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Abstract: In this paper, for the approximate solutions of the linear differential equation system with variable coefficients in normal
form characterizing curves of constant breadth according to Bishop frame in Euclidean 3-space, it is used a collocation method based
on Taylor polynomials and therefore the curves of constant breadth are determined. In addition, an error analysis based on residual
function is given for the method. Also, to demonstrate the efficiency of the method, an example is given with the help of computer
programmes written in Maple and Matlab.
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1 Introduction

The curves of constant breadth were introduced by Euler in 1778 [1]. He investigated the constant breadth curves in the
plane. Then, many mathematicians were interested in these special curves [2-11]. Mağden and Köse studied the curves
of constant breadth in E4-space in [12]. After then, the concepts related to space curve of constant breadth were extended
to En-space in [13]. The differential equations characterizing curves of constant breadth were established and a criterion
for these curves were given by Sezer in [14]. Moreover, Önder et al. gave the differential equations characterizing the
timelike and spacelike curves of constant breadth in Minkowski 3-space in [15]. In addition Kocayiğit and Önder showed
that in E3

1 spacelike and timelike curves of constant breadth are related to helices, normal curves and spherical curves in
some special cases [16].

In [17], the collocation method based on Taylor polynomials was given by Sezer et al. to find the approximate solutions
of high-order systems of linear differential equations with variable coefficients. Also, in [25] Kocayiğit and Çetin
investigated the curves of constant breadth according to Bishop frame in Euclidean 3-space and they gave differential
equations and systems characterizing these curves.

In this study, we obtain the approximate solutions of the differential equation systems characterizing curves of constant
breadth according to Bishop frame in Euclidean 3-space by using Taylor collocation method. Then we give an example
and compare the results to demonstrate the efficiency of the method.
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2 Preliminaries

Now, we give some basic concepts on classical differential geometry of space curves. Let α(s) be a space curve, where
s is an arc length parameter and let

{−→
T (s),

−→
N (s),

−→
B (s)

}
be Frenet frame of this curve. The elements of the frame

−→
T ,

−→
N ,

−→
B and are called the unit tangent vector, the unit principal normal vector and the unit binormal vector of the curve,

respectively. Furthermore, κ(s) and τ(s) are called curvature and torsion of the curve α , respectively. The Frenet formulae
are also well known as 

−→
T ′
−→
N ′
−→
B ′

=

 0 κ 0
−κ 0 τ
0 −τ 0



−→
T
−→
N
−→
B


where

⟨−→
T ,

−→
T
⟩
=
⟨−→

N ,
−→
N
⟩
=
⟨−→

B ,
−→
B
⟩
= 1 and

⟨−→
T ,

−→
N
⟩
=
⟨−→

N ,
−→
B
⟩
=
⟨−→

T ,
−→
B
⟩
= 0.

The parallel transport frame is an alternative approach to defining a moving frame that is well-defined even when the
curve has vanishing second derivative. We can parallel transport an orthonormal frame along a curve simply by parallel
transporting each component of the frame [18].

Its mathematical properties derive from the observation that, while
−→
T (s) for a given curve model is unique, we may

choose any convenient arbitrary basis
(−→

N1(s),
−→
N2(s)

)
for the remainder of the frame, so long as it is in the normal plane

perpendicular to
−→
T (s) at each point. If the derivatives of

(−→
N1(s),

−→
N2(s)

)
depend only on

−→
T (s) and not each other, we can

make
−→
N1(s) and

−→
N2(s) vary smoothly throughout the path regardless of the curvature. We may therefore choose the

alternative frame equations 
−→
T ′
−→
N1

′
−→
N2

′

=

 0 k1 k2

−k1 0 0
−k2 0 0



−→
T
−→
N1−→
N2

 (1)

where
⟨−→

T ,
−→
T
⟩
=
⟨−→

N1,
−→
N1

⟩
=
⟨−→

N2,
−→
N2

⟩
= 1 and

⟨−→
T ,

−→
N1

⟩
=
⟨−→

N1,
−→
N2

⟩
=
⟨−→

T ,
−→
N2

⟩
= 0 [19, 20]. One can show that [19]

κ(s) =
√

k2
1 + k2

2, θ(s) = arctan
(

k2

k1

)
, τ(s) =

dθ(s)
ds

k1 = κ cos(θ), k2 = κ sin(θ)

and
−→
T =

−→
T ,

−→
N1 =

−→
N cos(θ)−−→

B sin(θ), −→
N2 =

−→
N sin(θ)+−→

B cos(θ)

so that k1 and k2 effectively correspond to a Cartesian coordinate system for the polar coordinates κ,θ with
θ =

∫
τ(s)ds. A fundamental ambiguity in the parallel transport frame compared to the Frenet frame thus arise from the

arbitrary choice of an integration constant for θ0, which disappears τ from due to the differentiation [20].

