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Abstract: In this work, a new Taylor matrix method based on the collocation points and residual correction method is developed to
solve the linear Lane-Emden differential equations with initial conditions. Correction of the approximate solution obtained by Taylor
collocation method is performed by means of the error differential equation with the Residual function. Details of the method are
presented and some numerical results along with error estimation are given to clarify the efficiency and high accuracy of the method.
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1 Introduction

Lane-Emden equations are singular initial value problems relating to second-order ordinary differential equations
(ODEs) which have been used to model several phenomena in mathematical physics and astrophysics such as thermal
explosions [1], stellar structure [2], the thermal behavior of a spherical cloud of gas, isothermal gas spheres and,
thermionic currents [3]. One of the equations describing this type is Lane-Emden equation defined by

L[y(x)] = y′′(x)+
γ
x

y′(x)+ s(x)y(x) = f (x), γ ≥ 0, 0 ≤ x ≤ 1, f (x) ∈C[0,1], (1)

with the initial conditions
y(0) = α y′(0) = β , (2)

where and are real constants.
In this study, by using the Tau method with error estimation [8] and the residual correction method [5-6-9] we develop
an efficient error estimation for the Taylor collocation method and also a technique to obtain the corrected solution (high
accuracy solution) of the problem [1-2].

2 Taylor collocation method

Let us consider the Lane-Emden equation defined by (1)

L[y(x)] = f (x)
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and find the solution in the truncated Taylor series

y(x)∼=
N

∑
n=0

ynxn, yn =
yn(0)

n!
, 0 ≤ x ≤ 1 (3)

where yn (n = 0,1, ...,N) are unknown Taylor coefficients to be determined and N is chosen as N ≥ 2. The solution (3)
can be expressed in the matrix form as

y(x) = X(x)Y (4)

where

X(x) =
[

1 x x2 · · · xN
]
, Y =

[
y0 y1 y2 · · · yN

]T

On the other hand, it is clearly seen that the relation between the matrix X(x) and its derivative X′(x) is given [7,10] as

X′(x) = X(x)B; B =


0 1 0 · · · 0

0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N

0 0 0 · · · 0

 (5)

From the matrix equations (4) and (5), it follows that

y(s)(x) = X(x)BsY, s = 0,1, ... (6)

To obtain a numerical approximation to Lane-Emden equation (1) under the given conditions (2), substituting the matrix
relations (6) into Eq. (1), we obtain the matrix equation

X(x)B2Y+
γ
x

X(x)BY+ s(x)X(x)Y = f (x) or (7)

xX(x)B2Y+ γX(x)BY+ xs(x)X(x)Y = x f (x).

By substituting the collocation points defined by

xi =
i
N
, i = 0,1, ...,N

into Eq. (7), we obtain the system of the matrix equations

xiX(xi)B2Y+ γX(xi)BY+ xis(xi)X(xi)Y = xi f (xi).

or the compact notation
PXB2Y+ γXBY+SXY = F (8)

The augmented matrix for Eq. (8) becomes briefly

WY = F; W = [wi j] = PXB2 + γXB+SX, i, j = 0,1, ...,N (9)
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which corresponds to a system of N + 1 nonlinear algebraic equations with the unknown Taylor coefficients yn (n =

0,1, ...,N) . The matrices in Eq. (8) are as follows:

F =


x0 f (x0)

x1 f (x1)
...

xN f (xN)

 ,P =


P(x0) 0 · · · 0

0 P(x1) · · · 0
...

...
. . .

...

0 0 · · · P(xN)

 ,

S =


x0s(x0) 0 · · · 0

0 x1s(x1) · · · 0
...

...
. . .

...

0 0 · · · xNs(xN)

 ,X =


X(x0)

X(x1)
...

X(xN)


The augmented matrix for Eq. (9) becomes, briefly,

[W : F] (10)

Next, by means of relations (4) and (6), we can obtain the matrix forms corresponding to the initial conditions (2) as

X(0)Y = α or
[

1 0 0 · · · 0 ; 0 0 · · · 0 α
]

(11)

and
X(0)BY = β or

[
0 1 0 · · · 0 ; 0 0 · · · 0 β

]
(12)

Consequently, to obtain the solution of Eq. (1) under the conditions (2), by replacing the row matrices (11) and (12) by
the last two rows of the augmented matrix (10), we have the required augmented matrix

[W̃ : F̃] (13)

By solving the matrix equation (13), the unknown Taylor coefficients yn (n = 0,1, ...,N) are determined. Thus we get the
Taylor polynomial solution

yN(x) =
N

∑
n=0

ynxn.

