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Abstract: Let M,, = (D,)" £+ D, > 1 where D,, =tv"*+1+0,t,v € N* and n € {4,6}. The integer M,, is always written as
M, = v™m,, where m, is a non-zero positive integer; assuming m,, square-free, we exhibit a fundamental system of units for

families of pure fields K, = Q(%/M,,), including a family already given by H.-J. Stender.
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1. Introduction

There is a closed link between a fundamental system of units of some number fields, the resolution of some
Diophantine equations, the cycle of continued fractions, and certain protocols in cryptography, see J. Buchmann [2].
Also, the regulator of a number field K, based on knowledge of a system fundamental of units, is essential to compute
the class number of K, and therefore the Hilbert class towers and the construction of a codes on this number field (see
V. Guruswami [5]. This, in addition to many other applications, justifies the study of such a system.

If K is an algebraic extension of degree n = r + 2s on Q, the field of rational numbers, where r is the number of real
embeddings and 2s is the number of complex embeddings of K, Dirichlet (1840) established that the unit group U, of
K is generated by r 4+ s — 1 units. The group Uy is said to be of rank r + s — 1. The set S = {e;, &, ..., &45_1} Of all
generators, form what is called a fundamental system of units of the field K. However, the explicit determination of
such a system is very limited.

The methods for determining a fundamental system of units of a number field K are very varied. However, regardless
to the method adopted, the way followed by several mathematicians is to find in the field K
(1) Units,
(2) an independent system of units
(3) a maximal independent system of units,
(4) a fundamental system of units.

Such a program can be illustrated as follows: L. Bernstein and H. Hasse [1] considered the field K = Q(w), where
w = /D™ + d, with d|D and they gave a system of units. The result was generalized by F. Halter-Koch and H.-J.
Stender [6] for d|D™. Based on a work of G. Frei and C. Levesque [4] that ensures the maximality of this system for
n € {2,3,4,6}, H-J Stender studied:

(1) In[11] (page 211), the case n = 4, where he assumes that D* + d is squarefree.
(2) In [13], the case n = 4 where he assumes that D* + d is free of power fourth.
(3) In[12] (page 87), the case n = 6, where he assumes that D¢ + d is squarefree.
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These assumptions allow him to use directly the Bernstein and H. Hasse units [1] to determine a fundamental unit of
the quadratic fields K, , = Q(/M,) and K, = Q(/Ms) and a fundamental unit of the pur cubic field K3 = Q(3/M,)
hence the author determines then a fundamental system of units of the fields K, = Q($/M,) and K, = Q(/M,).

Question: What happens if M,, contains one nth power?

To partially answer to this question, (based on an idea of C. Levesque, laval University, Quebec- Canada), we
introduce the parameterizations:

M, = (D))" +D, > 1 with D, = tv" +1 # 0;¢,v € N*

Here the plus sign commutes with the minus sign in the expression of M,, and D,, , that is to say:

{Case "-" M, =D,)"—D,and D, =tv" + 1,
Case "+" : M, = (D))" +D,and D, =tv" -1
Let
mg=ab>1
where
(@ b) = {(th +1,t5v%* + 5t*v1® + 10¢3v'? + 10t%v° + 5t) in Case " —"
’ (t5v?* — 5¢t*v18 + 10 t3v?% — 10t%v® + 5t,tv® — 1) in Case " +"
And let
my,=cd>1
where

(tv* + 1,t3v® + 3t2v* + 3t) in Case " — "
(t3v® — 3t%v* + 3t,tv* — 1) in Case " + "

(c.d) =

In both cases, we have the form M,, = m,,v™, (n € {4,6}). In the following, we assume that m,, is square-free, but the
M,, always, contains an nth power, (n € {4,6}), unless v = 1, (the case v = 1 coincides with the case of Stender. In the

following we always assume v > 2). Obviously, K, = Q(Y/M,) = Q(%/m,) but m, no longer admits a

parametrization similar to that of M,,, therefore the Bernstein units [1] are no longer valid. In this paper, we determine a
fundamental systems of units of the number fields

Kn = Q(n\/ Mn)l ne {416} and K3 = Q(3\/ MG)
and obviously those of quadratic sub-fields K, , = Q(/M,) and K, s = Q(y/ Mp).

