\right)^{2}}{D_{4}}
$$

is the fundamental unit of $K_{2,4}=\mathbb{Q}\left(\sqrt{M_{4}}\right)$.

2. A Fundamental System of Units of $K_{3}=\mathbb{Q}(\sqrt[3]{M})$

Let the Diophantine equation

$$
(G)=A x^{3}-B y^{3}=1
$$

with $A, B \in \mathbb{N}$, square-free, $A B>1$. According to Stender [14], we have two possibilities for the fundamental unit of $\mathbb{Q}\left(\sqrt[3]{A B^{2}}\right)$:

Theorem 2.4 Let $A>1$ and $B>1$. Let (x, y) be a solution of the equation (G). Then

$$
\eta=(x \sqrt[3]{A}-y \sqrt[3]{B})^{3}
$$

is either a fundamental unit, or the square of the fundamental unit of the field $K=\mathbb{Q}\left(\sqrt[3]{A B^{2}}\right)$.
Now we give the main results of this section.
Theorem 2.5 Let t, v be two nonzero positive integers $D_{6}=t v^{6} \pm 1 \neq 0$. Let

$$
M_{6}=\left(D_{6}\right)^{6} \mp D_{6}=m_{6} v^{6}>1, \text { and } \omega=\sqrt[6]{m_{6}}
$$

Suppose that m_{6} is square-free. Then

$$
\eta_{3}= \pm \frac{\left(\left(D_{6}\right)^{2}-v^{2} w^{2}\right)^{3}}{D_{6}}
$$

is either a fundamental unit, or the square of the fundamental unit of the field $K_{3}=\mathbb{Q}\left(\sqrt[3]{M_{6}}\right)$.
Proof: Case "-": Let the equation
(G): $a^{2} x^{3}-b y^{3}=1$,
which has the solution

$$
(x, y)=\left(t v^{6}+1, v^{2}\right)
$$

Case " + ": Let the equation

$$
(G): a x^{3}-b^{2} y^{3}=1,
$$

which has the solution

$$
(x, y)=\left(v^{2}, t v^{6}-1\right)
$$

In both cases and bay theorem 2.4,

$$
\eta_{3}=\mp \frac{\left(v^{2} w^{2}-\left(D_{6}\right)^{2}\right)^{3}}{D_{6}}
$$

is the fundamental unit, or the square of the fundamental unit of the field K_{3}.
Let M be a positive integer cube free, then we set $M=f g^{2}$, with $(f, g)=1, \bar{M}=f^{2} g, \Omega=\sqrt[3]{M}$, et $\bar{\Omega}=\sqrt[3]{\bar{M}}$
We say that
(1) $K=\mathbb{Q}(\sqrt[3]{M})$ is of first kind if

$$
f g^{2} \not \equiv \pm 1(\bmod 9)
$$

(2) $K=\mathbb{Q}(\sqrt[3]{M})$ is of second kind if

$$
f g^{2} \equiv \pm 1(\bmod 9)
$$

and by Dedekind [3], we have
Proposition 2.6 (i) If K is of first kind, then $\{1, \Omega, \bar{\Omega}\}$ is an integral basis of $K=\mathbb{Q}(\Omega)$.
(ii) If K is of second kind, then $\left\{\frac{1}{3}(1+f \Omega+g \bar{\Omega}), \Omega, \bar{\Omega}\right\}$ is an integral basis of $K=\mathbb{Q}(\Omega)$. Moreover each algebraic integer of $K=\mathbb{Q}(\Omega)$ can be written in the form $\frac{1}{3}(x+y \Omega+z \bar{\Omega}), x, y, z \in \mathbb{Z}$.

Now, and more precisely, the fundamental unit of the field $K_{3}=\mathbb{Q}\left(\sqrt[3]{M_{6}}\right)$ is given by
Theorem 2.7 Let t; v be two nonzero positive integers, $D_{6}=t v^{6} \pm 1 \neq 0$. Let

$$
M_{6}=\left(D_{6}\right)^{6} \pm D_{6}=m_{6} v^{6}>1, \text { and } \omega=\sqrt[6]{m_{6}} .
$$

Suppose that m_{6} is square-free. Then

$$
\eta_{3}= \pm \frac{\left(\left(D_{6}\right)^{2}-v^{2} w^{2}\right)^{3}}{D_{6}}
$$

is a fundamental unit of the field $K_{3}=\mathbb{Q}\left(\sqrt[3]{M_{6}}\right)=\mathbb{Q}\left(\omega^{2}\right)$.
Proof: As m_{6} is square free, according to the proposition 2.6, $\left\{1, \omega^{2}, \omega^{4}\right\}$ is an integral basis of $K_{3}=\mathbb{Q}\left(\omega^{2}\right)$ if K_{3} is of first kind; and $\left\{\frac{1}{3}\left(1+\mathrm{f} \omega^{2}+\omega^{4}\right), \omega^{2}, \omega^{4}\right\}$ is an integral basis of $K_{3}=\mathbb{Q}\left(\omega^{2}\right)$ if K_{3} is of second kind. In addition, according to the proposition 2.6, each algebraic integer of $K_{3}=\mathbb{Q}\left(\omega^{2}\right)$ can be written in the form

$$
\frac{1}{3}\left(x+y \omega^{2}+z \omega^{4}\right), \text { with } \quad x, y, z \in \mathbb{Z}
$$

(1) Case"-": $m_{6}=D_{6}\left(t^{5} v^{24}+5 t^{4} v^{18}+10 t^{3} v^{12}+10 t^{2} v^{6}+5 t\right) e t$

$$
\begin{equation*}
\eta_{3}=1-\left(3\left(D_{6}\right)^{3} v^{2}\right) \omega^{2}+\left(3 D_{6} v^{4}\right) \omega^{4} \tag{2.1}
\end{equation*}
$$

Suppose that $\eta_{3}=\zeta^{2}$, where ζ is a unit of K_{3}.
(a) Let K_{3} is of first kind. Then

$$
\zeta=x+y \omega^{2}+z \omega^{4}, \quad \text { with } x, y, z \in \mathbb{Z}
$$

as $\eta_{3}=\zeta^{2}$, we have

$$
\begin{align*}
& x^{2}+2 y z m_{6}=1 \tag{2.2}\\
& 2 x y+z^{2} m_{6}=-3\left(D_{6}\right)^{3} v^{2} \tag{2.3}\\
& 2 x z+y^{2}=3 D_{6} v^{4} \tag{2.4}
\end{align*}
$$

Let's show that
(*) $\quad x y>0$ and $y \neq 0$.
According to (2.3), $x \neq 0$ and $y \neq 0$ In addition $z \neq 0$; Indeed, suppose $z=0$; then according to (2.2), $x= \pm 1$; according to (2.3), $2 y= \pm 3\left(D_{6}\right)^{3} v^{2}$, i.e. $4 y^{2}=9\left(D_{6}\right)^{6} v^{4}$; but according to (2.4), $4 y^{2}=12 D_{6} v^{4}$; then we have $12 D_{6} v^{4}=9\left(D_{6}\right)^{6} v^{4}$, i.e. $3 \mid 4$, a contradiction. According to (2.3), $x y<0$, and according to (2.2), $y z<0$. Then x and z have the same sign, i.e. $x z>0$.

