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Abstract: The initial version of a Stefan problem is the melting of a semi-infinite sheet of ice. This problem is described by a
parabolic partial differential equation along with two boundary conditions on the moving boundary which are used to determine the
boundary itself and complete the solution of the differential equation. In this paper firstly, we use variable space gridmethod,
boundary immobilisation method and isotherm migration method to get rid of the trouble of the Stefan problem. Then, collocation
finite element method based on cubic B-spline bases functions is applied to model problem. The numerical schemes of finiteelement
methods provide a good numerical approximation for the model problem. The numerical results show that the present results are in
good agreement with the exact ones.

Keywords: Stefan problems, variable space grid method, boundary immobilisation method, isotherm migration method, collocation
finite element method.

1 Introduction

Many problems in various areas of applied mathematics and engineering can be modelled as partial differential equations
posed in domains whose boundaries are to be determined as part of the solution. Such problems are usually referred to as
moving boundary problems. Base of Stefan problem was started with reference to early work of J. Stefan [1] who is
interested in melting of the polar ice cap. We encounter these type of problems in wide-ranging applications physical and
biological sciences, engineering, metallurgy, soil mechanics, decision and control theory. In these mentioned areas, the
material undergoes to changing phase with a moving boundarythat has to be determined as part of the solution. As a
result, Stefan problems are non-linear problems and thus have the limited analytical solutions. Due to the shortage of the
analytical solutions, numerical methods have been used more commonly [2].

There are two numerical techniques to obtain the solution ofthe Stefan problems. The first one is the front-tracking
method, in which the position of the moving boundary is continuously tracked by some iterative procedure. Variable
space grid method [3,4], variable time step method [5] and heat balance integral method [6] are examples of tracking
methods for the moving boundary. The other approach is to usea front-fixing methods. Boundary immobilisation method
[7], isotherm migration method [8,9,10] and enthalpy method [11] are alternatives to fix the moving boundary.

In this paper, we are going to concern with the melting of a semi-infinite sheet of ice, initially at the melting temperature
taken to be zero. Firstly, we are going to apply variable space grid method, boundary immobilisation method and
isotherm migration method. Then, we are going to obtain numerical solutions with finite element method (FEM) based
on cubic B-splines. The computational results of temperature distribution, the position of the moving boundary and the
velocity of moving boundary are given in the section 8.
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2 Model problem

In the one-dimensional Stefan problem, the functionU(x, t) is temperature distribution governed by the heat equation

∂U
∂ t

=
∂ 2U
∂x2 , 0< x < s(t), t > 0 (1)

subject to
U(0, t) = 1, U(s(t), t) = 0, t > 0 (2)

boundary conditions whereU(0, t) is the constant surface temperature. Also, one further condition is needed on the
moving interface to determine the position of the interfaceitself which is known as Stefan condition. In this problem
Stefan condition is

ds(t)
st

=−Ste
∂U
∂x

, x = s(t), t > 0 (3)

with the initial condition

s(0) = 0 (4)

wheres(t) is the position of the moving boundary andSte = c∆ t
L is the Stefan number,c is the specific heat capacity of

liquid, ∆ t is a reference temperature andL is the latent heat.

The model problem has the exact solution for temperature distribution and the moving boundary

U(x, t) = 1− er f (x/2
√

t)
er f (λ )

, 0≤ x ≤ s(t), t > 0 (5)

s(t) = 2λ
√

t, t ≥ 0 (6)

where parameterλ known as melting/solidification parameter is root of the transcendental equation

γ
√

πλ eλ 2
er f (λ ) = 1. (7)

The exact solution is used to initialize the numerical computations and compare the numerical results for temperature
distribution, the velocity of moving boundary and the position of moving boundary.

This problem has been recently solved by Savovic’ & Caldwell& Kwan [12] with employing the nodal integral method
(NIM) and finite difference method (FDM) constructed on boundary immobilisation method. We have compared the
numerical solutions reached in reference [12] and the present solutions obtained using finite element method.

