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Abstract: In this study, we have constituted the Frenet vector fields of Fibonacci and Lucas curves which are created with the help
of Fibonacci and Lucas sequences hold a very important place in nature defined by Horadam and Shannon, [1]. Based on these vector
fields, we have investigated notions of evolute, pedal and parallel curves and obtained the graphics of these curves.
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1 Introduction

One of the most fundamental structure of differential geometry is the theory of curves. An increasing interest of this
theory makes a development of special curves to be investigated. A way for classification and characterization of curves
is the relationship between the Frenet vectors of the curves. By means of this notions, characterizations of special curves
have been revealed, ([3], [5], [8], [9]). Some of these are involute-evolute, parallel and pedal curves etc. C. Boyer
discovered involutes while trying to build a more accurate clock, [6]. The involute of a plane curve is constructed from
the unit tangent at each point of F(s), multiplied by the difference between the arc length to a constant and the arc length
to F(s). The evolute and involute of a plane curve are inverse operations similar to Differentiation and Integration. Also,
in the 17th-century, the firstly pedal curve was found by G. Roberval, [7]. Only in 19th century, more than 500 studies
have been conducted on the pedal curves, [10, 11, 13]. Given two curves, one is a parallel curve (also known as an offset
curve) of the other if the points on the first curve are equidistant to the corresponding points in the direction of the second
curve’s normal. Alternatively, a parallel of a curve can be defined as the envelope of congruent circles whose centers lie
on the curve. A parallel of a curve is the envelope of a family of congruent circles centered on the curve. It generalizes
the concept of parallel lines. It can be also defined as a curve whose points are at a fixed normal distance of a given
curve. More information on the pedal and parallel curves can be found in [14].

The Fibonacci numbers was introduced by Leonardo of Pisa in his book Liber Abaci, [12]. These numbers was used as a
model for investigate the growth of rabbit populations. The Fibonacci numbers are closely related to Lucas numbers in
that they are a complementary pair of Lucas sequences. They are intimately connected with the golden ratio.

The Fibonacci and Lucas sequence are defined as

F0 = 1, F1 = 1, Fn = Fn−1 +Fn−2
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and
L0 = 2, L1 = 1, Ln = Ln−1 +Ln−2

for n ≥ 2, respectively. Here, Fn is nth Fibonacci number and Ln is nth Lucas number, ([1], [2], [4], [15], [16]).

2 Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves in the space R2 are briefly
presented. We restrict our study to local theory of plane curves.

Let r : I → R2 be a planar curve, smooth and regular. Firstly, we give without details the two representations of a plane
curve.

a) The parametric representation of the plane curve is x = x(s), y = y(s), x′(s)2 + y′(s)2 > 0, ∀s ∈ I;

b) The implicit representation is F(x,y) = 0, F : D → R, D ⊆ R2, F has F ′2
x +F ′2

y > 0, ∀(x,y) ∈ D, ([13], [16]).

In this study, we have dealt with the plane curves which defined as parametrical. In parametric form, the equation of the
curvature is

k (s) =
x′ (s)y′′ (s)− x′′ (s)y′ (s)(
(x′)2 (s)+(y′)2 (s)

) 3
2
.

If the curve is parametrized by arc-length, the curvature is k (s) = x′ (s)y′′ (s)− x′′ (s)y′ (s) .

Let r : I → R2 be a plane curve. The condition r′ (s) ̸= 0 is equivalent to the existence of the distinguished Frenet frame.
We shall always choose this frame as the moving 2-frame on the curve r. So, let {T, N} be Frenet vector field of the
planar curve r and k be curvature of this curve. Also, Frenet formulas of the planar curve r are as follows

T′ = vkN
N′ =−vkT

(1)

where ∥r′∥= v, ([15], [16]).

Let consider a plane curve r and the family of normal to the curve. The envelope of this family is called the evolute of the
curve r. If the curve is given in parametric form: x = x(s), y = y(s) , then the equation of the normal at an arbitrary point
r (s) that

y− y(s) =−x′ (s)
y′ (s)

(x− x(s)) .

Using the method described in previous paragraph, we can determine the parametric equations of the evolute that

X = x(s)−
y′ (s)

(
x′2 (s)+ y′2 (s)

)
x′ (s)y′′ (s)− x′′ (s)y′ (s)

,

Y = y(s)+
x′ (s)

(
x′2 (s)+ y′2 (s)

)
x′ (s)y′′ (s)− x′′ (s)y′ (s)

.