In T. Nagell [7], T. Nagell [8] and H.-J. Stender [15] we find a full theory dealing with the Diophantine equations of
the form S.: AX? — BY? = C, (C € {1,2,4}), in connection with the fundamental unit of a quadratic field; for C = 1, we
summarize (see [15], theorem 3, page 295):

Theorem 1.1 Given a solution (x,y) of the Diophantine equation S;: AX? — BY? = 1,A,B € N,(4,B) = 1 and AB is
square-free, such that

<1(A+B) ! <1(A+B)+1
X% 2"V Sy 2
then

n = (xVA + yVB)?
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is a fundamental unit>1 of positive norm of the field K = Q(v/AB).

Now we give the main results of this section.

Theorem 1.2 Let t; v be two nonzero positive integers, D, = tv® + 1 = 0. Let
Msg= (D) £Dg =mev®>1,  w=3mg

Suppose that mg is square-free. Then

720 T W = D)

is a fundamental unit of
Ky = Q(\/ﬁs)
Proof: Consider the equation
S;:aX?—bY2=1
First of all (a,b) = 1, indeed:

Case “-: Let d an integer such that d|a and d|b =t[(tv® + D*+ (tv® + 13 + (tv® + D2 + (tv® + 1) + 1] =
t(a*+a*+a*+a+1).Thend|(b—t(a*+a®*+a*+a)=t.

anthen d|(a — tv®) = 1. Thus (a, b) = 1.

Case “+“: Let d an integer such that d|b and d|a = t[(tv® — D* — (tv® —1)3 + (tv® — 12— (tv® - 1) +1] =
t(b* — b3 + b2 — b+ 1). Then d|(a — t(b* — b3 —a? + b) = t.

d|(b — tv®) = 1. Thus (a, b) = 1. In addition the equation (S;) has the solution,

( ((tv® + 1)2,v3) in (Case" -"), with:

1 1 1
Z(a +b) — 2 > 1(10t3v12 +10t2v® +5t—1) > (tve + 1)?2 = x

xy) = J or
[ w3, (tv® — 1)?) in (Case "+"), with:

1 1 1 1
lZ (a+b)— 5= Z(tsv“ — 5t*v'® + 103012 — 10t2v8 + tv® + 5t — 1) — 5> v =1x.

So in both cases, and by theorem 1.1,

Ds
126 = (3w — (Dg)?)?

is the fundamental unit of the quadratic field K, = Q(\/E).

Theorem 1.3 Let t; v be two nonzero positive integers, D, = tv* + 1 # 0. Let
My = (D)*F D, = myv* > 1, w=m,

Suppose that m, is square-free.Then

(?*w? — (Dy)*)?

N2a = D,

is a fundamental unit of
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Ky 4 = Q(M)-
Proof: Consider the equation

S;icX?—dy?=1
First of all (c,d) = 1, indeed:
Case “-: Let [ an integer such that l|c and [|d = ta? + ta + t; then l|(b — ta® — ta) = t.
But l|a, Then l|(a — tv?) = 1.
Case "+": is such. In addition the equation (S;) has the solution,

(tv* + 1,v?) in (Case "-"), with:

2(a+b)—1=2t3v3+ (6t2+2t)v*+6t+1>tv°+1=x,
(x,y) = or
(v?,tv* — 1) in (Case "+"), with:
2(a+b) —1=2t3v® + (2t — 6t*)v* — 6t — 3 > v? = x,.
So in both cases, and by theorem 1.1,

w? = (D)
N24 = D—4

is the fundamental unit of K, = Q(\/M,).
2. A Fundamental System of Units of K3 = Q(3/M)
Let the Diophantine equation