3 Cubic B-splines collocation finite element method

Let us divide interval[a,b] into N uniform elements consisting of the knotsxm such asa = x0 < x1 < ... < xN = b. Cubic
B-splinesφm spanning[a,b] areφ−1,φ0,φ1, ...,φN+1. SoUN(x, t) approximate solution forU(x, t) can be written as

UN(x, t) =
N+1

∑
m= −1

δm(t)φm(x) (8)

whereφm are trial functions given following expressions andδm are time-dependent variables which will be determined
boundary and collocation conditions for the Stefan problem. The cubic B-spline bases functions are defined by the
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following relationship

φm(x) =
1
h3



































(x− xm−2)
3, [xm−2,xm−1]

h3+3h2(x− xm−1)+3h(x− xm−1)
2−3(x− xm−1)

3, [xm−1,xm]

h3+3h2(xm+1− x)+3h(xm+1− x)2−3(xm+1− x)3, [xm,xm+1]

(xm+2− x)3, [xm+1,xm+2]

0, otherwise

(9)

where∆x = h = xm − xm−1 for all m,m =−1,0,1, ...,N +1.

The cubic splineφm and its principle derivativesφ ′
m and φ ′′

m disappear the outside of the interval[xm−2,xm+2] . We can
tabulate values of the functionsφm, φ ′

m and φ ′′
m at the knotsxm as the following table

Table 1: B-Spline values at the knots.

x xm−2 xm−1 xm xm+1 xm+2
φm 0 1 4 1 0
φ ′

m 0 − 3
h 0 3

h 0
φ ′′

m 0 6
h2 − 12

h2
6
h2 0

Now, we can define finite element approximation of nodal values forU, U ′ andU ′′ at the knotxm

U =U(xm) = δm−1+4δm+ δm+1

U ′ =U ′(xm) =
3
h
(−δm−1+ δm+1) (10)

U ′′ =U ′′(xm) =
6
h2 (δm−1−2δm + δm+1), [13].

4 Variable space grid method

Murray and Landis [3] kept the number of space intervals betweenx = 0 andx = s(t) constant, equal toN, for all time.
As a result, the moving boundary is always on theNth grid line. In that case, the grid size must bex = s(t)/N which is
changed with the time.

For the linexi, partial differentiation with respect to timet is given by the following equation

∂U
∂ t

∣

∣

∣

i
=

∂U
∂x

∣

∣

∣

t

dx
dt

∣

∣

∣

i
+

∂U
∂ t

∣

∣

∣

x
(11)

and at theith grid point variation ofdx
dt is given as

dxi

dt
=

xi

s(t)
ds
dt

. (12)

By substituting (12) into (11) the one dimensional heat equation becomes

∂U
∂ t

∣

∣

∣

i
=

xi

s(t)
ds
dt

∂U
∂x

∣

∣

∣

t
+

∂U
∂ t

∣

∣

∣

x
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and dimensionless Stefan problem turns into the following equation

∂U
∂ t

=
xi

s(t)
ds
dt

∂U
∂x

+
∂ 2U
∂x2 , 0< x < s(t) (13)

subject to (2)-(4) boundary and initial conditions.

By substitutingU and its derivativesU ′,U ′′ given with equation (10) into equation (13), we obtain the following equation

δ̇m−1+4δ̇m + δ̇m+1 = xn
m
(ṡ)n

sn

3
h
(−δm−1+ δm+1)+

6α
h2 (δm−1−2δm + δm+1).

And using Crank-Nicolson approach and forward difference approximation for two time levelsn andn+1, such as