Let r : I → R2 be a planar curve. The curve which generated by perpendicular foot reflected tangents of the curve r from
the constant point P is positive pedal curve according to point P of curve. So, the Pedal curve of the parameter curve r is
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that
Pdr(s) = r (s)+

r′ (s) .(A− r (s))

∥r′ (s)∥2 r′ (s) (2)

where A is a constant point. If the curve Pdr is the Pedal curve of the curve r, then the curve r is negative Pedal curve of
the curve Pdr, [9].

The parametric equations of the Fibonacci and Lucas curves are given by Horadam and Shannon, [1]. In this study, after
we have obtained the Frenet vector fields of the Fibonacci and Lucas taking advantage of [1] we have researched notions
of Evolute, Pedal and Parallel curves for this curves.

3 The Fibonacci Curves

Let I ⊆ R be a open interval of R. So, the Fibonacci curve is that

r : I → R2

θ → r (θ) = (x(θ) ,y(θ)) .

If we consider α = 1+
√

5
2 , it is obvious that

x(θ) =
αθ −α−θ cos(θπ)√

5
, (3)

y(θ) =
−α−θ sin(θπ)√

5
(4)

and the graph of the Fibonacci curve is that

Firstly, if we take the derivative of the equations (3.1) and (3.2), with respect to θ , we obtain that

dx
dθ

=

(
1+

√
5

2

)−θ
[(

1+
√

5
2

)2θ
log
(

1+
√

5
2

)
+ log

(
1+

√
5

2

)
cos(θπ)+π sin(θπ)

]
√

5
(5)

and

dy
dθ

=

(
1+

√
5

2

)−θ [
−π cos(θπ)+ log

(
1+

√
5

2

)
sin(θπ)

]
√

5
(6)
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Considering α = 1+
√

5
2 and log( 1+

√
5

2 ) = s in the equations (3.3) and (3.4), we can find

dx
dθ

= x′ (θ) =
α−θ [α2θ s+ scos(θπ)+π sin(θπ)

]
√

5
, (7)

dy
dθ

= y′ (θ) =
α−θ [−π cos(θπ)+ ssin(θπ)]√

5
. (8)

Again taking the derivative of the equations (3.5) and (3.6) with respect to θ , we have

d2x
dθ 2 = x′′ (θ) =

α−θ [(π2 − s2
)

cos(θπ)+α2θ s2 −2πssin(θπ)
]

√
5

, (9)

d2y
dθ 2 = y′′ (θ) =

α−θ [2πscos(θπ)+
(
π2 − s2

)
sin(θπ)

]
√

5
. (10)

Now, we will construct the orthonormal frame of the Fibonacci curve at its any points. Considering v1 = {x′ (θ) ,y′ (θ)}
and v2 = {x′′ (θ) ,y′′ (θ)}, we find the orthonormal set benefit from the linear set {v1,v2}. So, we can write v1 = u1 =

{x′ (θ) ,y′ (θ)} and u2 = v2 − ⟨u1,v2⟩
⟨u1,u2⟩

u1. If we make necessary arrangement in the latter equation, we get

u2 = {G1,G2} .

where,

G1 =
α−θ (πcos(πθ)− ssin(πθ))

(
π(π2 + s2)+α2θ s

[
3πscos(πθ)+(π2 −2s2)sin(πθ)

])
√

5{π2 +(1+α4θ )s2 +2α2θ s [cos(πθ)s+πsin(πθ)]}
.

G2 =
α−θ (Zk1 +Zk2)

2
√

5{π2 + s2 (1+α4θ )+2sα2θ [scos(πθ)+πsin(πθ)]}
,

including,

Zk1 = 2π
(
π2 + s2) [scos(πθ)+πsin(πθ)]+2s2α4θ [3πscos(πθ)+

(
π2 −2s2)sin(πθ )

]
,

and
Zk2 =−sα2θ [−3π

(
π2 + s2)+π

(
π2 −5s2)cos(2πθ)+2s

(
−2π2 + s2)sin(2πθ )

]
.

Considering T = u1
∥u1∥

and N = u2
∥u2∥

, we can find the orthonormal basis {T,N} as follows

T =

 α−θ (sα2θ + scos(πθ)+πsin(πθ)
)√

2s2cos(πθ)+α−2θ
(
π2 + s2

(
1+α4θ

)
+ lsα

) , α−θ (−πcos(πθ)+ ssin(πθ))√
2s2cos(πθ)+α−2θ

(
π2 + s2

(
1+α4θ

)
+ lsα

)
 (11)

where
lsα = 2πsα2θ sin(πθ) ,

N =

 πcos(πθ)− ssin(πθ)√
π2 + s2

(
1+α4θ

)
+2sα2θ (scos(πθ)+πsin(πθ))

,
sα2θ + scos(πθ)+πsin(πθ)√

π2 + s2
(
1+α4θ

)
+2sα2θ (scos(πθ )+πsin(πθ))