3 Residual correction and error estimation

In this section, we will give an error estimation for the Taylor collocation method and the residual correction of the Taylor
approximate solution. For our purpose, we can define the residual function of the Taylor collocation method as

RN(x) = L[yN(x)]− f (x) (14)

where yN(x), which is the Taylor polynomial solution defined by (3), is the approximate solution of the problem (1)-(2),
Hence yN(x) satisfies the problem

L[yN(x)] = y′′N(x)+
γ
x

y′N(x)+ s(x)yN(x) = f (x)+RN(x); (15)

yN(0) = α , y′N(0) = β
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Also, the error function eN(x) can be defined as

eN(x) = y(x)− yN(x) (16)

where y(x) is the exact solution of the problem (1)-(2). Substituting (16) into (1)-(2) and using (14)-(15), we have the
error differential equation

L[eN(x)] = L[y(x)]−L[yN(x)] =−RN(x)

with the homogenous initial conditions eN(0) = 0, e′N(0) = 0 or clearly, the problem

e′′N(x)+
γ
x

e′N(x)+ s(x)eN(x) =−RN(x); eN(0) = 0, e′N(0) = 0 (17)

Note that, from (16), the inhomogeneous initial conditions y(0) = α, y′(0) = β and yN(0) = α, y′N(0) = β are reduced
to the homogeneous initial conditions eN(0) = 0, e′N(0) = 0. Solving the problem (17) in the same way as Section 2, we
get the approximation eN,M(x) to eN(x) , (M ≥ N) which is the error function based on the Residual function RN(x).
Consequently, by means of the polynomials yN(x) and eN,M(x), (M ≥ N) we obtain the corrected Taylor polynomial
solution yN,M(x) = yN(x)+ eN,M(x). Also, we construct the Taylor error function eN,M(x) = y(x)− yN(x), the corrected
Taylor error function EN,M(x) = eN(x)− eN,M(x) = y(x)− yN,M(x) and the estimated error function eN,M(x).

4 Numerical examples

In this section, we show the efficiency of the presented method by using the numerical results of some examples, selected
through Lane-Emden equations. Also, we calculate the values of the exact solution y(x), the Taylor approximate solution
yN(x), the corrected Taylor solution yN,M(x) = yN(x)+ eN,M(x), the Taylor error |eN,M(x)| and the corrected Taylor error
|EN,M(x)| and the estimated error at the selected points of the given interval with 25 digits of accuracy with Maple
programming (see Table1).

Example 1. [4] Firstly, let us consider the linear Lane-Emden equation

y′′(x)+
2
x

y′(x)+ y(x) = 6+12x+ x2 + x3

subject to initial conditions

y(0) = 0,

and

y′(0) = 0

Using the given procedure in Section 3, the fundamental matrix equations of the equation and conditions, respectively,
are obtained as follows:

{PXB2 +2XB+SX}= F and X(0)Y = 0, X′(0)BY = 0

By taking N = 3, the Taylor coefficients are found as {y0 = 0,y1 = 0,y2 = 1,y3 = 1}.
Therefore, these coefficients give the exact solution y(x) = x2 + x3.

Example 2. We finally close our analysis by studying the inhomogeneous linear Lane-Emden equation

y′′(x)+
2
x

y′(x) = 2(2x2 +3)y(x), y(0) = 1, y′(0) = 0
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with the exact solution y(x) = ex2
[4].

By following the procedure in Section 3 and Section4, we calculate the values of the exact solution y(x), the Taylor
solution yN(x), the corrected Taylor solution yN,M(x) , the corrected Taylor error |EN,M(x)| and the estimated error
|eN,M(x)| at the selected points of the given interval (see Table1). Table 1 shows that the presented method provides more
accurate predictions of y(x).

Table 1. : Error Analysis of Example 2.

xi Exact Solution Taylor app. Corr.Tay. sol. Est. err. Corr.Tay err
y(x) = ex2

yN(x) yN,M(x) |eN,M(x)| |EN,M(x)|
N = 10,M = 15

0.0 1.0000000000 1.0000000000 1.0000000000 0.00000 0.00000
0.2 1.0408107741 1.0408274196 1.0408107722 1.66e-6 8.83e-9
0.4 1.1735108709 1.1735338152 1.1735108685 2.29e-5 7.74e-9
0.6 1.4333294145 1.4333586702 1.4333294115 2.21e-5 4.58e-9
0.8 1.8964808793 1.8965200963 1.8964808752 2.92e-5 1.59e-9
1.0 2.7182818284 2.7183383116 2.7182818226 5.64e-5 8.24e-9

N = 20,M = 25
0.0 1.0000000000 1.0000000000 1.0000000000 0.00000 0.00000
0.2 1.0408107741 1.0408107741 1.0408107741 8.63e-14 9.43e-18
0.4 1.1735108709 1.1735108709 1.1735108709 1.04e-14 1.64e-18
0.6 1.4333294145 1.4333294145 1.4333294145 1.29e-14 3.59e-18
0.8 1.8964808793 1.8964808793 1.8964808793 1.92e-14 1.42e-18
1.0 2.7182818284 2.7182818284 2.7182818284 2.44e-14 5.44e-18

5 Conclusion

In this work, we carefully employed the reliable modified Taylor collocation method based on the residual correction
method for the solution of linear Lane-Emden equations. Lane-Emden equations, which are of crucial importance in
mathematical physics and astrophysics, are also solved by this method very accurately. Furthermore, an efficiently error
estimation can be done by this method. Hence, it can be approximated by the corrected Taylor polynomial solution to the
exact solution. From given illustrative examples, it can be seen that the method can obtain very accurate and satisfactory
results. An interesting feature of this method is that the exact solution is obtained as demonstrated in Example 1 when the
exact solution is polynomials.
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