According to (2.2), we have

$$
(* *) \quad\left(x, m_{6}\right)=1 .
$$

Then $\left(x, D_{6}\right)=1$. According to (2.3), $D_{6} \mid 2 x y$, i.e. $D_{6} \mid 2 y$. Then (2.4) becomes

$$
\begin{equation*}
8 x z+(2 y)^{2}=12 D_{6} v^{4} \tag{2.5}
\end{equation*}
$$

Then $\left(D_{6}\right)^{2} \mid\left(8 z^{2}\right)$. And (2.3) becomes

$$
\begin{equation*}
2(8)^{2} x y+(8 z)^{2} m_{6}=-3(8)^{2}\left(D_{6}\right)^{3} v^{2} \tag{2.6}
\end{equation*}
$$

Then $\left(D_{6}\right)^{3} \mid 2(8)^{2} y$, since $D_{6} \mid m_{6}$. And (2.4) becomes

$$
\begin{equation*}
\left(2^{2}\right)\left(8^{4}\right) 2 x z+\left(2\left(8^{2}\right) y\right)^{2}=\left(2^{2}\right)\left(8^{4}\right) 3 D_{6} v^{4} \tag{2.7}
\end{equation*}
$$

But $D_{6} \mid 8 z$; then, (seeing that $x z>0$),

$$
\left(2^{2}\right)\left(8^{4}\right) 2 x z=\left(8^{4}\right) x z_{1} D_{6}>0
$$

But $\left(D_{6}\right)^{6} \mid\left(2\left(8^{2}\right) y\right)^{2}$; then

$$
\left(2\left(8^{2}\right) y\right)^{2}=\left(y_{1}\right)^{2}\left(D_{6}\right)^{6}>0
$$

But

$$
\left(2^{2}\right)\left(8^{4}\right) 3 D_{6} v^{4}<\left(2^{2}\right)\left(8^{4}\right) 3\left(D_{6}\right)^{2}
$$

Then (2.7) implies

$$
\begin{equation*}
\left.\left(8^{4}\right) x z_{1} D_{6}+\left(y_{1}\right)^{2}\left(D_{6}\right)^{6}<\left(2^{2}\right)\left(8^{4}\right) 3 D_{6}\right)^{2} \tag{2.8}
\end{equation*}
$$

which is impossible for $D_{6} \geq 16$; but $v \geq 2$, whereby that $D_{6}=t v^{6}+1>2^{6}=64$.
(b) Let K_{3} of the second kind. Then

$$
\zeta=\frac{1}{3}\left(x+y \omega^{2}+z \omega^{4}\right), \text { with } x, y, z \in \mathbb{Z}
$$

As $\eta_{3}=\zeta^{2}$, we have

$$
\begin{align*}
& x^{2}+2 y z m_{6}=9 \tag{2.9}\\
& 2 x y+z^{2} m_{6}=-27\left(D_{6}\right)^{3} v^{2}, \tag{2.10}\\
& 2 x z+y^{2}=27 D_{6} v^{4}, \tag{2.11}
\end{align*}
$$

Then $\left(x, m_{6}\right)=1,3$ ou 9 . The 9 is excluded because m_{6} is square free. whether $\left(x, m_{6}\right)=1$ We have then the propriete (${ }^{* *}$) of first case, and get the equivalent of (2.8), namely

$$
\left(8^{4}\right) x z_{1} D_{6}+\left(y_{1}\right)^{2}\left(D_{6}\right)^{6}<\left(2^{2}\right)\left(8^{4}\right) 27\left(D_{6}\right)^{2}
$$

which is impossible for $D_{6} \geq 27$, i.e. for all $v \geq 2$.
Whether $\left(x, m_{6}\right)=3$ according to (2.9), $3 \mid y$ or $3 \mid z$. If $3 \mid y$, then according to (2.10), $3 \mid z$. If $3 \mid z$, then according to (2.11), 3|y. Brief, $3 \mid y$ and $3 \mid z$. Let

$$
x_{1}=\left(\frac{x}{3}\right), \quad y_{1}=\left(\frac{y}{3}\right) \quad \text { et } \quad z_{1}=\left(\frac{z}{3}\right)
$$

Then

$$
\begin{align*}
& x_{1}^{2}+2 y_{1} z_{1} m_{6}=1 . \tag{2.12}\\
& 2 x_{1} y_{1}+z_{1}^{2} m_{6}=-3\left(D_{6}\right)^{3} v^{2} \tag{2.13}\\
& 2 x_{1} z_{1}+y_{1}^{2}=3\left(D_{6}\right) v^{4} \tag{2.14}
\end{align*}
$$

Which brings us back again to the same contradiction above.
(2) Case " + ": As

$$
\begin{equation*}
v^{6} m_{6}=\left(D_{6}\right)^{6}+D_{6} \tag{2.15}
\end{equation*}
$$

We derive

$$
\begin{equation*}
m_{6}>\frac{\left(D_{6}\right)^{6}}{v^{6}} \tag{2.16}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\eta_{3}=1+\left(3\left(D_{6}\right)^{3} v^{2}\right) \omega^{2}-\left(3 D_{6} v^{4}\right) \omega^{4} \tag{2.17}
\end{equation*}
$$

Suppose that $\eta_{3}=\zeta^{2}$, We distinguish two cases.
(a) Let K_{3} be of the first kind. Then

$$
\zeta=x+y \omega^{2}+z \omega^{4}, \quad \text { with } x, y, z \in \mathbb{Z}
$$

Then

$$
\begin{align*}
& x^{2}+2 y z m_{6}=1 \tag{2.18}\\
& 2 x y+z^{2} m_{6}=3\left(D_{6}\right)^{3} v^{2}
\end{align*}
$$

$$
\begin{equation*}
2 x z+y^{2}=-3 D_{6} v^{4} \tag{2.20}
\end{equation*}
$$

Let's show that
$\left(*^{\prime}\right) \quad\left(x, m_{6}\right)=1$ et $D_{6} \mid 4 z$
According to (2.18), $\left(x, m_{6}\right)=1$. According to (2.19), $D_{6} \mid 2 y$. Then (2.20) becomes

$$
\begin{equation*}
4 x z+2 y^{2}=-6 D_{6} v^{4} \tag{2.21}
\end{equation*}
$$

and $D_{6} \mid 4 z$
Let's show that

$$
\left(* *^{\prime}\right) \quad x y>0 \quad \text { et } z \neq 0
$$

We have $x \neq 0$ and $z \neq 0$ otherwise according to (2.20), $y^{2}=-3 v^{4} D_{6}<0$. In addition $y \neq 0$; suppose the contrary; according to (2.19), $(4 z)^{2} m_{6}=\left(4^{2}\right)(3) v^{2}\left(D_{6}\right)^{3}$; according to $\left(*^{\prime}\right), 4 z=z_{1} D_{6}$; according to (2.16), $m_{6}>\frac{\left(D_{6}\right)^{6}}{v^{6}}$, Then

$$
\left(4^{2}\right)(3) v^{2}\left(D_{6}\right)^{3}=(4 z)^{2} m_{6}>z_{1}^{2}\left(\frac{\left(D_{6}\right)^{8}}{v^{6}}\right)
$$

which is impossible for $v \geq 2$. According to (2.18), $x^{2}=1-2 y z m_{6}>0$ then $y z<0$. According to (2.20), $2 x z=$ $-3 v^{4} D_{6}-y^{2}<0$ then $x z<0$. Then $x y>0$ The equation (2.19) becomes

$$
\begin{equation*}
\left(4^{2}\right) 2 x y+(4 z)^{2} m_{6}=\left(4^{2}\right) 3\left(D_{6}\right)^{3} v^{2} \tag{2.22}
\end{equation*}
$$