It is well-known that the curvature κ(s) of the curve (C) is defined by

lim
∆s→0

∆φ
∆s

=
dφ
ds

= κ(s)

where φ is the angle between the tangent
−→
T of the curve α and a given fixed direction at the point α(s).
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3 Taylor Collocation Method for System of Linear Differential Equations with Variable
Coefficients in Normal Form

A Taylor collocation method was given to find the approximate solutions of high-order systems of linear differential
equations with variable coefficients in [17]. In this section we develop the Taylor collocation method for the systems of
three linear differential equations with variable coefficients in the normal form

L [yi(x)] = y′i(x)−
3

∑
j=1

pi, j(x)y j(x) = gi(x) (i = 1,2,3) (0 ≤ a ≤ x ≤ b) (2)

under the initial conditions
yi(a) = ci (3)

where yi(x) (i = 1,2,3) are unknown functions, pi, j(x) and gi(x) are the known continuous functions defined on interval
[a,b], and ci (i = 1,2,3) are the real constants. In this study, by developing the Taylor collocation method with the help
of the residual error function used in [21-24], we obtain the approximate solutions of the system (2) expressed in the
truncated Taylor series

yi,N,M(x) = yi,N(x)+ ei,N,M(x) (i = 1,2,3)

where

yi(x)≈ yi,N(x) =
N

∑
n=0

ai,nxn (4)

is the Taylor polynomial solution and

ei,N,M(x) =
M

∑
n=0

a∗i,nxn (M > N)

is the Taylor polynomial solution of the error problem obtained with the help of the residual error function. Here ai,n and
a∗i,n, (n = 1,2, ...,N) are the unknown Taylor coefficients.

In order to find the solutions of the system (2) under the initial conditions (3), we can use the collocation points defined
by

xk = a+
b−a

N
k, k = 1,2, ...,N, (0 ≤ a ≤ x ≤ b). (5)

On the other hand, we can write the approximate solutions yi,N(x) given by Eq.(4) in the matrix form

yi,N(x) = X(x)Ai, (i = 1,2,3) (6)

where
X(x) =

[
1 x x2 ... xN

]
and

Ai =
[

ai,0 ai,1 ai,2 ... ai,N

]T
.

From Eq.(6), the solutions yi,N(x) (i = 1,2,3) can be expressed as

Y(x) = X(x)A (7)
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where

Y(x) =

 y1,N(x)
y2,N(x)
y3,N(x)

 , X(x) =

X(x) 0 0
0 X(x) 0
0 0 X(x)

 , A =

A1

A2

A3

 .

Also, the relation between the matrix X(x) and its derivative X′(x) is

X′(x) = X(x)B (8)

where

B =



0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · N
0 0 0 0 · · · 0


.

By using the relations (6) and (8), we gain the following matrix relation

y′i,N(x) = X(x)BAi (i = 1,2,3).

Hence, we can write the matrix relation as follows

Y′(x) = X(x)BA (9)

where

Y′(x) =

 y′1,N(x)
y′2,N(x)
y′3,N(x)

 , B(x) =

B 0 0
0 B 0
0 0 B

 .

We can write the system (2) in the matrix form

Y′(x) = P(x)Y(x)+G(x) (10)

where

P(x) =

 p1,1(x) p1,2(x) p1,3(x)
p2,1(x) p2,2(x) p2,3(x)
p3,1(x) p3,2(x) p3,3(x)

 , G(x) =

g1(x)
g2(x)
g3(x)

 .

By using the collocation points given by (5) into Eq.(10), we obtain the system of matrix equations

Y′(xk) = P(xk)Y(xk)+G(xk) (k = 0,1,2, ...,N).

Briefly, the fundamental matrix equation is
Y′ = PY+G (11)
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where

P =


P(x0) 0 · · · 0

0 P(x1) · · · 0
...

...
. . .

...
0 0 · · · P(xN)

 , Y =


Y(x0)

Y(x1)
...

Y(xN)

 ,

Y′ =


Y′(x0)

Y′(x1)
...

Y′(xN)

 , G =


G(x0)

G(x1)
...

G(xN)

 .

From the relations (7), (9) and the collocation points given by (5), we obtain

Y(xk) = X(xk)A and Y′(xk) = X(xk)BA (k = 0,1,2, ...,N)

or briefly
Y = XA and Y′ = XBA (12)

where

X =


X(x0)

X(x1)
...

X(xN)

 , X(xk) =


X(xk) 0 · · · 0

0 X(xk) · · · 0
...

...
. . .

...
0 0 · · · X(xk)

 .

By substituting the relations given by (12) into Eq.(11), we gain the fundamental matrix equation as

{
XB−PX

}
A = G. (13)

In Eq.(13) the full dimensions of the matrices P, X, B, A and G are 3(N + 1)× 3(N + 1), 3(N + 1)× 3(N + 1),
3(N +1)×3(N +1), 3(N +1)×1 and 3(N +1)×1, respectively.

The fundamental matrix equation (13) corresponding to Eq.(2) can be written in the form

WA = G or [W;G] . (14)

This is a linear system of 3(N +1) algebraic equations in 3(N +1) the unknown Taylor coefficients such that

W = XB−PX = [wp,q] p,q = 1,2, ...,3(N +1).

By using the conditions given by (5) and the relations (7), the matrix form for the conditions is obtained as

X(a)A = C (15)

where
C =

[
c1 c2 c3

]T
.

Hence, the fundamental matrix form for conditions is

UA = C or [U;C] (16)
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such that
U = X(a).