δm =
δ n+1

m + δ n
m

2
, δ̇m =

δ n+1
m − δ n

m

△t
(14)

whereδ n
m are the parameters at the timen∆ t and “·” demonstrates derivative respected to time. We have the finite element

system by using some mathematical operations

αm1δ n+1
m−1+αm2δ n+1

m +αm3δ n+1
m+1 = αm4δ n

m−1+αm5δ n
m +αm6δ n

m+1, m = 0,1, ...,N (15)

where the coefficients are

αm1 = 1+ xn
m

3∆ t(ṡ)n

2∆xnsn − 3∆ t
(∆xn)2 , αm4 = 1− xn

m
3∆ t(ṡ)n

2∆xnsn +
3∆ t

(∆xn)2

αm2 = 4+
6∆ t

(∆xn)2 , αm5 = 4− 6∆ t
(∆xn)2

αm3 = 1− xn
m

3∆ t(ṡ)n

2∆xnsn − 3∆ t
(∆xn)2 , αm6 = 1+ xn

m
3∆ t(ṡ)n

2∆xnsn +
3∆ t

(∆xn)2

for finite element method based on variable space grid method. In this schemes,s is the position of moving boundary, ˙s is
the velocity of moving boundary,hn(≡ ∆xn) is mesh size andk(≡ ∆ t) is time step.

Furthermore, for finite element method based on variable space grid method (VSG-FEM),s(t) is updated at each time
step by using a suitable finite difference form of the Stefan condition ds(t)

dt = −Ste ∂U
∂x on x = s(t). Therefore we are

going to use the following three point backward difference at the moving boundary

∂U
∂x

∣

∣

∣

x=s(t)
=

3UN −4UN−1+UN−2

2△x
+O(△x)2 (16)

[14] and forward difference approximation fords(t)
dt ,

ds(t)
dt

=
sn+1− sn

∆ t
+O(∆ t) (17)

So, iterative relation of moving boundary is obtained as

sn+1 = sn − Ste
∆ t

2∆xn (3Un
N −4Un

N−1+Un
N−2) n = 0,1,2, ... (18)
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subject to
s0 = 0

initial condition. So, the grid sizehn+1 = sn+1

N is updated each time step whereN is the number of element. For the
VSG-FEM, temperature distributionUn

m ∼ U(xn
m, tn) is calculated at the pointsxn

m = mhn, tn = t0+ nk wheret0 is initial
time.

5 Boundary immobilisation method

Boundary immobilisation method based on fixing moving boundary is a convenient method to solve Stefan problems. In
this method, by using transformation ofx = ξ

s(t) , moving interfacex = s(t) is turned into fixed boundaryξ = 1, at new
coordinate system(ξ , t). This approach firstly was used by Landau [7] and applied to moving boundary problems by
using finite difference and finite element methods in recent years [10,11].

In coordinate system(ξ , t), reformulation equation of (1) can be written as

∂U
∂ t

∣

∣

∣

x
=

∂U
∂ξ

∂ξ
∂ t

+
∂U
∂ t

∣

∣

∣

ξ
=− x

s2(t)
ds
dt

∂U
∂ξ

+
∂U
∂ t

∣

∣

∣

ξ
.

So dimensionless Stefan problem becomes

∂U
∂ t

=
ξ

s(t)
ds
dt

∂U
∂ξ

+
1

s2(t)
∂ 2U
∂ξ 2 , 0< ξ < 1, t > 0 (19)

subject to

U(0, t) = 1, U(1, t) = 0,
ds(t)

dt
=− 1

s(t)
∂U
∂ξ

, ξ = 1, t > 0 (20)

boundary conditions and (4) initial condition. And exact solution (5) turns into equation

U(ξ , t) = 1− er f (ξ λ )
er f (λ )

, 0≤ ξ ≤ 1, t > 0

along with equations (6)-(7). Differently from variable space grid method Stefan condition takes the form atξ = 1

sn+1 = sn − Ste
∆ t

2∆ξ s
(3Un

N −4Un
N−1+Un

N−2), n = 0,1,2, ...

with the aid of three point backward difference at the movingboundary in the transformed coordinate system(ξ , t)

∂U
∂ξ

∣

∣

∣

ξ=1
=

3UN −4UN−1+UN−2

2∆ξ
+O(∆ξ )2

and (17) forward difference approximation fords(t)
dt .