Then

$$
\left(4^{2}\right) 3\left(D_{6}\right)^{3} v^{2}=\left(4^{2}\right) 2 x y+z_{1}^{2} D^{2} m_{6}>z_{1}^{2}\left(\frac{\left(D_{6}\right)^{8}}{v^{6}}\right)
$$

which is impossible for $v \geq 2$.
(b) Let K_{3} be of the second kind. Then

$$
\zeta=\frac{1}{3}\left(x+y \omega^{2}+z \omega^{4}\right), \quad \text { with } \quad x, y, z \in \mathbb{Z}
$$

As $\eta_{3}=\zeta^{2}$, we have

$$
\begin{equation*}
x^{2}+2 y z m_{6}=9 \tag{2.23}
\end{equation*}
$$

$$
\begin{equation*}
2 x y+z^{2} m_{6}=27\left(D_{6}\right)^{3} v^{2} \tag{2.24}
\end{equation*}
$$

$$
\begin{equation*}
2 x y+y^{2}=-27 D_{6} v^{4} \tag{2.25}
\end{equation*}
$$

According to (2.23), $\left(x, m_{6}\right)=1,3$ ou 9.9 is excluded. Whether $\left(x, m_{6}\right)=1$. We have then the property $\left(*^{\prime}\right)$ and we deduce a contradiction as above. Let $\left(x, m_{6}\right)=3$. According to (2.23), 3|yz, If $3 \mid y$, then according to (2.24), 3|z. If $3 \mid z$, then according to (2.25), 3|y. Let

$$
x_{1}=\left(\frac{x}{3}\right), \quad y_{1}=\left(\frac{y}{3}\right) \quad \text { et } z_{1}=\left(\frac{z}{3}\right) ;
$$

and we deduce a contradiction as above.
3. A Fundamental System of Units of $K=\mathbb{Q}\left(\sqrt[6]{M_{6}}\right)$

We have m_{6} is square-free, the field $K_{6}=\mathbb{Q}(\omega), \omega=\sqrt[6]{m_{6}}$, is of degree 6 over \mathbb{Q}, in addition it admits a quadratic subfield $K_{2,6}=\mathbb{Q}\left(\omega^{3}\right)$ with fundamental unit $\eta_{2,6}$ (theorem 1.2), and a cubic sub-field $K_{3}=\mathbb{Q}\left(\omega^{2}\right)$ with fundamental unit η_{3} (theorem 2.7). For the determination of a fundamental system of units of the field $K_{6}=\mathbb{Q}\left(\sqrt[6]{M_{6}}\right)$, we use the Stender theorem [12]:

Theorem 3.8 Let $\eta_{2,6}$ be the fundamental unit of $K_{2,6}$, and let η_{3} be the fundamental unit of K_{3}. Let $\xi_{2}, \xi_{3} \epsilon K_{6}$ such that

$$
N_{K_{6} / K_{2,6}}\left(\xi_{2}\right)=\eta_{2,6}, \quad N_{K_{6} / K_{3}}\left(\xi_{2}\right)= \pm 1
$$

and

$$
N_{K_{6} / K_{2,6}}\left(\xi_{3}\right)=1, \quad N_{K_{6} / K_{3}}\left(\xi_{2}\right)= \pm \eta_{3,6}
$$

Let $\epsilon_{1} \in K_{6}$ be the smallest unit >1, satisfying:

$$
N_{K_{6} / K_{2,6}}\left(\epsilon_{1}\right)=1, \quad N_{K_{6} / K_{3}}\left(\epsilon_{1}\right)= \pm 1
$$

Then

$$
\left\{\xi_{2}, \xi_{3}, \epsilon_{1}\right\}
$$

is a fundamental system of d'units of K_{6}.
Let ϱ be a third root of unity, $\left(\varrho^{2}+\varrho+1=0\right)$; the conjugates $\alpha^{(j)}$ of an algebraic integer α of field $K_{6}, 0 \leq j \leq 5$, are given by:

$$
\left\{\begin{array}{c}
\alpha^{(0)}=\alpha \tag{3.26}\\
\alpha^{(1)}=-\alpha \\
\alpha^{(2)}=\varrho \alpha \\
\alpha^{(3)}=\varrho^{2} \alpha \\
\alpha^{(4)}=-\varrho \alpha \\
\alpha^{(5)}=-\varrho^{2} \alpha
\end{array}\right.
$$

And according to Stender [12], the product $\alpha \omega$ can be written in the form:

$$
\begin{equation*}
\alpha \omega=\frac{1}{6}\left(x_{0}+x_{1} \omega+x_{2} \frac{\omega^{2}}{h}+x_{3} \frac{\omega^{3}}{h} x_{4} \frac{\omega^{4}}{g h^{2}}+x_{5} \frac{\omega^{5}}{g h^{2}}\right) \tag{3.27}
\end{equation*}
$$

with $x_{i} \in \mathbb{Z}, 0 \leq i \leq 5$.
Remark 3.9 Since m_{6} is square free, then we can take $g=h=1$ in (3.27), (see [12] page 80 and page 87).

In addition, we have:
Proposition 3.10 Let α be an algebraic integer of the field $K_{6}=\mathbb{Q}(\omega)$. Let β be a unit >1 such that

$$
N_{K_{6} / K_{2,6}}(\beta)=1, \quad N_{K_{6} / K_{3}}(\beta)= \pm 1
$$

Suppose that $\beta=\alpha^{n}$. Then

$$
\begin{equation*}
\left|x_{i}\right|<\frac{k_{i}}{\omega^{i-1}}\left(\sqrt[n]{\beta}+2 \sqrt[n]{\left|\beta^{(4)}\right|}+3\right), \quad 0 \leq i \leq 5 \tag{3.28}
\end{equation*}
$$

where $k_{0}=k_{1}=1, k_{2}=k_{3}=h, k_{4}=k_{5}=g h^{2}$. In addition $x_{4} \neq 0$ and $x_{5} \neq 0$.
Now we give the main results of this section.
Theorem 3.11 Let t, v be two nonzero integers, $D_{6}=t v^{6} \mp 1>0$. Let

$$
M_{6}=\left(D_{6}\right)^{6} \pm D_{6}=m_{6} v^{6}>1, \text { and } \omega=\sqrt[6]{m_{6}}
$$