Consequently, we obtain the Taylor polynomial solution of the system (2) under the initial conditions (3) by replacing the
row matrices (16) by last rows of the matrix (14). Then, we obtain the new augmented matrix

W̃A = G̃ or
[
W̃;G̃

]
. (17)

If rank W̃ = rank
[
W̃;G̃

]
= 3(N +1), then we can write

A =
(

W̃
)−1

G̃. (18)

By solving this linear system, the unknown Taylor coefficients matrix A is determined and ai,0,ai,1, ...,ai,N (i = 1,2,3)
are substituted in Eq.(4). Thus, we find the Taylor polynomial solutions

yi,N(x) =
N

∑
n=0

ai,nxn (i = 1,2,3).

4 Residual Correction and Error Estimation

In this section, we give an error estimation for the Taylor polynomial solutions (4) with the residual error function [21-24].
Also, we develop the Taylor polynomial solutions (4) via the residual error function. Firstly, we can define the residual
function of the Taylor collocation method as

Ri,N(x) = L [yi,N(x)]−gi(x) (i = 1,2,3). (19)

Here yi,N(x), represent the Taylor polynomial solutions given by (4) of the problem (2)-(3), and satisfies the problem y′i,N(x)−
3
∑
j=1

pi, j(x)y j,N(x) = gi(x)+Ri,N(x), (i = 1,2,3)

yi,N(a) = ci, (i = 1,2,3).

Also, the error function ei,N(x) can be defined as

ei,N(x) = yi(x)− yi,N(x) (20)

where yi(x) are the exact solutions of the problem (2) and (3). From Eqs.(2), (3), (19) and (20), we obtain the system of
error differential equations

L [ei,N(x)] = L [yi(x)]−L [yi,N(x)] =−Ri,N(x)

with the homogeneous initial conditions
ei,N(a) = 0 (i = 1,2,3)

or clearly, the error problem can be expressed as e′i,N(x)−
3
∑
j=1

pi, j(x)e j,N(x) =−Ri,N(x), (i = 1,2,3)

ei,N(a) = 0, (i = 1,2,3).
(21)
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Here, the nonhomogeneous initial conditions

yi(a) = ci and yi,N(a) = ci

are reduced to homogeneous initial conditions
ei,N(a) = 0.

The error problem (21) can be solved by using the procedure given in Section 3. Thus, we obtain the approximation

ei,N,M(x) =
M

∑
n=0

a∗i,nxn (M > N, i = 1,2,3)

to ei,N(x). Consequently, the corrected Taylor polynomial solution yi,N,M(x) = yi,N(x)+ ei,N,M(x) is obtained by means of
the polynomials yi,N(x) and ei,N,M(x). Also, we construct the error function ei,N(x) = yi(x)− yi,N(x), the estimated error
function ei,N,M(x) and the corrected error function Ei,N,M(x) = ei,N(x)− ei,N,M(x) = yi(x)− yi,N,M(x).

5 Illustration

In this section, we give an example which is related to space curve pair of constant breadth according to Bishop frame in
Euclidean 3-space. The computations connected with the example are calculated by using a computer programme which
is called Maple and the figures are drawn in Matlab. In tables and figures, we calculate the values of the Taylor
polynomial solution yi,N(x), the corrected Taylor polynomial solution yi,N,M(x) = yi,N(x)+ ei,N,M(x), the actual absolute
error function |ei,N(x)|= |yi(x)− yi,N(x)| ,the estimated absolute error function |ei,N,M(x)| .

Definition 1. A pair of space curves (C) and (C∗) in E3 for which the tangents at the corresponding points α(s) and

α∗(s∗) are parallel and in opposite directions, and the distance between these points is always constant are called space
curve pair of constant breadth [11].

Let (C) and (C∗) be a pair of unit-speed curves in Euclidean 3-space with non-zero Bishop curvatures and let those
curves have parallel tangents in opposite directions at the corresponding points α(s) and α∗(s∗), respectively. Hence, the
position vector of the curve (C∗) at the point α∗(s∗) can be written as

−→
α∗(s∗) =−→α (s)+λ1(s)

−→
T (s)+λ2(s)

−→
N1(s)+λ3(s)

−→
N2(s) (22)

where λi(s) (i = 1,2,3) are differentiable functions of s which is arc length of (C). Denote by
{−→

T ,
−→
N1,

−→
N2

}
, k1 and k2 the

moving Bishop frame, Bishop curvatures along the curve (C), respectively. And denote by
{−→

T ∗,
−→
N∗

1 ,
−→
N∗

2

}
, k∗1 and k∗2 the

moving Bishop frame, Bishop curvatures along the curve (C∗), respectively.

Theorem 1. The general differential equation systems characterizing space curve pair of constant breadth according to

Bishop frame in E3 are as follows [25]. 
dλ1
ds = k1λ2 + k2λ3

dλ2
ds =−k1λ1

dλ3
ds =−k2λ1

(23)
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25 M. Çetin, M. Sezer and H. Kocayiğit : Determination of the Curves of Constant Breadth according...

where k1 and k2 are Bishop curvatures and 
dλ1
dφ = µ1λ2 +µ2λ3

dλ2
dφ =−µ1λ1
dλ3
dφ =−µ2λ1

(24)

where µ1 = ρk1 =
k1
κ = cos(θ), µ2 = ρk2 =

k2
κ = sin(θ), (θ =

∫
τds) .