(G)=Ax®—-By® =1

with A, BeN, square-free, AB > 1. According to Stender [14], we have two possibilities for the fundamental unit of

Q(VAB?):
Theorem 2.4 LetA > 1 and B > 1. Let (x, y) be a solution of the equation (G). Then
n = (VA -yVB)?
is either a fundamental unit, or the square of the fundamental unit of the field K = Q(YAB2).
Now we give the main results of this section.
Theorem 2.5 Let ¢, v be two nonzero positive integers Dy = tv® + 1 # 0. Let
My = (D6)® F Dg = mev® > 1,and w = /mg.
Suppose that mg is square-free. Then

((Dg)*—v*w?)?
Ny == — .
6
is either a fundamental unit, or the square of the fundamental unit of the field K; = Q(3,/M6).
Proof: Case “-*“: Let the equation

(G):a%x3 —by? =1,
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which has the solution

(x,y) = (tv® + 1,v?),
Case "+": Let the equation

(6):ax® —b%y% =1,
which has the solution

(x,y) = (W3, tv® — 1).
In both cases and bay theorem 2.4,

- W*w? = (D6)?*)°

N3 = Dq

is the fundamental unit, or the square of the fundamental unit of the field K.
Let M be a positive integer cube free, then we set M = fg?, with (f,g) =1, M = f29,Q0 = YM,et 0 = i
We say that
(1) K = Q(¥YM) isof firstkind if
fg? # £1(mod 9)
(2) K = Q(3/M) is of second kind if
fg? = +1(mod 9)
and by Dedekind [3], we have
Proposition 2.6 (i) If K is of first kind, then {1, Q, Q} is an integral basis of K = Q(Q).

(i) If K is of second kind, then {§ (1+ fQ+ gQ),Q,0} is an integral basis of K = Q(Q). Moreover each algebraic
integer of K = Q(Q)can be written in the form § (x+yQ+2z0), x,y,z€ L.

Now, and more precisely, the fundamental unit of the field K5 = Q(3/Ms) is given by
Theorem 2.7 Let t; v be two nonzero positive integers, Dy = tv® + 1 # 0. Let

My = (D6)® £ Dg = mev® > 1,and w = /ms.
Suppose that mg is square-free. Then

— 4 ((DG)Z_vzwz)s
N3 =T Dq
is a fundamental unit of the field K; = Q(3/M,) = Q(w?).

Proof: As mg is square free, according to the proposition 2.6, {1, w?, w*} is an integral basis of K; = Q(w?) if K3 IS
of first kind; and {§ (1 +fw? + w*), w?, w*} is an integral basis of K; = Q(w?) if K is of second kind. In addition,
according to the proposition 2.6, each algebraic integer of K; = Q(w?) can be written in the form

1
§(x +yw? + zw*), with x,y,z€ L



(1) Case"-": mg = Dg(t5v?** + 5t*v1® + 10t3v!2 + 10t2v° + 5t) et

N3 =1 — (3(Dg)3v?)w? + (3DgvH)w*

Suppose that n; = ¢2, where { is a unit of K.
(@) Let K5 is of first kind. Then
{=x+yw?+zo*, with x,v,z € Z
asn; = {2, we have

x% + 2yzmg =1
2xy + z?mg = —3(Dg)3v?
2xz + y? = 3Dgv*

Let’s show that

*) xy >0 and y #0.
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(2.1)

22
(2.3)
(2.4)

According to (2.3), x # 0 and y # 0 In addition z # 0; Indeed, suppose z = 0; then according to (2.2), x = +1;
according to (2.3), 2y = +3(D¢)3v?, i.e. 4y? = 9(D,)%v*; but according to (2.4), 4y? = 12D,v*; then we have
12Dgv* = 9(D,)%v*, i.e. 3|4, a contradiction. According to (2.3), xy < 0, and according to (2.2), yz < 0. Then x and z

have the same sign, i.e. xz > 0.
According to (2.2), we have

(+%) (x,mg) = 1.