Suppose that m_{6} is square-free. Then

$$
\left\{\xi_{2}= \pm \frac{v \omega+D_{6}}{v \omega-D_{6}}, \xi_{3}=\frac{v^{3} \omega^{3}-\left(D_{6}\right)^{3}}{\left(v \omega-\mathrm{D}_{6}\right)^{3}}, \quad \epsilon_{1}=\xi_{2}^{3} \eta_{2,6}^{-1}\right\}
$$

is a fundamental system of units of $K_{6}=\mathbb{Q}\left(\sqrt[6]{M_{6}}\right)$
Proof: ξ_{2} and ξ_{3} satisfies theorem 3.8, namely:

$$
N_{K_{6} / K_{2,6}}\left(\xi_{2}\right)=\eta_{2,6}, \quad N_{K_{6} / K_{3}}\left(\xi_{2}\right)= \pm 1
$$

And

$$
N_{K_{6} / K_{2,6}}\left(\xi_{3}\right)=1, \quad N_{K_{6} / K_{3}}\left(\xi_{3}\right)= \pm \eta_{3}
$$

For

$$
\epsilon_{1}=\xi_{2}^{3} \eta_{2,6}{ }^{-1}=\xi_{3}^{2} \eta_{3}^{-1}=\xi_{6} \eta_{3}^{-1} \eta_{2,6}{ }^{-1}
$$

where

$$
\xi_{6}=\frac{D_{6}}{\left(v \omega-D_{6}\right)^{6}}
$$

we have

$$
\begin{equation*}
\epsilon_{1}>1, \quad N_{K_{6} / K_{2,6}}\left(\epsilon_{1}\right)=1, \quad \text { et } \quad N_{K_{6} / K_{3}}\left(\epsilon_{1}\right)= \pm 1 \tag{3.29}
\end{equation*}
$$

Let's show that ϵ_{1} is the smallest unit that verifies (3.29):
Lemma 3.12 (i) In Case"-", we have

$$
\left\{\begin{array}{l}
\frac{4 v^{6} \omega^{6}}{D_{6}}<\eta_{2,6}<4\left(D_{6}\right)^{5} \\
\frac{12 v^{6} \omega^{6}}{D_{6}}<\xi_{2}<12\left(D_{6}\right)^{5}
\end{array}\right.
$$

(ii) In Case "+", we have

$$
\left\{\begin{array}{l}
4\left(D_{6}\right)^{5}<\eta_{2,6}<\frac{4 v^{6} \omega^{6}}{D_{6}} \\
12\left(D_{6}\right)^{5}<\xi_{2}<\frac{12 v^{6} \omega^{6}}{D_{6}}
\end{array}\right.
$$

Proof: (i) Case "-":

$$
D_{6}-1<v \omega<D_{6} .
$$

Since

$$
D_{6}=\left(D_{6}\right)^{6}-(v \omega)^{6}
$$

we deduce

$$
\frac{D_{6}}{\left(D_{6}\right)^{3}-(v \omega)^{3}}=\left(D_{6}\right)^{3}+(v \omega)^{3}
$$

and

$$
\frac{D_{6}}{D_{6}-v \omega}=\left(\left(D_{6}\right)^{5}+v \omega\left(D_{6}\right)^{4}+v^{2} \omega^{2}\left(D_{6}\right)^{3}+v^{3} \omega^{3}\left(D_{6}\right)^{2}+v^{4} \omega^{4} D_{6}+v^{5} \omega^{5}\right)
$$

We have

$$
\eta_{2,6}=\frac{D_{6}}{\left(v^{3} \omega^{3}-\left(D_{6}\right)^{3}\right)^{2}}=\frac{1}{D_{6}}\left(\frac{D_{6}}{v^{3} \omega^{3}-\left(D_{6}\right)^{3}}\right)^{2}=\frac{1}{D_{6}}\left(\left(D_{6}\right)^{3}+v^{3} \omega^{3}\right)^{2}
$$

then

$$
\frac{4 v^{6} \omega^{6}}{D_{6}}<\eta_{2}<4\left(D_{6}\right)^{5}
$$

Similarly

$$
\xi_{2}=-\frac{v \omega+D_{6}}{v \omega-D_{6}}=\frac{v \omega+D_{6}}{D_{6}}\left(\left(D_{6}\right)^{5}+v \omega\left(D_{6}\right)^{4}+v^{2} \omega^{2}\left(D_{6}\right)^{3}+v^{3} \omega^{3}\left(D_{6}\right)^{2}+v^{4} \omega^{4} D_{6}+v^{5} \omega^{5}\right)
$$

Then

$$
\frac{12 v^{6} \omega^{6}}{D_{6}}<\xi_{2}<12\left(D_{6}\right)^{5}
$$

(ii) Case " $+": v \omega>D_{6}$, and just swap D_{6} and $v \omega$.

Lemma 3.13

$$
1<\epsilon_{1}<\left\{\begin{array}{l}
3^{3} 2^{4} \frac{\left(D_{6}\right)^{16}}{v^{6} \omega^{6}} \text { Case " }-", \\
3^{3} 2^{4} \frac{v^{18} \omega^{18}}{\left(D_{6}\right)^{8}} \text { Case } "+",
\end{array}\right.
$$

Proof: Case "-"

$$
\epsilon_{1}=\xi_{2}^{3} \eta_{2}^{-1}<\left(12\left(D_{6}\right)^{5}\right)^{3}\left(\frac{D_{6}}{4(v \omega)^{6}}\right)=3^{3} 2^{6}\left(\frac{\left(D_{6}\right)^{16}}{4(v \omega)^{6}}\right)=3^{3} 2^{4}\left(\frac{\left(D_{6}\right)^{16}}{(v \omega)^{6}}\right)
$$

On the other hand, according to lemma 3.12,

$$
\epsilon_{1}=\xi_{2}^{3} \eta_{2}^{-1}>\left(\frac{12 v^{6} \omega^{6}}{D_{6}}\right)^{3}\left(4\left(D_{6}\right)^{5}\right)^{-1}>1
$$

In Case" + ", we use lemma 3.12 and the fact that $v \omega>D_{6}$.
Lemma 3.14 (i) Case "-":

$$
1<\left|\epsilon_{1}^{(4)}\right|=\left|\epsilon_{1}^{(5)}\right|<12 \sqrt{3}\left(\frac{\left(D_{6}\right)^{8}}{v^{3} \omega^{3}}\right)
$$

(ii) Case "+":

$$
1<\left|\epsilon_{1}^{(4)}\right|=\left|\epsilon_{1}^{(5)}\right|<12 \sqrt{3}\left(\frac{v^{9} \omega^{9}}{\left(D_{6}\right)^{3}}\right)
$$

Proof: According to (3.26), $\epsilon_{1}^{(4)}=\overline{\epsilon_{1}^{(5)}}$. Then $\left|\epsilon_{1}^{(4)}\right|=\left|\epsilon_{1}^{(5)}\right|$. On the other hand,

$$
\left|\epsilon_{1}^{(4)}\right|=\left|\left(\xi_{2}^{(4)}\right)^{3}\left(\eta_{2,6}^{(4)}\right)^{-1}\right|=\left|\xi_{2}^{(4)}\right|^{3}\left|\eta_{2,6}^{(4)}\right|^{-1}
$$

and

$$
\left|\xi_{2}^{(4)}\right|^{2}=\xi_{2}^{(4)}\left(\overline{\xi_{2}^{(4)}}\right)=\xi_{2}^{(4)} \xi_{2}^{(5)}=\frac{\left(D_{6}\right)^{2}+D_{6} v \omega+v^{2} \omega^{2}}{\left(D_{6}\right)^{2}-D_{6} v \omega+v^{2} \omega^{2}}>1
$$