We can express
−→
T ,

−→
N1 and

−→
N2 in terms of α ′,α ′′,α ′′′ and k1,k2 via the Bishop formulae as follows.

−→
T = α ′ (25)

N1 =
1
µ
(
−k2α ′′′+ k′2α ′′− k2(k2

1 + k2
2)α ′) (26)

N2 =
1
µ
(
k1α ′′′− k′1α ′′+ k1(k2

1 + k2
2)α ′) (27)

where

µ = k2
1

(
k2

k1

)′
.

Substituting (25), (26) and (27) in (22), we obtain

−→
α∗(s∗) =

(
k1λ3 − k2λ2

µ

)
−→α ′′′+

(
k′2λ2 − k′1λ3

µ

)
−→α ′′ (28)

+

[
(k2

1 + k2
2)(k1λ3 − k2λ2)

µ
+λ1

]
−→α ′+−→α .

Example 1. We consider the curve α : [0,2π]→ E3 given by

α(s) =
(

3cos
( s

5

)
,3sin

( s
5

)
,

4s
5

)
.

For the curve α , the Frenet vectors, curvature and torsion are obtained as follows

−→
T (s) =

(
−3

5
sin

( s
5

)
,

3
5

cos
( s

5

)
,

4
5

)
,
−→
N (s) =

(
−cos

( s
5

)
,−sin

( s
5

)
,0
)

−→
B (s) =

(
4
5

sin
( s

5

)
,−4

5
cos

( s
5

)
,

3
5

)
, κ =

3
25

and τ =
4
25

respectively. Also, we can calculate the Bishop elements of the curve α as follows

θ =
4s
25

k1 =
3
25

cos
(

4s
25

)
, k2 =

3
25

sin
(

4s
25

)
(29)

and
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N1 =

(
−4
5

sin
( s

5

)
sin

(
4s
25

)
− cos

( s
5

)
cos

(
4s
25

)
,

4
5

cos
( s

5

)
sin

(
4s
25

)
− sin

( s
5

)
cos

(
4s
25

)
,
−3
5

sin
(

4s
25

))

N2 =

(
4
5

sin
( s

5

)
cos

(
4s
25

)
− cos

( s
5

)
sin

(
4s
25

)
,
−4
5

cos
( s

5

)
cos

(
4s
25

)
− sin

( s
5

)
sin

(
4s
25

)
,

3
5

cos
(

4s
25

))
Substituting (29) in (23), we obtain 

λ ′
1(s) =

3
25 cos

( 4s
25

)
λ2(s)+ 3

25 sin
( 4s

25

)
λ3(s).

λ ′
2(s) =

−3
25 cos

( 4s
25

)
λ1(s).

λ ′
3(s) =

−3
25 sin

( 4s
25

)
λ1(s).

(30)

We can find approximate solutions of the problem (30) by using Taylor collocation method above mentioned. We suppose
that the initial conditions for λ1(s), λ2(s) and λ3(s) as follows

λ1(0) = 2, λ2(0) = 1, λ3(0) = 3.

The approximate solutions λ1,3(s), λ2,3(s) and λ3,3(s) by the truncated Taylor series for N = 3 are given by

λi,3(s) =
3

∑
n=0

ai,nsn, (i = 1,2,3).

The set of the collocation points for a = 0, b = 2π and N = 3 is calculated as{
s0 = 0, s1 =

2π
3
, s2 =

4π
3
, s3 = 2π

}
.

We can write the fundamental matrix equation of the problem (26) from Eq.(13) as

{
SB−PS

}
A = G.

By using the technique in Section 3, the approximate solutions of the problem (30) for N = 3 are obtained as

λ1,3(s) = 2+0.119999999999999994s+(0.148701113607149546e−1)s2 − (0.108758588173734316e−2)s3.

λ2,3(s) = 1−0.239999999999999990s− (0.873633174412091763e−2)s2 +(0.115528896583677382e−2)s3.

λ3,3(s) = 3− (0.195847736542368278e−1)s2 − (0.683135379920168538e−3)s3.

In order to calculate the corrected Taylor polynomial solutions, let us consider the error problem
e′1,3(s)−

3
25 cos

( 4s
25

)
e2,3(s)− 3

25 sin
( 4s

25

)
e3,3(s) =−R1,3(s).

e′2,3(s)+
3
25 cos

( 4s
25

)
e1,3(s) =−R2,3(s).

e′3,3(s)+
3

25 sin
( 4s

25

)
e1,3(s) =−R3,3(s).

(31)

such that e1,3(0) = 0, e2,3(0) = 0, e3,3(0) = 0 and the residual functions are
R1,3(s) = λ ′

1,3(s)−
3

25 cos
( 4s

25

)
λ2,3(s)− 3

25 sin
( 4s

25

)
λ3,3(s).

R2,3(s) = λ ′
2,3(s)+

3
25 cos

( 4s
25

)
λ1,3(s).