As the finite element method is applied to equation (19) whichis obtained by using boundary immobilisation method
subjected to (20) boundary conditions, we track similar waywith variable space grid method. By using equation (10)
defined in(ξ , t) coordinate system for equation (19), we obtain

δ̇m−1+4δ̇m + δ̇m+1 = ξm
(ṡ)n

sn

3
∆ξ

(−δm−1+ δm+1)+
6α

(sn∆ξ )2 (δm−1−2δm + δm+1)
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and by using Crank-Nicolson approach and time derivative given by equation (14) we obtain finite element system (15)
which coefficients are

αm1 = 1+ ξm
3∆ t(ṡ)n

2∆ξ sn − 3∆ t
(sn∆ξ )2 , αm4 = 1− ξm

3∆ t(ṡ)n

2∆ξ sn +
3∆ t

(sn∆ξ )2

αm2 = 4+
6∆ t

(sn∆ξ )2 , αm5 = 4− 6∆ t
(sn∆ξ )2

αm3 = 1− ξm
3∆ t(ṡ)n

2∆ξ sn − 3∆ t
(sn∆ξ )2 , αm6 = 1+ ξm

3∆ t(ṡ)n

2∆ξ sn +
3∆ t

(sn∆ξ )2

for BIM-FEM. In this schemes,s is the position of moving boundary, ˙s is the velocity of moving boundary,h(≡ ∆ξ = 1
N )

is the grid size andk(≡ ∆ t) is time step. For BIM-FEM, temperature distributionUn
m ∼ U(ξm, tn) is calculated at the

pointsξm = mh, tn = t0+ nk wheret0 is initial time.

6 Isotherm migration method (IMM)

In the isotherm migration method, the temperature distribution U can be interchanged with the space variablex, so that
the solution is evaluatedx(U, t) instead of the more tridiationalU(x, t) [2]. This method was proposed by Chernousko [8]
and Dix&Cizek [9] who independently studied. This method provides constantboundaries to solve model problem. For
this reason it is one of the most popular method for obtainingnumerical solutions of moving boundary problems
especially subjected to time dependent boundary conditions. Recently, Esen&Kutluay [10] have obtained numerical
solutions of the Stefan problem with Neumann boundary condition by using isotherm migration method constructed
finite difference method.

By using the usual partial derivatives we have derivatives

∂U
∂x

=

(

∂x
∂U

)−1

,
∂ 2U
∂x2 =−

(

∂x
∂U

)−3 ∂ 2x
∂U2 (21)

[2] and for the reasondU = 0 we have

∂x
∂ t

=−∂U
∂ t

∂x
∂U

or
∂U
∂ t

=−∂x
∂ t

(

∂x
∂U

)−1

(22)

After substituting equations (21)-(22) into heat equation(1), we obtain

∂x
∂ t

=

(

∂x
∂U

)−2 ∂ 2x
∂U2 , 0<U < 1, t > 0 (23)

subject to

x(0, t) = s(t), x(1, t) = 0,
ds(t)

dt
=−Ste

(

∂x
∂U

)−1

, U = 1, t > 0 (24)

boundary and (4) initial condition. And the exact solution (5) becomes the following equation

x(U, t) = 2
√

ter f−1((1−U)er f (λ )), 0≤U ≤ 1, t > 0

along with equations (6)-(7). Also by using three point forward difference

∂x
∂U

∣

∣

∣

U=1
=

−3x0+4x1− x2

2∆U
+O(∆U)2
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and (17) forward difference approximation fords(t)
dt , Stefan condition takes the form atU = 1

sn+1 = sn − Ste
2(∆U)(∆ t)

−3xn
0+4xn

1− xn
2
, n = 0,1, ...

for isotherm migration method.

As the finite element method is applied to equation (23), the roles of dependent variableU and independent space
variablex are changed in equation (10) given with nodal approximations. By substitutingx and its derivatives subjected
to U (x′ andx′′) into heat equation (1), we obtain

δ̇m−1+4δ̇m + δ̇m+1 =
6(δm−1−2δm + δm+1)

9(−δm−1+ δm+1)
2 .

And by using Crank-Nicolson approach and time derivative given by equation (14), we obtain finite element system (15)
for the equation (23) in which coefficients are

αm1 = 1−3Z(m), αm4 = 1+3Z(m)

αm2 = 4+6Z(m), αm5 = 4−6Z(m)

αm3 = 1−3Z(m), αm6 = 1+3Z(m)

whereZ(m) = ∆ t
9(δ n

m+1−δ n
m−1)

2 is non-linear term.