Then

$$
\left|\xi_{2}^{(4)}\right|>1 \quad \text { and }\left|\xi_{2}^{(4)}\right|^{3}>1
$$

We have

$$
1<\eta_{2,6}=\left|\eta_{2,6}{ }^{(1)}\right|^{-1}=\left|\eta_{2,6}{ }^{(4)}\right|^{-1}=\left|\eta_{2,6}{ }^{(5)}\right|^{-1}
$$

Then

$$
\left|\epsilon_{1}^{(4)}\right|=\left|\epsilon_{1}^{(5)}\right|=\left|\xi_{2}^{(4)}\right|^{3}\left|\eta_{2,6}^{(4)}\right|^{-1}>1
$$

On the other hand,

$$
\begin{aligned}
& \left|\epsilon_{1}^{(4)}\right|=\left|\epsilon_{1}^{(5)}\right|=\left(\xi_{2}^{(4)} \xi_{2}^{(5)}\right)^{3 / 2}\left(\eta_{2,6}{ }^{(4)} \eta_{2,6}{ }^{(5)}\right)^{-1 / 2} \\
& =\left(\frac{\left(D_{6}\right)^{2}+D_{6} v \omega+v^{2} \omega^{2}}{\left(D_{6}\right)^{2}-D_{6} v \omega+v^{2} \omega^{2}}\right)^{3 / 2} \frac{\left(v^{3} \omega^{3}+\left(D_{6}\right)^{3}\right)^{2}}{D_{6}}
\end{aligned}
$$

Then
Case "-": We have $v \omega<D_{6}$; then

$$
\left|\epsilon_{1}^{(4)}\right|<\left(\frac{3\left(D_{6}\right)^{2}}{v^{2} \omega^{2}}\right)^{3 / 2}\left(\frac{4\left(D_{6}\right)^{6}}{D_{6}}\right)=12 \sqrt{3}\left(\frac{\left(D_{6}\right)^{8}}{v^{3} \omega^{3}}\right)
$$

Case "+":We have $v \omega>D_{6}$; and

$$
\left|\epsilon_{1}^{(4)}\right|<\left(\frac{3 v^{2} \omega^{2}}{\left(D_{6}\right)^{2}}\right)^{3 / 2}\left(\frac{4 v^{6} \omega^{6}}{D_{6}}\right)=12 \sqrt{3}\left(\frac{v^{9} \omega^{9}}{\left(D_{6}\right)^{3}}\right)
$$

Lemma 3.15 ϵ_{1} is the smallest unit >1 of field $K_{6}=\mathbb{Q}(\omega)$ such that

$$
N_{K_{6} / K_{2,6}}\left(\epsilon_{1}\right)=1, \quad \text { et } \quad N_{K_{6} / K_{3}}\left(\epsilon_{1}\right)= \pm 1
$$

Proof: Argue by contradiction and assume that

$$
\epsilon_{1}=\alpha^{n} \text { with } n>1
$$

There $n \notin\{2,3\}$, because $\sqrt{\eta_{3}} \notin K_{6}$ and $\sqrt[3]{\eta_{2,6}} \notin K_{6}$. Let $n \geq 5$. In specializing $\beta=\epsilon_{1}$, in the proposition 3.10, then for $i \in\{4.5\}$ we have

$$
\left|x_{i}\right|<\left(\frac{1}{\omega^{i-1}}\right)\left(\sqrt[5]{\epsilon_{1}}+2 \sqrt[5]{\left|\epsilon_{1}^{(4)}\right|}+3\right)
$$

Case "-":

$$
\epsilon_{1}=3^{3} 2^{4}\left(\frac{\left(D_{6}\right)^{16}}{v^{6} \omega^{6}}\right)
$$

such that

$$
\left|\epsilon_{1}^{(4)}\right|<12 \sqrt{3}\left(\frac{\left(D_{6}\right)^{8}}{v^{3} \omega^{3}}\right)
$$

we obtain

$$
\begin{equation*}
\left|x_{5}\right|<\left(\frac{\left(D_{6}\right)^{3}}{v^{4} \omega^{4}}\right)\left(\sqrt[5]{3^{3} 2^{4}\left(\frac{D_{6} v^{20}}{v^{6} \omega^{6}}\right)}+2^{5} \sqrt{12 \sqrt{3}\left(\frac{v^{20}}{v^{3} \omega^{3}\left(D_{6}\right)^{7}}\right)}+\left(\frac{3 v^{4}}{\left(D_{6}\right)^{3}}\right)\right) \tag{3.30}
\end{equation*}
$$

But

$$
\begin{aligned}
& G_{1}=\sqrt[5]{3^{3} 2^{4}\left(\frac{D_{6} v^{20}}{v^{6} \omega^{6}}\right)}<\sqrt[5]{3^{3} 2^{4}\left(\frac{\left(D_{6}\right)^{5}}{\left(D_{6}\right)^{6}-D_{6}}\right)} \\
& =\sqrt[5]{3^{3} 2^{4}\left(\frac{1}{D_{6}-\left(D_{6}\right)^{-4}}\right)} \\
& G_{2}=2 \sqrt[5]{12 \sqrt{3}\left(\frac{v^{20}}{v^{3} \omega^{3}\left(D_{6}\right)^{7}}\right)}<2 \sqrt[5]{12 \sqrt{3}\left(\frac{\left(D_{6}\right)^{4}}{v^{3} \omega^{3}\left(D_{6}\right)^{7}}\right)} \\
& <2 \sqrt[5]{12 \sqrt{3}\left(\frac{1}{\left(D_{6}\right)^{3}}\right)} \\
& G_{3}=\frac{3 v^{4}}{\left(D_{6}\right)^{3}}<\frac{3}{\left(D_{6}\right)^{2}}, \\
& \frac{\left(D_{6}\right)^{3}}{v^{4} \omega^{4}}<\frac{\left(D_{6}\right)^{5}}{\left(D_{6}\right)^{6}-D_{6}}=\frac{1}{D_{6}-\left(D_{6}\right)^{-4}}
\end{aligned}
$$

Then $\left|x_{5}\right|<1$, because $D_{6}>2^{6}=64$, and $x_{5}=0$ because x_{5} is an integer. In addition,

$$
\begin{equation*}
\left|x_{4}\right|=\left(\frac{\left(D_{6}\right)^{3}}{v^{3} \omega^{3}}\right)\left(\sqrt[5]{3^{3} 2^{4}\left(\frac{D_{6} v^{15}}{v^{6} \omega^{6}}\right)}+2^{5} \sqrt{12 \sqrt{3}\left(\frac{v^{15}}{v^{3} \omega^{3}\left(D_{6}\right)^{7}}\right)}+\left(\frac{3 v^{3}}{\left(D_{6}\right)^{3}}\right)\right) \tag{3.31}
\end{equation*}
$$