R3,3(s) = λ ′
3,3(s)+

3
25 sin

( 4s
25

)
λ1,3(s).
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By solving the error problem (31) for M = 4, the estimated Taylor error function approximations e1,3,4(s), e2,3,4(s) and
e3,3,4(s) to e1,3(s), e2,3(s) and e3,3(s) are obtained as

e1,3,4(s) = −(0.341067270660595030e−3)s2 +(0.190358881883564312e−3)s3 − (0.241570139950251427e−4)s4.

e2,3,4(s) = (0.151791194512943678e−2)s2 − (0.715789891362811458e−3)s3 +(0.844881912401404312e−4)s4.

e3,3,4(s) = (0.784722476727751960e−3)s2 − (0.392449258278592588e−3)s3 +(0.484628169544237858e−4)s4.

Hence, we can calculate the corrected Taylor polynomial solutions for M = 4 as

λ1,3,4(s) = 2+0.119999999999999994s+(0.1452904409e−1)s2 − (0.8972270001e−3)s3

−(0.241570139950251427e−4)s4.

λ2,3,4(s) = 1−0.239999999999999990s− (0.7218419799e−2)s2 +(0.4394990746e−3)s3

+(0.844881912401404312e−4)s4.

λ3,3,4(s) = 3− (0.1880005117e−1)s2 − (0.1075584638e−2)s3 +(0.484628169544237858e−4)s4.

Similarly, we can calculate corrected Taylor polynomial solutions of the problem for different values of M as follows. For
M = 5, the approximate solutions are

λ1,3,5(s) = 2+0.119999999999999994s+(0.1439737414e−1)s2 − (0.7947228696e−3)s3

−(0.508657095719278348e−4)s4 +(0.226278147175747614e−5)s5.

λ2,3,5(s) = 1−0.239999999999999990s− (0.7121186842e−2)s2 +(0.3615042855e−3)s3

+(0.105565171620638706e−3)s4 − (0.184964326733999626e−5)s5.

λ3,3,5(s) = 3− (0.1920195851e−1)s2 − (0.7626538882e−3)s3 − (0.329828771379642208e−4)s4

+(0.690853227461905316e−5)s5.

For M = 6, the approximate solutions are

λ1,3,6(s) = 2+0.119999999999999994s− (0.489933391146528524e−4)s4 +(0.279612930756887982e−7)s6

+(0.1439876390e−1)s2 +(0.187592327211527806e−5)s5 − (0.7982653977e−3)s3.

λ2,3,6(s) = 1−0.239999999999999990s− (0.438073448317362830e−6)s6 +(0.4488424909e−3)s3

+(0.691386308539103172e−4)s4 +(0.476573407873323844e−5)s5 − (0.7200265850e−2)s2.

λ3,3,6(s) = 3− (0.1921223552e−1)s2 +(0.796884680628572582e−5)s5 − (0.385065566486739328e−4)s4

−(0.7502724205e−3)s3 − (0.735345232520348584e−7)s6.

For M = 7, the approximate solutions are

λ1,3,7(s) = 2+0.119999999999999994s+(0.680723473252911355e−7)s6 − (0.7999978004e−3)s3

−(0.479825459755605068e−4)s4 +(0.158713217431771746e−5)s5 +(0.1439997195e−1)s2

−(0.216393272754547384e−8)s7.

λ2,3,7(s) = 1−0.239999999999999990s− (0.494476969184058441e−6)s6 +(0.4508911392e−3)s3

+(0.678646405673082616e−4)s4 +(0.515131126235351736e−5)s5 − (0.7201590929e−2)s2

+(0.318876134473695714e−8)s7.

λ3,3,7(s) = 3− (0.1919998595e−1)s2 +(0.495050218888017330e−5)s5 − (0.280426817302835939e−4)s4

−(0.7680733225e−3)s3 +(0.350111688119908828e−6)s6 − (0.231051655239871117e−7)s7.

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 3, 18-34 (2015) / www.ntmsci.com 28

For M = 8, the approximate solutions are

λ1,3,8(s) = 2+0.119999999999999994s+(0.659440054032486062e−7)s6 − (0.8000151877e−3)s3

−(0.479862996416925864e−4)s4 +(0.159324423040038568e−5)s5 +(0.1440000746e−1)s2

−(0.184727975432647118e−8)s7 − (0.175647261556320578e−10)s8.

λ2,3,8(s) = 1−0.239999999999999990s− (0.296452061743570304e−6)s6 +(0.4479985321e−3)s3

+(0.700883710680355620e−4)s4 +(0.425489541190857338e−5)s5 − (0.7200001520e−2)s2

−(0.194890934014232106e−7)s7 +(0.105207625088382470e−8)s8.

λ3,3,8(s) = 3− (0.1919982286e−1)s2 +(0.484261911331022518e−5)s5 − (0.277865487879685406e−4)s4

−(0.7683896860e−3)s3 +(0.374860308800117502e−6)s6 − (0.260342571361117485e−7)s7

+(0.139893638198862298e−9)s8.