Then (x, Dg) = 1. According to (2.3), Dg|2xy, i.e. Dg|2y. Then (2.4) becomes

8xz + (2y)? = 12Dgv*

Then (Dg)?|(822). And (2.3) becomes

2(8)*xy + (82)*mg = —3(8)* (Do) *v?

Then (Dg)3|2(8)2y, since Dg|mq. And (2.4) becomes

(25)(8M)2xz + (2(8*)y)* = (2*)(8")3Dsv*

But D¢ |8z; then, (seeing that xz > 0),
(2%)(8*)2xz = (8%)xz,Dg > 0
But (Dg)®](2(8%)y)?; then
(2(8%)y)* = (11)*(De)® > 0
But
(2%)(8M)3Dgv* < (2%)(8")3(De)*
Then (2.7) implies

(8")xz,Ds + (¥1)*(Ds)® < (22)(8*)3Ds)?

(2.5)

(2.6)

(2.7)

(2.8)
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which is impossible for Dg > 16; but v > 2, whereby that Dy = tv® + 1 > 2° = 64.

(b) Let K5 of the second kind. Then

1
(=§(x+ya)2+zw4), with x,y,z€ Z

As 73 = {2, we have

x% 4+ 2yzmg =9 (2.9)
2xy + z2mg = —27(Dg)3v?, (2.10)
2xz + y? = 27Dgv*, (2.11)

Then (x,mg) =1,30u9. The 9 is excluded because mg is square free. whether (x,mg) =1 We have then the
propriete (**) of first case, and get the equivalent of (2.8), namely

(8M)x21D6 + (¥1)*(D6)® < (2%)(8*)27(De)*
which is impossible for Dg > 27, i.e. for all v > 2.

Whether (x,mg) = 3 according to (2.9), 3|y or 3|z. If 3]y, then according to (2.10), 3|z. If 3|z, then according to
(2.11), 3]|y. Brief, 3|y and 3|z. Let

4= n=0) « =0

Then
x2 + 2y,zymg = 1. (2.12)
2x,y1 + zime = —3(Dg)*v? (2.13)
2x12; +y§ = 3(De)v* (2.14)

Which brings us back again to the same contradiction above.

(2) Case “+”: As

vomg = (Dg)® + Dy (2.15)
We derive
(De)®
Furthermore,
N3 =1+ (3(De)*v?)w? — (3Dsv*)w* (2.17)

Suppose that n; = ¢2, We distinguish two cases.
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(@) Let K5 be of the first kind. Then

{=x+yw?+zw* with x,y,z€T

Then
x2 + 2yzmg =1 (2.18)
2xy + z*mg = 3(Dg)3v? (2.19)
2xz + y* = —=3Dgv* (2.20)

Let’s show that
(") (x,mg) =1 et Dyl4z

According to (2.18), (x,mg) = 1. According to (2.19), Dg|2y. Then (2.20) becomes

4xz + 2y% = —6Dgv* (2.21)

and D¢ |4z
Let’s show that
(xx") xy>0 et z#0

We have x # 0 and z # 0 otherwise according to (2.20), y?> = —3v*Dg < 0. In addition y # 0; suppose the contrary;
6
according to (2.19), (42)?mg = (4%)(3)v?(Dg)3; according to (), 4z = z, D,; according to (2.16), mg > (l:fs) , Then

8
4HB)V*(De)? = (4z)*mg > z} <(l1)zﬁ6) )

which is impossible for v > 2. According to (2.18), x? =1 — 2yzm, > 0 then yz < 0. According to (2.20), 2xz =
—3v*D, — y? < 0then xz < 0. Then xy > 0 The equation (2.19) becomes

(4%)2xy + (42)*mg = (4°)3(Dg)*v? (2.22)
Then

2 3,2 _ (42 2p2 2<(D6)8)
(49)3(Dg) = (4°)2xy + z{D*mg > z{

U6
which is impossible for v > 2.