 . (12)
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Now, let r : I → R2 be the Fibonacci curve and {T,N}, k be Frenet vector fields and curvature of this curve, respectively.
So, the relationship between the curvature of the Frenet vector fields is that

T′ = vkN
N′ =−vkT

(13)

where ∥r′∥ = v. The formula k = x′y′′−x′y′′

[(x′)2+(y′)2]
3
2

is valid for planar curves. Thus, the curvature function of the Fibonacci

curve is that

k (θ) =
√

5
[
π
(
π2 + s2

)
α−2θ +3πs2cos(πθ)+ s

(
π2 −2s2

)
sin(πθ)

]
[α−2θ {π2 + s2 (1+α4θ )+2sα2θ (scos(πθ)+πsin(πθ))}]3/2 . (14)

Also, the parametric equation of evolute of the Fibonacci curve r (θ) = (x(θ) ,y(θ)) is that

p(θ) = (X (θ) ,Y (θ))

where

X (θ) =
α−θ {−2s

(
π2 + s2)sin(πθ)+2sα4θ lsπ +πα2θ [2π2 − s2 + s2cos(2πθ)+πssin(2πθ )

]}
2
√

5
{

π
(
π2 + s2

)
+ sα2θ

[
3πscos(πθ)+

(
π2 −2s2

)
sin(πθ)

]} ,

lsπ =
[
4πscos(πθ)+

(
π2 −3s2

)
sin(πθ)

]
,

Y (θ) =
−
{

sα−θ {−2Sπα cos(πθ)+α2θ [−3π2 −2s2 (3+α4θ )+π2cos(2πθ )−2πs
(
3α2θ + cos(πθ )

)
sin(πθ)

]}}
2
√

5
{

π
(
π2 + s2

)
+ sα2θ

[
3πscos(πθ)+

(
π2 −2s2

)
sin(πθ)

]} ,

Sπα =
[
π2 + s2

(
1+3α4θ

)]
.

And the relationship between the Fibonacci curve and its evolute is given in Figure 1.

Figure 1. The Fibonacci Curve and its Evolute.
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Also, the pedal curve of the Fibonacci curve r (θ) = (x(θ) ,y(θ)) given in the equation (2.2) is as follows. In the Figure
2, the Pedal curves Pdr(θ) of the Fibonacci curve r (θ) at the points (3,2), (4,2) and (8,2) are plotted.

Figure 2. The Pedal Curves of the Fibonacci Curve.

Likewise, the Parallel curves Plr (θ) of the Fibonacci curve r (θ) = (x(θ) ,y(θ)) given in the equation (2.3) is as follows.
In the Figure 3, the distances between the Parallel curves and the Fibonacci curve are -0.5, 1 and 1,5, respectively.

Figure 3. The Parallel Curves of the Fibonacci Curve.

4 The Lucas Curves

Let I ⊆ R be open interval of R. So, the Lucas curve is that

r : I → R2

θ → r (θ) = (x(θ) ,y(θ)) .

If we consider α = 1+
√

5
2 , it is obvious that

x(θ) = αθ +α−θ cos(θπ) , (15)

y(θ) = α−θ sin(θπ) . (16)
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And the graph of the Lucas curve is that

Firstly, if we take the derivative of the equations (4.1) and (4.2) with respect to θ , we can find that

dx
dθ

=

(
1+

√
5

2

)−θ
(1+

√
5

2

)2θ

log

(
1+

√
5

2

)
− log

(
1+

√
5

2

)
cos(πθ)−πsin(πθ)

 (17)

dy
dθ

=

(
1+

√
5

2

)−θ [
πcos(πθ)− log

(
1+

√
5

2

)
sin(πθ)

]
. (18)

Considering α = 1+
√

5
2 and log( 1+

√
5

2 ) = s in the equations (4.3) and (4.4) we have

dx
dθ

= x′ (θ) = α−θ
[
sα2θ − scos(πθ)−πsin(πθ )

]
, (19)

dy
dθ

= y′ (θ) = α−θ [πcos(πθ )− ssin(πθ )] . (20)

Again calculating the derivative of the equations (4.5) and (4.6) with respect to θ , we have

d2x
dθ 2 = x′′ (θ) = α−θ

[(
−π2 + s2)cos(πθ)+ s

(
sα2θ +2πsin(πθ )

)]
, (21)

d2y
dθ 2 = y′′ (θ) = α−θ [−2πscos(πθ)+(−π2 + s2)sin(πθ)

]
. (22)

Now, we will construct the Frenet vector fields of the Lucas curve.