Table 1. Comparison of the approximate solutions, λ1,N,M(s) for N = 3 and M = 4,5,6,7,8.

si λ1,3,4(si) λ1,3,5(si) λ1,3,6(si) λ1,3,7(si) λ1,3,8(si)

0 2 2 2 2 2
π
4 2.10276615 2.10272510 2.10272485 2.10272506 2.10272508

2π
4 2.22072001 2.22065145 2.22064927 2.22064948 2.22064951

3π
4 2.35092258 2.35087357 2.35086934 2.35086956 2.35086960

4π
4 2.49021425 2.49018378 2.49017854 2.49017886 2.49017892

5π
4 2.63521483 2.63515334 2.63514678 2.63514712 2.63514719

6π
4 2.78232348 2.78221358 2.78220426 2.78220473 2.78220482

7π
4 2.92771879 2.92773705 2.92773000 2.92773067 2.92773076

8π
4 3.06735875 3.06811867 3.06814505 3.06814178 3.06814167

Table 2. Comparison of the approximate solutions, λ2,N,M(s) for N = 3 and M = 4,5,6,7,8.

si λ2,3,4(si) λ2,3,5(si) λ2,3,6(si) λ2,3,7(si) λ2,3,8(si)

0 1 1 1 1 1
π
4 0.80729683 0.80732649 0.80730804 0.80730784 0.80730803

2π
4 0.60741592 0.60746417 0.60744247 0.60744230 0.60744245

3π
4 0.40279215 0.40282701 0.40281320 0.40281301 0.40281317

4π
4 0.19663196 0.19666035 0.19664290 0.19664265 0.19664280

5π
4 −0.00708665 −0.00702544 −0.00704710 −0.00704729 −0.00704714

6π
4 −0.20361413 −0.20352127 −0.20352510 −0.20352548 −0.20352531

7π
4 −0.38742938 −0,38748569 −0.38751117 −0.38751146 −0.38751147

8π
4 −0.55223974 −0,55301120 −0.55341351 −0.55340509 −0.55339973
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Table 3. Comparison of the approximate solutions, λ3,N,M(s) for N = 3 and M = 4,5,6,7,8.

si λ3,3,4(si) λ3,3,5(si) λ3,3,6(si) λ3,3,7(si) λ3,3,8(si)

0 3 3 3 3 3
π
4 2.98790053 2.98777530 2.98777315 2.98777526 2.98777528

2π
4 2.94973904 2.94953045 2.94952849 2.94953038 2.94953039

3π
4 2.88305284 2.88290643 2.88290551 2.88290716 2.88290717

4π
4 2.78582178 2.78573852 2.78573672 2.78573879 2.78573880

5π
4 2.65646830 2.65630404 2.65630230 2.65630376 2.65630377

6π
4 2.49385741 2.49357012 2.49357240 2.49357451 2.49357452

7π
4 2.29729668 2.29744144 2.29743700 2.29743938 2.29743936

8π
4 2.06653623 2.06900799 2.06892336 2.06887642 2.06887730

Table 1-3 display that the approximate solutions are almost identical. We can write the distance function dN,M from (22)
as

dN,M =
√

λ 2
1,N,M +λ 2

2,N,M +λ 2
3,N,M = k, k ∈ R.

Now, let us calculate the values of dN,M for N = 3 and M = 4,5,6,7,8. Hence,

d3,4 = (0.2e−10)[(0.138367955738275e19)s4 +(0.719757435500000e19)s2 − (0.552901398520000e19)s3

−(0.958165040494845e17)s5 − (0.397211986269680e16)s6 +33404728162078s7

+25176151028361s8 +(0.350000000000000e23)]
1
2 .

d3,5 = (0.4e−12)[(0.846073850000000e21)s2 − (0.989167242750000e21)s3 +(0.451409944795980e21)s4

−(0.926227946415095e209s5 +(0.670821758671850e19)s6 +(0.210416759380431e18)s7

−(0.407698907964350e16)s8 − (0.672773956672850e16)s9 +351682364967490s10

+(0.875000000000000e26)]
1
2 .

d3,6 = (0.2e−13)[−(0.197223050000000e24)s2 +(0.287049530000000e24)s3 − (0.168713254720665e24)s4

+(0.482011956982625e23)s5 − (0.642042431060345e22)s6 +(0.802038008421965e17)s10

−(0.131063683600192e17)s11 +495243765352585s12 +(0.235612475686618e21)s7

+(0.198200774605652e20)s8 − (0.116519926251896e19)s9 +(0.350000000000000e29)]
1
2 .

d3,7 = (0.1e−14)[−(0.320975800000000e25)s2 +(0.610805572000000e25)s3 − (0.502264751168900e25)s4

+(0.222316100225410e25)s5 − (0.556999377301340e24)s6 +(0.752406710477370e23)s7

−(0.421612125203490e22)s8 − (0.444368881479050e20)s9 +(0.210952808421099e19)s10

+(0.524459315793662e18)s11 +(0.168938876626434e18)s12 − (0.196269230626158e17)s13

+548699477653873s14 +(0.140000000000000e32)]
1
2 .
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d3,8 = (0.1e−15)[(0.108964000000000e27)s2 − (0.239928260000000e27)s3 +(0.230274497692750e27)s4

−(0.120638545022320e27)s5 +(0.366926990526920e26)s6 − (0.635088985330760e25)s7

+(0.536652347489610e24)s8 +(0.140000000000000e34)

−(0.548645006355880e22)s9 − (0.201483174705506e22)s10

+(0.965946771587340e20)s11 − (0.497417074083528e19)s12

+(0.204499269053910e18)s13 +(0.539803969393183e17)s14

−(0.482271846089033e16)s15 +112674318728718s16]
1
2 .