Numerical solutions of isothermxn
m ∼ x(Um, tn) are calculated at the pointsUm = mh, tn = t0+ nk , whereh(≡ ∆U = 1

N )

is the mesh size,k(≡ ∆ t) is time step andt0 is initial time.

For the finite element methods based on variable space grid method, boundary immobilisation method and isotherm
migration method, we obtain same finite element system (15) subjected to different coefficients. All of these methods
have tridiagonal matrix systemN + 1 consisting of equations butN + 3 unknowns. To solve the system uniquely two
more equations are needed. We can obtain these equations from boundary conditions of the related method. And we use
in the system to eliminate fictitious parametersδ−1 andδN+1 for m = 0 andm = N. So, the system can be demonstrated
in matrix form

Aδ n+1 = Bδ n + r

whereA,B are(N +1)× (N +1) tridiagonal matrixes andr is a (N +1) basing on boundary conditions. To start time
evaluation of the approximate solution,δ 0 must be determined, firstly.

Now, we consider determining of approximate solutionsδ 0 for variable space grid method. The others can be considered
as the VSG-FEM. We takeU and ξ the variables for BIM-FEM,x and U for IMM-FEM instead ofU and x for
VSG-FEM. To attainδ 0 vector we require two conditions forUN(x, t0)

UN(x, t0) =
N+1

∑
m=−1

δ 0
m(t)φm(x).

(i) Initial conditionU(x, t0) andUN(x, t0) should be equal to each other forN +1 points.
(ii) To be able to solve theAδ 0 = b, we need two further equations which can be obtained from thefirst derivatives of

end points of the domain.

After we find initial vectorδ 0, we get vectorsδ 1,δ 2, ...,δ n respectively.
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7 Stability analysis

We can use Von-Neumann method for VSG-FEM and BIM-FEM for thestability analysis. But, we can’t use any stability
analysis method for IMM-FEM because of the non-linear termZ(m) presented in the finite element schemes of isotherm
migration method.

In the Von-Neumann theory, the growth factor of typical Fourier mode is defined as

δ n
m = ζ neimβ h

whereβ is the mode number andh is element size. By substituting equation this equation into equation given with (15),
and by performing some simplification operations we obtain

ζ =
a1+ ib
a2− ib

where

a1 =

(

2+
6k
h2

)

cosβ h+

(

4− 6k
h2

)

a2 =

(

2− 6k
h2

)

cosβ h+

(

4+
6k
h2

)

b =

(

3k
h
(ṡ)n

sn xn
m

)

sinβ h

for finite element method based on variable space grid and

a1 =

(

2+
6k
h2

)

cosβ h+

(

4− 6k
h2

)

a2 =

(

2− 6k
h2

)

cosβ h+

(

4+
6k
h2

)

b =

(

3k
h
(ṡ)n

sn ξm

)

sinβ h

for finite element method based on boundary immobilisation method. For the stability of these methods, the growth factor
must satisfy|ζ | ≤ 1, so

∣

∣

∣

a1+ib
a2−ib

∣

∣

∣
≤ 1 if only if a2

1 ≤ a2
2. If we do essential processing we will see that the system of (15)

is unconditionally stable for VSG-FEM and BIM-FEM. It should be pointed thath shows∆xn for VSG-FEM andζ for
BIM-FEM andk shows∆ t for both of the methods.

8 Numerical results and conclusion

In this section, we have demonstrated the numerical resultsobtained by using VSG-FEM, BIM-FEM and IMM-FEM for
temperature distribution, the position of moving boundaryand the velocity of the moving boundary. We have compared
the present solutions and other numerical solutions obtained by using FDM and NIM (Nx = 10) [12]. Due to the
singularity at thet0 = 0, we uset0 = 0.01 to initialize the numerical procedure. To compare the other numerical solutions
obtained by using finite difference, we use a constant grid numberN = 10 and the time step∆ t = 0.000002 which are
used in reference [12].
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It should be noted that we use two differentSte numbers (Ste = 0.2 andSte = 1.0) for the computational results. And the
values ofλ corresponded to relatedSte = 0.2 andSte = 1.0 numbers are obtained by using the transcendental equation
(8), which areλ = 0.30642 andλ = 0.62006, respectively.