Let v1 = {x′ (θ) ,y′ (θ)} and v2 = {x′′ (θ) ,y′′ (θ)} be linear independent vectors. We obtain the orthogonal set {u1,u2}
from the linear independent set {v1,v2} using the Gram-Schmidt method. So, we can write v1 = u1 = {x′ (θ) ,y′ (θ)} and
u2 = v2 − ⟨u1,v2⟩

⟨u1,u2⟩
u1. If we make necessary arrangement in the latter equation, we get

u2 =

[
u21,

α−θ (u22 +−sα2θ [−3π
(
π2 + s2

)
+π

(
π2 −5s2

)
cos(2πθ)+2s

(
−2π2 + s2

)
sin(2πθ)

]
)

2 [π2 + s2 (1+α4θ )−2sα2θ (scos(πθ)+πsin(πθ))]

}
,

where

u21 =−
α−θ [πcos(πθ)− ssin(πθ)]

[
π
(
π2 + s2

)
+ sα2θ [−3πscos(πθ )−

(
π2 −2s2

)
sin(πθ)

]]
π2 + s2 (1+α4θ )−2sα2θ (scos(πθ)+πsin(πθ))

,

and
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u22 =−2π
(
π2 + s2)(scos(πθ)+πsin(πθ))−2s2α4θ (3πscos(πθ)+

(
π2 −2s2)sin(πθ)

)
.

Considering T = u1
∥u1∥

and N = u2
∥u2∥

, we can find the orthonormal basis {T,N} as follows

T =

 α−θ (sα2θ − scos(πθ)−πsin(πθ)
)√

α−2θ
(
π2 + s2

(
1+α4θ

))
−2s(scos(πθ)+πsin(πθ))

,
α−θ (πcos(πθ )− ssin(πθ))√

α−2θ
(
π2 + s2

(
1+α4θ

))
−2s(scos(πθ)+πsin(πθ))

 (23)

and

N =

 −πcos(πθ)+ ssin(πθ)√
π2 + s2 + s2α4θ −2s2α2θ cos(πθ )−2πsα2θ sin(πθ)

,
st2θ − scos(πθ)−πsin(πθ)√

π2 + s2
(
1+α4θ

)
−2sα2θ (scos(πθ)+πsin(πθ ))

 . (24)

If we make necessary arrangements, we can easily find the curvature function of the Lucas curve that

k (θ) =
π
(
π2 + s2

)
α−2θ −3πs2cos(πθ)+ s

(
−π2 +2s2

)
sin(πθ)

[α−2θ (π2 + s2 (1+α4θ ))−2s(scos(πθ)+πsin(πθ ))]3/2 (25)

So, the relationship between the curvature of the Frenet vector fields is that

T′ = vkN
N′ =−vkT

. (26)

where ∥l′∥ = v. Also, the parametric equation of the evolute of the Lucas curve l (θ) = (x(θ) ,y(θ)) is that
c(θ) = (X (θ) ,Y (θ)) where

X (θ) =
−2s

(
π2 + s2)sin(πθ)+2sα4θ [4πscos(πθ )+

(
π2 −3s2)sin(πθ)

]
−πα2θ [2π2 − s2 + s2cos(2πθ)+πssin(2πθ)

]
−2π

(
π2 + s2

)
αθ +2sα3θ

[
3πscos(πθ)+

(
π2 −2s2

)
sin(πθ)

] ,

Y (θ) =
s
[
−2
[
π2 + s2 (1+3α4θ )]cos(πθ)+α2θ {3π2 +2s2 (3+α4θ )−π2cos(2πθ)+2πs

[
−3α2θ + cos(πθ)

]
sin(πθ )

}]
2π
(
π2 + s2

)
αθ −2sα3θ

[
3πscos(πθ )+

(
π2 −2s2

)
sin(πθ)

] .

Besides, the relation between the Lucas curve and its evolute is given in Figure 4 that

Figure 4. The Lucas Curves and its Evolute.

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 3, 1-10 (2015) / www.ntmsci.com 9

Also, the Pedal curve Pdl(θ) of the Lucas curve l (θ) = (x(θ) ,y(θ)) given in the equation (2.2) is as follows. In the
Figure 5, the Pedal curves Pdl(θ) of the Lucas curve at the points (3,2) and (10,2) are plotted.

Figure 5. The Pedal Curves of the Lucas Curve.

Similarly, the Parallel curves Pll (θ) of the Lucas curve l (θ) = (x(θ) ,y(θ)) given in the equation (2.3) is as follows. In
the Figure 6, the distances between the Parallel curves and the Lucas curve are -0.5, 1 and 1,5, respectively.

Figure 6. The Parallel Curves of the Lucas Curve.
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