(b) Let K5 be of the second kind. Then
1
(= §(x +yw? + zw*), with x,y,z€Z

Asn; = {2, we have

x% + 2yzmg =9 (2.23)

2xy + z?mg = 27(Dg)3v? (2.24)
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2xy + y? = =27Dgv* (2.25)

According to (2.23), (x,m¢) = 1,3 ou 9. 9is excluded. Whether (x,m¢) = 1. We have then the property (+ ) and we
deduce a contradiction as above. Let (x, mg) = 3. According to (2.23), 3|yz, If 3|y, then according to (2.24), 3|z. If
3|z, then according to (2.25), 3|y. Let

2= 0= Q) =)

and we deduce a contradiction as above.
3. A Fundamental System of Units of K = Q($/My)

We have m is square-free, the field K, = Q(w), w = $/m, is of degree 6 over Q, in addition it admits a quadratic sub-
field K, 4 = Q(w*) with fundamental unit 7, ¢ (theorem 1.2), and a cubic sub-field K; = Q(w?) with fundamental unit

13 (theorem 2.7). For the determination of a fundamental system of units of the field K, = Q($/M,), we use the Stender
theorem [12]:

Theorem 3.8 Let 17, ¢ be the fundamental unit of K, ¢, and let n; be the fundamental unit of K;. Let &, £3eK such that
NKs/Kz_s (&) = N2,6 NK6/K3 (&) =+1
and
Nk /K, 6 &) =1, N, ks (&2) = 1m36
Let €; € K, be the smallest unit>1, satisfying:
NKG/KZ,G (e) =1, Ny, /ks (ep) = =1
Then
{$2,85, €61}
is a fundamental system of d 'units of K.

Let o be a third root of unity, (¢? + o + 1 = 0); the conjugates a’ of an algebraic integer « of field K5, 0 < j < 5, are
given by:

a® =g
a® = —q
«® = oq
l a® = o2q (3.26)
a® = —oa
a® = —p?a

And according to Stender [12], the product aw can be written in the form:

w? w? wt w®

1
aw =€(x0+x1w +x27+x37x4ﬁ+xsw) (3.27)

with x;€Z,0 < i < 5.

Remark 3.9 Since m, is square free, then we cantake g = h = 1in (3.27), (see [12] page 80 and page 87).
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In addition, we have:

Proposition 3.10 Let a be an algebraic integer of the field K, = Q(w). Let B be a unit >1 such that
Ngy/k,s(B) =1, Nk, (B) = £1

Suppose that 8 = a™. Then

ki

|xi| < (Ui_l

(VB+2VIp®I+3), o0<i<5 (3.28)

where ko = k; = 1,k, = k3 = h, ks = ks = gh?. In addition x, # 0 and x5 # 0 .
Now we give the main results of this section.
Theorem 3.11 Let t, v be two nonzero integers, Dy = tv® ¥ 1 > 0. Let

Mg = (D6)® £ Dg = mev® > 1,and w = /m.

Suppose that mg is square-free. Then

vw + Dg v3w3 — (Dg)?
=+ = = &3 -1
{$2 w0 —Dg 3 (vw —Dg)® €1 = $3M26 )
is a fundamental system of units of K, = Q(3/Mj)
Proof: &, and &; satisfies theorem 3.8, namely:

1\/1(6/1(2_6 (&) = 26 Nk, (&) =+1

And
NKG/K2’6(€3) =1 NKs/K3(€3) =173
For
€=M =8 = 56773_1772,6_1
where
fom —t
7 (vw — Dg)®
we have
e1>1,  Ngyk,(€1) =1, et Ng gk, (e) =+1 (3.29)

Let’s show that €, is the smallest unit that verifies (3.29):

Lemma 3.12 (i) In Case"-", we have

(4v°w® s
D <Mpe < 4(D)>,
6
12v°w®
<&, < 12(Dg)°
\ Ds

(ii) In Case “+”, we have



41° @

D,

12v°w®
Dg

(
[ 4(D)® < 136 <

klz(De)S <§ <

Proof: (i) Case “-:

D6—1<‘Uw<D6.