Table 2: Comparison of temperature distribution with results from [12] for Ste = 0.2 andt f = 1.6.

x/s VSG-FEM Rel. Err. % NIM [12] Rel. Err. % FDM [12] Rel. Err. % Exact Solution
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
0.1 0.896893 0.000000 0.896893 0.000000 0.896891 0.000223 0.896893
0.2 0.793979 0.000126 0.793979 0.000126 0.793976 0.000504 0.793980
0.3 0.691451 0.000145 0.691451 0.000145 0.691446 0.000868 0.691452
0.4 0.589500 0.000000 0.589498 0.000339 0.589493 0.001187 0.589500
0.5 0.488310 0.000204 0.488309 0.000410 0.488303 0.001638 0.488311
0.6 0.388067 0.000257 0.388066 0.000515 0.388060 0.002061 0.388068
0.7 0.288946 0.000346 0.288945 0.000692 0.288940 0.002423 0.288947
0.8 0.191120 0.000523 0.191120 0.000523 0.191115 0.003139 0.191121
0.9 0.094753 0.000000 0.094752 0.001055 0.094750 0.003166 0.094753
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

In Table 2, the present computational results for VSG-FEM and the other numerical results obtained by the other
researchers are compared for temperature distribution. Our numerical solutions are more accurate than the others and in
good agreement with the exact solution forSte = 0.2.

Table 3: Comparison of numerical solutions for the position of the moving boundarys(t) with results from [12] for
Ste = 0.2 at different time values.

t f VSG-FEM BIM-FEM IMM-FEM NIM [ 12] FDM [12] Exact Solution
0.2 0.27414 0.27414 0.27414 0.27409 0.27414 0.27407
0.4 0.38770 0.38770 0.38784 0.38763 0.38769 0.38759
0.6 0.47483 0.47483 0.47489 0.47474 0.47482 0.47470
0.8 0.54829 0.54829 0.54836 0.54819 0.54828 0.54814
1.0 0.61301 0.61301 0.61308 0.61289 0.61300 0.61284
1.2 0.67152 0.67152 0.67160 0.67139 0.67150 0.67133
1.4 0.72532 0.72532 0.72532 0.72541 0.72531 0.72512
1.6 0.77540 0.77540 0.77550 0.77525 0.77539 0.77519
t f Rel. Err. % Rel. Err. % Rel. Err. % Rel. Err. % Rel. Err. %
0.2 0.02554 0.02554 0.02554 0.00730 0.02554
0.4 0.02838 0.02838 0.06450 0.01032 0.02580
0.6 0.02738 0.02738 0.04002 0.00843 0.02528
0.8 0.02737 0.02737 0.04013 0.00912 0.02554
1.0 0.02773 0.02773 0.03916 0.00816 0.02611
1.2 0.02830 0.02830 0.04022 0.00894 0.02532
1.4 0.02758 0.02758 0.02758 0.00827 0.02620
1.6 0.02709 0.02709 0.03999 0.00774 0.02580

In Table 3 and Table 4, the position of moving boundary and itsvelocity are given together with percentage relative
errors forSte = 0.2. As the nodal integral method applies, each of node number the heat equation (1) are represented
differential equations system. As a result of this, for increasing the node number it is difficult to get the numerical
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solutions of NIM. But we easily obtain closer numerical solutions of the position of the moving boundary and its
velocity for the larger element numbers as given in the Table5.

In Table 5, we present the position of moving boundary and thevelocity of moving boundary for the larger element
numbers,Ste = 0.2 andt f = 1.6. The obtained numerical results show that by the increasing mesh sizes three different
finite element method based on cubic B-splines, VSG-FEM, BIM-FEM and IMM-FEM attain to expected convergence.