Table 4. Numerical results of distance functions, dN,M for N = 3 and M = 4,5,6,7,8.

si d3,4(si) d3,5(si) d3,6(si) d3,7(si) d3,8(si)

0 3.741657387 3.741657387 3.741657387 3.741657387 3.741657386
π
4 3.741778086 3.741661414 3.741655578 3.741657335 3.741657400

2π
4 3.741859416 3.741662122 3.741655757 3.741657345 3.741657397

3π
4 3.741800656 3.741660812 3.741655960 3.741657342 3.741657399

4π
4 3.741742125 3.741661353 3.741655605 3.741657343 3.741657398

5π
4 3.741821912 3.741661886 3.741656066 3.741657343 3.741657399

6π
4 3.741938992 3.741660763 3.741655561 3.741657341 3.741657396

7π
4 3.741551934 3.741660935 3.741655332 3.741657346 3.741657407

8π
4 3.739549499 3.741653059 3.741687379 3.741657497 3.741657103

Now, let us draw the graphics of the distance functions dN,M for N = 3 and M = 4,5,6,7,8.

Fig. 1. Comparison of distance functions
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It is seen from Table 4 and Figure 1 that accuracy of the solution of system (30) increase when the value of M is
increased. In addition, dN,M is closing a constant value as the value of M is selected big. This value is breadth of the
curve pair of constant breadth. Hence, we can say that the present method is very effective.

Furthermore, let us calculate and compare the estimated absolute error functions |ei,N,M(s)| for and N = 3 and
M = 4,5,6,7,8 (i = 1,2,3).

|e1,3,4(s)| = |(0.34106727e−3)s2 − (0.1903588819e−3)s3 +(0.241570139950251427e−4)s4|.

∣∣e1,3,5(s)
∣∣ = |− (0.47273722e−3)s2 +(0.2928630124e−3)s3 − (0.508657095719278348e−4)s4

+(0.226278147175747614e−5)s5|.

∣∣e1,3,6(s)
∣∣ = |− (0.47134746e−3)s2 +(0.2893204843e−3)s3 − (0.489933391146528524e−4)s4

+(0.187592327211527806e−5)s5 +(0.279612930756887982e−7)s6|.

|e1,3,7(s)| = |(0.47013941e−3)s2 − (0.2875880816e−3)s3 +(0.479825459755605068e−4)s4

−(0.158713217431771746e−5)s5 − (0.680723473252911355e−7)s6 +(0.216393272754547384e−8)s7|.

|e1,3,8(s)| = |(0.47010390e−3)s2 − (0.2875706943e−3)s3 +(0.479862996416925864e−4)s4

−(0.159324423040038568e−5)s5 − (0.659440054032486062e−7)s6 +(0.184727975432647118e−8)s7

+(0.175647261556320578e−10)s8|.

Table 5. Comparison of the estimated absolute error functions, |e1,N,M(s)| for N = 3 and M = 4,5,6,7,8.

si |e1,3,4(si)|
∣∣e1,3,5(si)

∣∣ ∣∣e1,3,6(si)
∣∣ |e1,3,7(si)| |e1,3,8(si)|

0 0 0 0 0 0
π
4 1.2736e−4 1.6840e−4 1.6866e−4 1.6844e−4 1.6843e−4

2π
4 2.5083e−4 3.1939e−4 3.2157e−4 3.2136e−4 3.2133e−4

3π
4 1.4796e−4 1.9700e−4 2.0122e−4 2.0101e−4 2.0096e−4

4π
4 1.8301e−4 1.5254e−4 1.4730e−4 1.4761e−4 1.4767e−4

5π
4 5.2338e−4 4.6190e−4 4.5534e−4 4.5567e−4 4.5574e−4

6π
4 4.3375e−4 3.2385e−4 3.1454e−4 3.1501e−4 3.1509e−4

7π
4 7.4586e−4 7.2761e−4 7.3466e−4 7.3399e−4 7.3390e−4

8π
4 3.8960e−3 3.1361e−3 3.1097e−3 3.0031e−3 3.1131e−3

|e2,3,4(s)| = |(0.1517911945e−2)s2 − (0.7157898914e−3)s3 +(0.844881912401404312e−4)s4|.

∣∣e2,3,5(s)
∣∣ = |− (0.1615144902e−2)s2 +(0.7937846805e−3)s3 − (0.105565171620638706e−3)s4

+(0.184964326733999626e−5)s5|.

∣∣e2,3,6(s)
∣∣ = |− (0.1536065894e−2)s2 +(0.7064464751e−3)s3 − (0.691386308539103172e−4)s4

−(0.476573407873323844e−5)s5 +(0.438073448317362830e−6)s6|
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|e2,3,7(s)| = |(0.1534740815e−2)s2 − (0.7043978268e−3)s3 +(0.678646405673082616e−4)s4

+(0.515131126235351736e−5)s5 − (0.494476969184058441e−6)s6

+(0.318876134473695714e−8)s7|.

|e2,3,8(s)| = |(0.1536330224e−2)s2 − (0.7072904339e−3)s3 +(0.700883710680355620e−4)s4

+(0.425489541190857338e−5)s5 − (0.296452061743570304e−6)s6

−(0.194890934014232106e−7)s7 +(0.105207625088382470e−8)s8.