But

$$
\begin{aligned}
& \sqrt[5]{3^{3} 2^{4}\left(\frac{D_{6} v^{15}}{v^{6} \omega^{6}}\right)}<G_{1} \\
& 2^{5} \sqrt{12 \sqrt{3}\left(\frac{v^{15}}{v^{3} \omega^{3}\left(D_{6}\right)^{7}}\right)}<G_{2} \\
& \left(\frac{3 v^{3}}{\left(D_{6}\right)^{3}}\right)<G_{3} \\
& \left(\frac{\left(D_{6}\right)^{3}}{v^{3} \omega^{3}}\right)<\frac{1}{1-\left(D_{6}\right)^{-5}}
\end{aligned}
$$

Then $x_{4}=0$.
Case "+":

$$
\begin{equation*}
\left|x_{5}\right|<\sqrt[5]{3^{3} 2^{4}\left(\frac{1}{v^{22} \omega^{2}}\right)}+2 \sqrt[5]{12 \sqrt{3}\left(\frac{1}{v^{6} \omega^{11}}\right)}+\left(\frac{3}{\omega^{3}}\right) \tag{3.32}
\end{equation*}
$$

Then in a analogous manner $x_{5}=0$. In addition,

$$
\begin{equation*}
\left|x_{5}\right|<\sqrt[5]{3^{3} 2^{4}\left(\frac{1}{v^{5}}\right) \sqrt{\frac{\left(D_{6}\right)^{6}+D_{6}}{\left(D_{6}\right)^{8}}}}+2 \sqrt[5]{12 \sqrt{3}\left(\frac{1}{v^{6} \omega^{6}}\right)}+\left(\frac{3}{\omega^{3}}\right) \tag{3.33}
\end{equation*}
$$

Then $x_{4}=0$. This completes the prof of theorem 3.11.

4. A Fundamental System of Units of $K=\mathbb{Q}\left(\sqrt[4]{M_{4}}\right)$

We assume that m_{4} is square-free, the field $K_{4}=\mathbb{Q}(\omega),\left(\omega=\sqrt[4]{m_{4}}\right)$, is of degree 4 over \mathbb{Q}, in addition it admits a subquadratic field $K_{2,4}=\mathbb{Q}\left(\omega^{2}\right)$ with fundamental unit $\eta_{2,4}$ (theorem 1.3). We introduce here the proprieties of fields of degree 4 taken follows [9] and [11].

Every algebraic integer α of K_{4} can be written as form

$$
\begin{equation*}
\alpha=\frac{1}{4}\left(x_{0}+x_{1} \omega+x_{2} \omega^{2}+x_{3} \omega^{3}\right) \quad \text { with } x_{0}, \quad x_{1}, x_{2}, x_{3} \in \mathbb{Z} \tag{4.34}
\end{equation*}
$$

We denote by

$$
\left\{\begin{array}{c}
\omega=\sqrt[4]{m_{4}} \tag{4.35}\\
\omega^{(1)}=-\omega \\
\omega^{(2)}=i \omega \\
\omega^{(3)}=-i \omega
\end{array}\right.
$$

the four conjugates ω. replacing ω respectively by $\omega^{(1)}, \omega^{(2)}, \omega^{(3)}$ in (4.42), we get

$$
\begin{equation*}
\alpha^{(1)}=\frac{1}{4}\left(x_{0}+x_{1} \omega+x_{2} \omega^{2}+x_{3} \omega^{3}\right) \tag{4.36}
\end{equation*}
$$

$$
\begin{align*}
& \alpha^{(2)}=\frac{1}{4}\left(x_{0}+x_{1} i \omega-x_{2} \omega^{2}-x_{3} i \omega^{3}\right) \tag{4.37}\\
& \alpha^{(3)}=\frac{1}{4}\left(x_{0}-x_{1} i \omega-x_{2} \omega^{2}+x_{3} i \omega^{3}\right) \tag{4.38}
\end{align*}
$$

If in addition β is an algebraic integer such that $\beta= \pm \alpha^{n}, n \geq 1$, then

$$
\begin{equation*}
\left|x_{3}\right| \leq\left(\frac{1}{\omega^{3}}\right) \sum_{j=0}^{3} \sqrt{\left|\beta^{(j)}\right|} \tag{4.39}
\end{equation*}
$$

Denote by ε_{0} the smallest unit >1 of K_{4} satisfying the property

$$
\begin{equation*}
\varepsilon_{0} \varepsilon_{0}^{(1)}=1 ; \tag{4.40}
\end{equation*}
$$

then any other unit ε of K_{4} which satisfies the properties (4.40), is of the form

$$
\begin{equation*}
\varepsilon=\varepsilon_{0}^{n}, \quad n \geq 1 \tag{4.41}
\end{equation*}
$$

writing

$$
\begin{equation*}
\varepsilon_{0}=\frac{1}{4}\left(x_{0}+x_{1} \omega+x_{2} \omega^{2}+x_{3} \omega^{3}\right) \quad \text { with } x_{0}, x_{1}, x_{2}, x_{3} \in \mathbb{Z} \tag{4.42}
\end{equation*}
$$

then according to (4.40) and (4.41) we have in addition

$$
\begin{equation*}
0 \neq\left|x_{3}\right|<\frac{1}{\omega^{3}}(3+\sqrt{\varepsilon}) \tag{4.43}
\end{equation*}
$$

Theorem 4.16 Let $\eta_{2,4}$ be the fundamental unit of the quadratic field $K_{2,4}=\mathbb{Q}\left(\sqrt{M_{4}}\right)$, and let ε_{0} be the smallest unit of K_{4} satisfying $\varepsilon_{0} \varepsilon_{0}^{(1)}=1$. If $\sqrt{\left(\eta_{2,4}\right)^{-1} \varepsilon_{0}} \notin K_{4}$, then

$$
\left\{\eta_{2,4}, \varepsilon_{0}\right\}
$$

is a fundamental system of unit of K_{4}.
Now we give the main results of this section.
Theorem 4.17 Let t, v be two nonzero positive integers, $D_{4}=t v^{4} \mp 1$. Let

$$
M_{4}=D_{4}^{4} \pm D_{4}, m_{4}=\frac{M_{4}}{v^{4}}, \omega=\sqrt[4]{m_{4}}
$$

Suppose that m_{4} is square-free. Then

$$
\left\{\eta_{2,4}=\frac{\left(v^{2} \omega^{2}+D_{4}^{2}\right)^{2}}{D_{4}}, \varepsilon_{1}= \pm \frac{v \omega+D_{4}}{v \omega-D_{4}}\right\}
$$

is a fundamental system of units of the quartique real field $K_{4}=\mathbb{Q}\left(\sqrt[4]{M_{4}}\right)$
Proof: Remains to verify that the unit ε_{1} satis_es the property (4.40), and that K_{4} is of the first kind (i.e.: $\left.\sqrt{\left(\eta_{2,4}\right)^{-1} \varepsilon_{1}} \notin K_{4}\right)$. In fact,

$$
\varepsilon_{1}= \pm \frac{v \omega+D_{4}}{v \omega-D_{4}}
$$

is a unit of K_{4} of norm 1 because

$$
\varepsilon_{1}= \pm \frac{v \omega+D_{4}}{v \omega-D_{4}}=2\left(D_{4}\right)^{3} \mp 1+2\left(D_{4}\right)^{2} v \omega+2 D_{4} v^{2} \omega^{2}+2 v^{3} \omega^{3}
$$

is an algebraic integer such that

$$
N_{K / \mathbb{Q}}\left(\varepsilon_{1}\right)=\left(\frac{v \omega+D_{4}}{v \omega-D_{4}}\right)\left(\frac{-v \omega+D_{4}}{-v \omega-D_{4}}\right)\left(\frac{i v \omega+D_{4}}{i v \omega-D_{4}}\right)\left(\frac{-i v \omega+D_{4}}{-i v \omega-D_{4}}\right)=1
$$