Since

Dg = (D6)6 - (WU)G,
we deduce

Dg
— D 3 + 3

(D6)3 _ (U(l))3 ( 6) (U(l))

and
Ds 5 4 2,2 3 3,.3 2 4,4 5,.5
mz((DG) + vw(Dg)* + v°w?(Dg)® + v:w?(De)* + v*w*Dg + v w?).
. —
We have
Dg 1 Dg 5 1
- @ = (- - - D 3 + 3,.3\2

6 = @Rt~ PR Do Wwr— D | D ) T
then

4% w°

<1, < 4(Dg)°.
6
Similarly
vw + D, vw + D,
& = - D6 =5 (D)’ + v (Dy)* + v2w?(Dy)? + v3w3(Dg)? + v*w*Ds + v°w®)
— Ve 6

Then

12v°%w®

< & < 12(Dg)°.
Dy

(ii) Case “+”:vw > D, and just swap Dy and vw.

Lemma 3.13
3324—(D6—)16 Case" —"
1<e < vow? ’
! 3324 v18 1 C " + n
ase )
L (Dg)®
Proof: Case “-

D D,)16 D, )16
€1 = 623772_1 < (12(D6)5)3 (4(172))6) =3%2¢ <4§(1763))6) =32 (((17(61)))6)

On the other hand, according to lemma 3.12,
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12v°w®

3
€ =8n," > ( ) (4(De)*>) 1 >1

In Case"+", we use lemma 3.12 and the fact that vw > D

Lemma 3.14 (i) Case “-“:
8
@) _ .05 (Ds)
1< @] = ]! |<12\/§<W)
(ii) Case “+”:
@ ©)]
1<|e”’| =167 < 12\/_< )
| 1 | | 1 | (D)
Proof: According to (3.26), ¢ = ¢®. Then [¢®| = |¢{®)|. On the other hand,

€] = |EP) (0 ] = &P sl

and
0 = () = e = o
Then
691> 1 and |69 > 1
We have
1< 126 = [126P) " = [126®] " = 126
Then

1€9] = 1e®] = 6] n,,6@]
On the other hand,

3/2 -
6] = 6P = (£965) " (11,6026 ) 2

_ (Dg)? + Dgvw + v’ w? 32 (v3w? + (Dg)?)?
(Dg)? — Dgvw + v2w? D¢

Then

Case “-*: We have vw < Dg; then

o1 _ (32’ (4(D)° (De)®
1< ()" (19) a0

Case “+”:We have vw > Dg; and

2, .2\ 3/2 6,6 9
) 3vcw 4v°w
& |<<(Dﬁ>2> < D, ) 12((@))

66
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Lemma 3.15 ¢, is the smallest unit > 1 of field K, = Q(w) such that
Nigo/ipe(€1) =1, et Ny (1) = +1
Proof: Argue by contradiction and assume that
€, =a" withn>1

There n ¢ {2,3}, because \/ﬁ & Ks and 3/n, 6 € Ks. Letn > 5. In specializing § = €, in the proposition 3.10, then for

i € {4.5} we have
)(J—+z/|fq+3>

|x|<(

c_ce,

(De)'®
€1 = 3324 ( v6w6

such that

Case

|€! 4)|<12\F< )

we obtain

(D6)*\ [ 5|54 (PsV?° 5 20 3v*
< i) Jm (fﬁ—a)ﬁ)ﬂjlm(v%%mv)+(cve>3> ' 230

_ °la39a Dev?° %la3 4<&)
Jsz ( — ) < [332 A
3724
ﬁz =)
(De)*
2]12@ 173 3(D6)7> J12x/_<7v3 3(D6)7)

< 2#12@(@)

. = vt - 3
T (De)? T (De)?