Table 6. Comparison of the estimated absolute error functions, |e2,N,M(s)| for N = 3 and M = 4,5,6,7,8.

si |e2,3,4(si)|
∣∣e2,3,5(si)

∣∣ ∣∣e2,3,6(si)
∣∣ |e2,3,7(si)| |e2,3,8(si)|

0 0 0 0 0 0
π
4 6.2169e−4 6.5135e−4 6.3290e−4 6.3269e−4 6.3289e−4

2π
4 1.4854e−3 1.5337e−3 1.5120e−3 1.5118e−3 1.5120e−3

3π
4 1.6678e−3 1.7027e−3 1.6889e−3 1.6887e−3 1.6889e−3

4π
4 1.0171e−3 1.0455e−3 1.0281e−3 1.0278e−3 1.0280e−3

5π
4 1.5307e−4 2.1427e−4 1.9261e−4 1.9242e−4 1.9257e−4

6π
4 4.6696e−4 5.5981e−4 5.5599e−4 5.5561e−4 5.5577e−4

7π
4 4.1217e−3 4.0653e−3 4.0399e−3 4.0396e−3 4.0396e−3

8π
4 1.4052e−2 1.3280e−2 1.2878e−2 1.2886e−2 1.2892e−2

|e3,3,4(s)| = |(0.78472248e−3)s2 − (0.3924492581e−3)s3 +(0.484628169544237858e−4)s4|.

∣∣e3,3,5(s)
∣∣ = |(0.38281514e−3)s2 − (0.795185083e−4)s3 − (0.329828771379642208e−4)s4

+(0.690853227461905316e−5)s5|.

∣∣e3,3,6(s)
∣∣ = |− (0.37253813e−3)s2 +(0.671370406e−4)s3 +(0.385065566486739328e−4)s4

−(0.796884680628572582e−5)s5 +(0.735345232520348584e−7)s6|.

|e3,3,7(s)| = |− (0.38478770e−3)s2 +(0.849379426e−4)s3 +(0.280426817302835939e−4)s4

−(0.495050218888017330e−5)s5 − (0.350111688119908828e−6)s6

+(0.231051655239871117e−7s7|.

|e3,3,8(s)| = |(0.38495079e−3)s2 − (0.852543061e−4)s3 − (0.277865487879685406e−4)s4

+(0.484261911331022518e−5)s5 +(0.374860308800117502e−6)s6 − (0.260342571361117485e−7)s7

+(0.139893638198862298e−9)s8|
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Table 7. Comparison of the estimated absolute error functions, |e3,N,M(s)| for N = 3 and M = 4,5,6,7,8.

si |e3,3,4(si)|
∣∣e3,3,5(si)

∣∣ ∣∣e3,3,6(si)
∣∣ |e3,3,7(si)| |e3,3,8(si)|

0 0 0 0 0 0
π
4 3.1237e−4 1.8713e−4 1.8499e−4 1.8709e−4 1.8711e−4

2π
4 7.1022e−4 5.0163e−4 4.9966e−4 5.0155e−4 5.0157e−4

3π
4 7.1663e−4 5.7023e−4 5.6931e−4 5.7095e−4 5.7096e−4

4π
4 2.9723e−4 2.1398e−4 2.1217e−4 2.1424e−4 2.1425e−4

5π
4 1.3979e−4 3.0405e−4 3.0579e−4 3.0432e−4 3.0432e−4

6π
4 2.5635e−4 3.0942e−5 2.8663e−5 2.6548e−5 2.6544e−5

7π
4 2.7790e−3 2.9237e−3 2.9193e−3 1.1504e−2 2.9217e−3

8π
4 9.1640e−3 1.1636e−2 1.1551e−2 1.1150e−2 1.1505e−2

In Tables 5-6-7, we have considered the estimated absolute error functions. It is seen from these tables that the results are
almost identical and approximate solutions are very close to absolute solutions of system. In addition, we say that the
Taylor collocation method is very effective for solving differential equations with variable coefficients. Because, It is
very difficult to find the analytical solutions of these differential equations systems.

Now, let us draw the graphics of curves of constant breadth.

Fig. 2. (Red) graphic of α , (Black) graphic of α∗ for N = 3,M = 4. (Brown) graphic of α∗ for N = 3,M = 6 and (Blue)
graphic of α∗ for N = 3,M = 8.

6 Conclusions

In this study, we have developed a Taylor collocation method for system of three linear differential equations in normal
form with the help of the residual error function. Then, we have given the system of linear differential equations
characterizing curves of constant breadth according to Bishop frame in Euclidean 3-space E3 and then we have obtained
approximate solutions of system of differential equations characterizing curves of constant breadth by using Taylor
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collocation method. We have given an example to show efficiency of this method.

In Figure 1, we have obtained the graphics of the distance function. In Figure 2, the graphics of curves of constant
breadth are drawn. Also, we have studied the residual error analysis. It is seen from these comparisons that the
approximate solutions are very close to absolute solutions when the values of N and M are selected big. Also, Taylor
collocation method used for approximate solutions is very effective.
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[13] Z. Akdoğan, A. Mağden, Some Characterization of Curves of Constant Breadth in En−Space, Turk J Math, 25 : 433-444, 2001.

[14] M. Sezer, Differential Equations Characterizing Space Curves of Constant Breadth and a Criterion for These Curves, Turkish J.

of Math, 13(2) : 70-78, 1989.
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