Lemma 4.18 Let $\varepsilon_{1}= \pm\left(\frac{v \omega+D_{4}}{v \omega-D_{4}}\right)$ et $\varepsilon_{0}=\frac{1}{4}\left(x_{0}+x_{1} \omega+x_{2} \omega^{2}+x_{3} \omega^{3}\right)$ with $x_{i} \in \mathbb{Z}$. Assume that $\varepsilon_{1}=\varepsilon_{0}^{n}$ with $n \geq 2$.
Then

1. Case " + " $\left|x_{3}\right|<\frac{3}{\omega^{3}}+\frac{\left(v^{3}\right) \sqrt{8}}{D_{4}}$
2. Case "-": $\left|x_{3}\right|<\frac{3}{\omega^{3}}+\frac{\left(v^{3} D_{4}\right) \sqrt{8 D_{4}}}{\left(t v^{4}\right)^{3}}$

Proof: Since $v^{4} \omega^{4}=\left(D_{4}\right)^{4} \pm D_{4}$, then

$$
\left(*_{0}\right)\left\{\begin{array}{l}
\text { Case "+": we have } D_{4}<v \omega<D_{4}+1, \\
\text { Case "-": we have } D_{4}-1<v \omega<D_{4}
\end{array}\right.
$$

But

$$
\begin{equation*}
\varepsilon_{1}= \pm \frac{v \omega+D_{4}}{v \omega-D_{4}}=2\left(D_{4}\right)^{3} \mp 1+2\left(D_{4}\right)^{2} v \omega+2 D_{4} v^{2} \omega^{2}+2 v^{3} \omega^{3} \tag{4.44}
\end{equation*}
$$

which gives us

$$
\left(*_{1}\right)\left\{\begin{array}{l}
\text { Case "+": } 8\left(D_{4}\right)^{3}<\varepsilon_{1}<8 \frac{(v \omega)^{4}}{D_{4}}, \\
\text { Case "-": } 8 \frac{(v \omega)^{4}}{D_{4}}<\varepsilon_{1}<8\left(D_{4}\right)^{3}
\end{array}\right.
$$

then

$$
\left(*_{2}\right)\left\{\begin{array}{l}
\text { Case " }+ \text { ": } \frac{\sqrt{\varepsilon_{1}}}{(v \omega)^{3}}<\frac{\sqrt{8}}{D_{4}}, \\
\text { Case "-": } \frac{\sqrt{\varepsilon_{1}}}{(v \omega)^{3}}<\frac{\left(D_{4}\right) \sqrt{8 D_{4}}}{\left(t v^{4}\right)^{3}}
\end{array}\right.
$$

in fact
Case " + ": According to $\left(*_{1}\right), \sqrt{\varepsilon_{1}}<(\sqrt{8})\left(\frac{(v \omega)^{2}}{\sqrt{D_{4}}}\right)$, and then one applies $\left(*_{0}\right)$.
Case "-": According to $\left(*_{1}\right), \frac{\varepsilon_{1}}{(v \omega)^{6}}<\frac{8\left(D_{4}\right)^{3}}{(v \omega)^{6}}$, according to $\left(*_{0}\right), \frac{\sqrt{\varepsilon_{1}}}{(v \omega)^{3}}<\frac{\left(D_{4}\right) \sqrt{8 D_{4}}}{\left(D_{4}-1\right)^{3}}$, finally $\frac{\sqrt{\varepsilon_{1}}}{(v \omega)^{3}}<\frac{\left(D_{4}\right) \sqrt{8 D_{4}}}{\left(t v^{4}\right)^{3}}$
Then we have

$$
\varepsilon_{1} \varepsilon_{1}^{(1)}=\left(\frac{v \omega+D_{4}}{v \omega-D_{4}}\right)\left(\frac{-v \omega+D_{4}}{-v \omega-D_{4}}\right)=1
$$

According to (4.43)

$$
0<\left|x_{3}\right|<\frac{1}{\omega^{3}}\left(3+\sqrt{\varepsilon_{1}}\right)
$$

Then

$$
\begin{equation*}
0<\left|x_{3}\right|<\frac{3}{\omega^{3}}+\frac{v^{3} \sqrt{\varepsilon_{1}}}{(v \omega)^{3}} \tag{4.45}
\end{equation*}
$$

replacing $\frac{\sqrt{\varepsilon_{1}}}{(v \omega)^{3}}$, by $\frac{\sqrt{8}}{D_{4}}$ in Case " + ", and by $\frac{\left(D_{4}\right) \sqrt{8 D_{4}}}{\left(t v^{4}\right)^{3}}$ in Case "-", conclude using $\left(*_{2}\right)$
Lemma 4.19 Suppose that m_{4} is square free. Then

$$
\varepsilon_{1}= \pm\left(\frac{v \omega+D_{4}}{v \omega-D_{4}}\right)
$$

is the smallest unit of K_{4} which satisfies

$$
\varepsilon_{1} \varepsilon_{1}^{(1)}=1
$$

Proof: recall that $v \geq 2$. We have then

$$
\varepsilon_{1} \varepsilon_{1}^{(1)}=\left(\frac{v \omega+D_{4}}{v \omega-D_{4}}\right)\left(\frac{-v \omega+D_{4}}{-v \omega-D_{4}}\right)=1
$$

Argue by contradiction. Then according to (4.41) we have,

$$
\varepsilon_{1}=\varepsilon_{0}^{n}, \text { ou } \varepsilon_{0}=\frac{1}{4}\left(x_{0}+x_{1} \omega+x_{2} \omega^{2}+x_{3} \omega^{3}\right) \text { with } x_{i} \in \mathbb{Z} .
$$

According to lemma 4.18, we have
(i) Case " + ",

$$
\begin{equation*}
\left|x_{3}\right|<\frac{3}{\omega^{3}}+\frac{v^{3} \sqrt{8}}{D_{4}} \tag{4.46}
\end{equation*}
$$

Since $\omega>3$, then $\frac{3}{\omega^{3}}<\frac{1}{9}$. Then

$$
\left|x_{3}\right|<\frac{3}{\omega^{3}}+\frac{v^{3} \sqrt{8}}{D_{4}}=\frac{3}{\omega^{3}}+\frac{v^{3} \sqrt{8}}{t v^{4}-1}<\frac{1}{9}+\frac{v^{3} \sqrt{8}}{v^{4}-1}
$$

But

$$
\frac{1}{9}+\frac{v^{3} \sqrt{8}}{v^{4}-1}<1 \Leftrightarrow 4 v^{4}-(9 \sqrt{2}) v^{3}-4>0
$$

This is true for $v>3$. Then for $v>3$

$$
\left|x_{3}\right|<\frac{1}{9}+\frac{v^{3} \sqrt{8}}{v^{4}-1}<1
$$

Then $x_{3}=0$, contradiction with (4.43). the result remains true for $v \in\{2,3\}$, because for $v=3$, just directly replace in (4.46). The same for $v=2$ and $t \geq 2$, just replace directly in (4.46). For $(v, t)=(2,1)$, just replace directly in (4.45).