Table 4: Comparison of numerical solutions for the velocity of the moving boundary ˙s(t) with results from [12] for
Ste = 0.2 at different time values.

t f VSG-FEM BIM-FEM IMM-FEM NIM [ 12] FDM [12] Exact Solution
0.2 0.68538 0.68537 0.68546 0.68524 0.68536 0.68518
0.4 0.48463 0.48463 0.48469 0.48454 0.48462 0.48449
0.6 0.39570 0.39570 0.39575 0.39562 0.39569 0.39559
0.8 0.34268 0.34268 0.34273 0.34262 0.34268 0.34259
1.0 0.30651 0.30651 0.30654 0.30645 0.30650 0.30642
1.2 0.27980 0.27980 0.27983 0.27975 0.27979 0.27972
1.4 0.25904 0.25904 0.25904 0.25908 0.25904 0.25897
1.6 0.24231 0.24231 0.24234 0.24227 0.24231 0.24225
t f Rel.Err.% Rel.Err.% Rel.Err.% Rel.Err.% Rel.Err.%
0.2 0.02919 0.02773 0.04086 0.00876 0.02627
0.4 0.02890 0.02890 0.04128 0.01032 0.02683
0.6 0.02781 0.02781 0.04044 0.00758 0.02528
0.8 0.02627 0.02627 0.04087 0.00876 0.02627
1.0 0.02937 0.02937 0.03916 0.00979 0.02611
1.2 0.02860 0.02860 0.03932 0.01073 0.02503
1.4 0.02703 0.02703 0.02703 0.00772 0.02703
1.6 0.02477 0.02477 0.03715 0.00826 0.02477

In Table 6, the numerical results of temperature distribution obtained by using VSG-FEM are compared NIM and FDM
for Ste = 1.0 andt f = 0.8. Computational results have smaller percentage errors than FDM. So, it can be said that with
increasing element number, temperature distribution willbe expected, compared to FDM and NIM [12].

Table 5: The position and velocity of moving boundary for different element numbers andSte = 0.2, t f = 1.6.

Method N = 10 N = 20 N = 40 N = 80 Exact Solution
VSG-FEM 0.77540 0.77525 0.77521 0.77520
BIM-FEM 0.77540 0.77525 0.77521 0.77520 0.77519 s(t)
IMM-FEM 0.77550 0.77528 0.77522 0.77520
VSG-FEM 0.24231 0.24226 0.24225 0.24225
BIM-FEM 0.24231 0.24227 0.24225 0.24225 0.24225 ˙s(t)
IMM-FEM 0.24234 0.24227 0.24226 0.24225
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Table 6: Comparison of temperature distribution with results from [12] for Ste = 1.0 andt f = 0.8.

x/s VSG-FEM Rel. Err. % NIM [12] Rel. Err. % FDM [12] Rel. Err. % Exact Solution
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
0.1 0.887205 0.000902 0.887190 0.000789 0.887180 0.001916 0.887197
0.2 0.775274 0.002193 0.775245 0.001548 0.775224 0.004257 0.775257
0.3 0.665049 0.003609 0.665007 0.002707 0.664978 0.007067 0.665025
0.4 0.557331 0.004665 0.557283 0.003948 0.557248 0.010228 0.557305
0.5 0.452876 0.006846 0.452822 0.005079 0.452783 0.013691 0.452845
0.6 0.352353 0.008514 0.352300 0.006528 0.352260 0.017881 0.352323
0.7 0.256357 0.010143 0.256310 0.008193 0.256173 0.022627 0.256331
0.8 0.165386 0.030241 0.165350 0.009676 0.165320 0.027817 0.165336
0.9 0.079836 0.013780 0.079816 0.011275 0.079798 0.033824 0.079825
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

In Table 7 and Table 8, the position of the moving boundary andits velocity are given together with percentage relative
errors forSte = 1.0. NIM has the more accurate solution in tables, but we can obtain closer numerical solutions of the
temperature distribution, the position of the moving boundary and its velocity for the larger element numbers than given
in the Table 7 and Table 8. Since the moving boundary moves faster for largerSte numbers, the Stefan problems get
difficult for larger Stefan numbers. This can be shown both for temperature distribution, the position of moving boundary
and its velocity forSte = 1.0 compared to those obtained forSte = 0.2.