But

0 0 1
v*0* S (D)6~ Dg  Ds— (Dg)~*

Then |x5| < 1, because Dy > 2° = 64, and xs = 0 because x5 is an integer. In addition,
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(De)*\ [ s g [PsV™® s v1s 3v3
|x4| = <—v3w3 332 Y +2 [12V3 i (D) + Do)’ (3.31)
But
394 Dev?®
3224 | <Gy
s p15
2\/12@ (W) <G,
3v3 <c
(De)?) =7
(Dg)? 1
<
v3w3 1—(Dg)™5
Then x, = 0.
Case “+:
o 1 5 NG 1 3
Then in a analogous manner x5 = 0. In addition,
5 1\ |(Dg)S+Dg s 1 3
3924 ( - - -
sl < |32 (175)\/ ot 2 123 () + () (333)

Then x, = 0. This completes the prof of theorem 3.11.
4. A Fundamental System of Units of K = Q(%/M,)

We assume that m, is square-free, the field K, = Q(w), (w = 3/m,), is of degree 4 over @Q, in addition it admits a sub-
quadratic field K,, = Q(w?) with fundamental unit 7, , (theorem 1.3). We introduce here the proprieties of fields of
degree 4 taken follows [9] and [11].

Every algebraic integer @ of K, can be written as form

a= Z(xo + X0 + x,0% + x30%)  with x5,  X1,X5,X3 €Z (4.34)
We denote by
w=%m,
@ = -

oM = -
4.35
w® =iw ( )

0® = —iw

the four conjugates w. replacing w respectively by w®, 0@, w® in (4.42), we get

1
a® = n (%0 + X, 0 + X, 0% + x30°) (4.36)



1
a® = Z(x0 + x i — xpw? — x3iw3)

1
a® = Z(x0 —x1iw — Xpw? + x3iw3)

If in addition B is an algebraic integer such that 8 = +a™,n > 1, then

o= (1) 3 VIF

Jj=0

Denote by ¢, the smallest unit >1 of K, satisfying the property

sosél) =1;

then any other unit € of K, which satisfies the properties (4.40), is of the form

e=¢}, n=>1
writing

1 .
g =, +xw+ x,0% + x303)  with xg,x1, x5, %3 €Z

then according to (4.40) and (4.41) we have in addition

1
0 # |xs] <$(3+x/5)
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(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

Theorem 4.16 Let 1, , be the fundamental unit of the quadratic field K, , = Q(,/M4), and let g, be the smallest unit of

K, satisfying sosél) = 1. If \/(n24) 7o € Ky, then
{2,480}

is a fundamental system of unit of K.

Now we give the main results of this section.

Theorem 4.17 Let t, v be two nonzero positive integers, D, = tv* F 1. Let
M,=D}+D M 4/
4=l T 4'm4_v4'w_ my.
Suppose that m, is square-free. Then

I£1=i

_ (v?w? + D2)? vw + D,
2.4 D, vw — D,

is a fundamental system of units of the quartique real field K, = Q(“,/M4)

Proof: Remains to verify that the unit &, satis_es the property (4.40), and that K, is of the first kind (i.e.:

V(M24) e € Ky). Infact,
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vw + D,
Hg=t——
vw — D,

isaunitof K, of norm 1 because

vw + D, _
g =+———=2(D,) F1+2(D,)*vw + 2D,12w? + 2v3w?
vw — D,

is an algebraic integer such that

vw + D4 —vw + D4 “.7(1) + D4 _”.7(1) + D4_
Meraed = (Go =5 (Sa—p.) e =) (Cra—p.) =1
vw — D,/ \-vw — D,/ \ivw — D,/ \—ivw — D,
vw+Dy 1 2 3 - n .
Lemma 4.18 Let g, = +( — ) ete, = Z(xo + X0 + x,0° + x30°) with x;€Z. Assume that &; = & with n > 2.
4
Then
1. Case “+7:|x5| < (VD)‘/_
4
c_, 3 (v3D4),/8Dy
2. Case “-“:|x3| < —~+ Tt