In the following, we do not treat the first two values of $v,(v=2,3)$, because the result is the same by the same argument.
(ii) Case "-",

$$
\left|x_{3}\right|<\frac{3}{\omega^{3}}+\frac{v^{3} D_{4} \sqrt{8 D_{4}}}{\left(t v^{4}\right)^{3}}<\frac{1}{9}+\left(\frac{v^{3}\left(2 t v^{4}\right)(\sqrt{2} \sqrt{t} \sqrt{8}) v^{2}}{t^{3} v^{12}}\right)<\frac{1}{9}+\frac{\sqrt{8}}{v^{3}}<1
$$

Then we have the same contradiction.

We show that $\xi=\sqrt{\left(\eta_{2,4}\right)^{-1} \varepsilon_{1}} \notin K_{4}$. But

$$
\xi=\sqrt{\left(\eta_{2,4}\right)^{-1} \varepsilon_{1}}=\sqrt{\frac{\varepsilon_{1} D_{4}}{\left(v^{2} \omega^{2}+\left(D_{4}\right)^{2}\right)^{2}}}=\frac{1}{\left(v^{2} \omega^{2}+\left(D_{4}\right)^{2}\right)^{2}} \sqrt{\varepsilon_{1} D_{4}}
$$

If $\xi \in K_{4}$ then $\sqrt{\varepsilon_{1} D_{4}} \in K_{4}$. According to (4.42), we have

$$
\sqrt{\varepsilon_{1} D_{4}}=\frac{1}{4}\left(x_{0}+x_{1} \omega+x_{2} \omega^{2}+x_{3} \omega^{3}\right) \text { with } x_{0}, x_{1}, x_{2}, x_{3} \in \mathbb{Z} .
$$

Using (4.39), we have

$$
\left|x_{3}\right| \leq\left(\frac{1}{\omega^{3}}\right) \sum_{j=0}^{3} \sqrt{\left|\left(D_{4} \varepsilon_{1}\right)^{(j)}\right|}
$$

Then

$$
\left|x_{3}\right|<\frac{1}{\omega^{3}}\left(\sqrt{D_{4} \varepsilon_{1}}+1+2 \sqrt{D_{4}}\right)
$$

According to ($*_{0}$) we have
Case "+",

$$
\left|x_{3}\right|<\frac{1}{\omega^{3}}\left(\sqrt{D_{4} \varepsilon_{1}}+1+2 \sqrt{D_{4}}\right)<\left(\frac{1}{v-\frac{1}{v^{3}}}+\frac{1}{\left(v-\frac{1}{v^{3}}\right)^{3}}+\frac{1}{\left(v^{4}-\frac{1}{v^{2}}\right)^{2}}\right)<1
$$

Case "-",

$$
\begin{aligned}
& \left|x_{3}\right|<\frac{1}{\omega^{3}}\left(\sqrt{D_{4} \varepsilon_{1}}+1+2 \sqrt{D_{4}}\right) \\
& <\frac{v^{3}\left(D_{4}\right)^{2} \sqrt{8}}{\left(D_{4}\right)^{3}-3\left(D_{4}\right)^{2}+3 D_{4}-1}+\frac{1}{\omega^{3}}+\frac{2 v^{3} \sqrt{D_{4}}}{\left(D_{4}\right)^{3}-3\left(D_{4}\right)^{2}+3 D_{4}-1} \\
& <\frac{\sqrt{8}}{v-\frac{3}{v^{3}}+\frac{3}{D_{4} v^{3}}-\frac{1}{\left(D_{4}\right)^{2} v^{3}}}+\frac{1}{\omega^{3}}+\frac{2}{v+\frac{3}{v^{3}}-\frac{1}{D_{4} v^{3}}}<1
\end{aligned}
$$

Then $x_{3}=0$; then the same contradiction arises. This completes the demonstration of theorem 4.17.

References

[1] L. Bernstein und H. Hasse, An explicit formula for the units of an algebraic number field of degree $\mathrm{n} \geq$ 4, Pac. J. Math. 30 (1969), 293-365.
[2] J. Buchmann, and Hugh C. Williams, A key-exchange system based on real quadratic fields, in Brassard (1998), pp. 335-343.
[3] R. Dedekind, Über die Anzahl der Idealklassen in reinen kubischen Zahlk, J. reine angew. Math. 121 (1900), 40-123.
[4] G. Frei and C. Levesque, On an independent system of units in the field $K=\mathbb{Q}\left(\sqrt[n]{D^{n} \pm d}\right)$ where $d \mid D^{n}$, Abh. Math. Seminar Univ. Hamburg 51 (1980), 160-163.
[5] V. Guruswami, Construction of codes from number fields, (2003).
[6] F. Halter-Koch und H.-J. Stender, Unabhangige Einheitensysteme für eine allgemeine Klasse algebraischer Zahlkörper, Abh. Math. Seminar Univ. Hamburg 42 (1974), 33-40.
[7] T. Nagell, On a special class of diophantine equations of the second degree, Arkiv. f. Mat. 3 (1954), 51-65.
[8] T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Reg. Soc. Scient. Upsaliensis, Ser. IV, 16, No. 2 (1955), 1-38.
[9] W. Ljunggren, Über die Lösung einiger unbestimmten Gleichungen vierten Grades, Avh. Norske Vid.-Akad. Oslo, I. Mat.-Nat. K1. (1935), 135.
[10] W. Ljunggren, Einig Eigenschaften der Einheiten reeller quadratischer und rein-biquadratischer Zahlkörper mit Anwendung auf die Lösung einer Klasse unbestimmter Gleichungen vierten Grades, Skrifter Norske Vid.-Akad. Oslo, I. Mat.-Nat. Kl. (1936), Nr. 12.
[11] H.-J. Stender, Grundeinheiten für einige unendliche Klassen reiner biquadratischer Zahlkörper mit einer Anwendung auf die diophantische Gleichung $\mathrm{x}^{4}-\mathrm{ay}^{4}= \pm \mathrm{c}(\mathrm{c}=1,2$, oder 8), J. reine angew. Math. 264, (1973), 207-220.
[12] H.-J. Stender, Über die Einheitengruppe der reinen algebraischen Zahlkörper sechsten Grades, J.reine angew.Math. 268/269,(1974),78-93.
[13] H.-J. Stender, Ein Formel für Grundeinheiten in reinen algebraischen Zahlkörpern dritten, vierten und sechten Grades, J. Number Theory 7 (1975), 235-250.
[14] H.-J. Stender, Lösbare Gleichungen $a X^{n}-b Y^{n}=c$ und Grundeinheiten für einige algebraische Zahlkörper vom Grad $n=3,4,6, \mathrm{~J}$. reine angew. Math. 290, (1977), 24-62.
[15] H.-J. Stender, Zur Parametrisie-rung reell quadratischer Zahlkörper, J. reine angew. Math. 311/312, (1993), 291-301.

[^0]: ${ }^{1}$ E. Mail: ziane12001@yahoo.fr