Proof: Since v*w* = (D,)* + D,, then

(+ ){Case "+":we have D, < vw < D, + 1,
%71 Case "-":we have D, — 1 < vw < D,
But
vw + Dy 3 ) 3 3
& = im =2(D,)%F1+2(D,)*vw + 2D,v%w? + 2v3w (4.44)

which gives us

{ 4
Case "+":8(D,)3 < ¢ <8 (v;)) ,
(*1) (va))4
| Case"-": 8 D < & < 8(Dy)?
then
( Case "+": \/8_13 < @.
(*z){ ( “’) \ /a5,
- (D4) 8D,
kCase - ' w)3 (tv™)?
in fact

Case “+”: According to (x;),ve; < (V8) (ww) ) and then one applies (x).

[TIRIN 8(D4) (D4)\(8D4 \/5_1 (D4)+/8D4
Case “-”: According to (*1) ( S according to (*0) )3 L flnally( 3 < (o3

Then we have

a _ (vw + D4) (—vw + D4) —1
8 = o — D,/ \=vw -D,)
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According to (4.43)

0<|x3|< (3+\/_)

Then
v3e
0<|x3] < —+ vw)? (4.45)
repIaCIng by — 1n Case “+”, and by CANCLZY in Case “-“, conclude using (*,)

)3' (tv*)3

Lemma 4.19 Suppose that m, is square free. Then

vw + D,
a=2(a 5
vw — D,

is the smallest unit of K, which satisfies

slsf) 1

Proof: recall that v = 2. We have then

a _ (va) + D4> <—va) + D4> _1
R T D,/ \-vw —-D,)

Argue by contradiction. Then according to (4.41) we have,
&g =¢€f, ou g = i(x0 + X0 + x,w? + x303) with x ;€Z.
According to lemma 4.18, we have
0] Case “+7,

3 38

X3 <—+
|3| (U3 D4_

(4.46)

Since w > 3, then < . Then

3 v3\/§_ 3 v3v8 1 138

<= = < —
el < 3t Tt i1 et oy
But
1 v3/8
— 1 & 4vt 23 -4
5 174_1< 4v (9\/_)v >0

This is true for v > 3. Then for v > 3

VB

<1
1

1
|x3|< +

Then x5 = 0, contradiction with (4.43). the result remains true for v € {2,3}, because for v = 3, just directly replace in
(4.46). The same for v = 2 and t > 2, just replace directly in (4.46). For (v,t) = (2,1), just replace directly in (4.45).
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In the following, we do not treat the first two values of v, (v = 2,3), because the result is the same by the same

argument.

(i) Case "-",

<1

9

3 v3D, /8D, 1 s (v3(2w4)(x/§\/?«/§)vz) L, V8
(w3 9 v3

il <-—=+
| 3| w3 (tv4)3 t3p12
Then we have the same contradiction.

We show that & = ,/(11,,4) " te; € K,. But

&D, _ 1
$= 0 e = J @707 + 07 e + (D ¥

If ¢ € K, then /¢,D, € K,. According to (4.42), we have

1 .
VeiDy =7 (o + o + X,w? + x303) with xg, X 1, x 5, X 3€Z.

Using (4.39), we have

< (%)Z s

j=0

Then

1
IX3| < 5(1/D4£1 + 1 + 2\/D_4)

According to (*,) we have

Case “+n)

1
|x3|<E(,/D451+1+2\/D_4)< T+ —+ — <1

[13K13

Case “-*,

1
x| < E(,/D4sl +1+2,/D,)
v3(D,)*V8 1 2v3,/D,

(D2 — 3D 13D, — 1 @® T (D3)? —3(Dy)2 + 3D, — 1

V8 1 2 .
3,3 1 ‘et 31
v3 " Dyvd (D, v3 D3

<
v

Then x; = 0; then the same contradiction arises. This completes the demonstration of theorem 4.17.
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