In Table 9, we show the position of moving boundary and the velocity of moving boundary for the larger element
numbers,Ste = 1.0 andt f = 0.8. It is clearly seen that newly obtained numerical solutions of the position of moving
boundary and the velocity of moving boundary are so close to exact solutions for the larger element number.

Table 7: Comparison of numerical solutions for the velocity of the moving boundarys(t) with results from [12] for
Ste = 1.0 at different time values.

t f VSG-FEM BIM-FEM IMM-FEM NIM [ 12] FDM [12] Exact Solution
0.1 0.39235 0.39235 0.39302 0.39224 0.36226 0.39216
0.2 0.55488 0.55489 0.55589 0.55473 0.55474 0.55460
0.3 0.67960 0.67960 0.68085 0.67941 0.67942 0.67924
0.4 0.78474 0.78474 0.78619 0.78451 0.78453 0.78432
0.5 0.87736 0.87737 0.87900 0.87711 0.87713 0.87690
0.6 0.96111 0.96111 0.96260 0.96083 0.96085 0.96060
0.7 1.03811 1.03812 1.04006 1.03782 1.03784 1.03756
0.8 1.10979 1.10979 1.11187 1.10948 1.10950 1.10920
t f Rel. Err. % Rel. Err. % Rel. Err. % Rel. Err. % Rel. Err. %
0.1 0.04844 0.04844 0.21930 0.02040 0.02550
0.2 0.05049 0.05229 0.23260 0.02344 0.02524
0.3 0.05300 0.05300 0.23703 0.02503 0.02650
0.4 0.05355 0.05355 0.23842 0.02422 0.02677
0.5 0.05246 0.05360 0.23948 0.02395 0.02623
0.6 0.05310 0.05310 0.20820 0.02394 0.02603
0.7 0.05301 0.05397 0.24095 0.02506 0.02699
0.8 0.05319 0.05319 0.24071 0.02524 0.02705
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Table 8: Comparison of numerical solutions for the velocity of the moving boundary ˙s(t) with results from [12] for
Ste = 1.0 at different time values.

t f VSG-FEM BIM-FEM IMM-FEM NIM [ 12] FDM [12] Exact Solution
0.1 1.96198 1.96196 1.96604 1.96140 1.96137 1.96080
0.2 1.38729 1.38728 1.39004 1.38689 1.38688 1.38650
0.3 1.13271 1.13270 1.13492 1.13238 1.13238 1.13207
0.4 0.98095 0.98094 0.98285 0.98066 0.98067 0.98040
0.5 0.87738 0.87738 0.87908 0.87713 0.87714 0.87690
0.6 0.80094 0.80093 0.80248 0.80071 0.80071 0.80049
0.7 0.74152 0.74152 0.74295 0.74131 0.74132 0.74111
0.8 0.69363 0.69363 0.69496 0.69343 0.69344 0.69325
t f Rel. Err. % Rel. Err. % Rel. Err. % Rel. Err. % Rel. Err. %
0.1 0.06018 0.05916 0.26724 0.03060 0.02907
0.2 0.05698 0.05626 0.25532 0.02813 0.02741
0.3 0.05653 0.05565 0.25736 0.02738 0.02738
0.4 0.05610 0.05610 0.24990 0.02652 0.02754
0.5 0.05474 0.05474 0.24860 0.02623 0.02737
0.6 0.05621 0.05622 0.24860 0.02748 0.02548
0.7 0.05532 0.05532 0.24828 0.02699 0.02834
0.8 0.05481 0.05481 0.24666 0.02596 0.02741

Table 9: The position and velocity of moving boundary for different element numbers andSte = 1.0, t f = 0.8.

Method N = 10 N = 20 N = 40 N = 80 Exact Solution
VSG-FEM 1.10979 1.10933 1.10923 1.10921
BIM-FEM 1.10979 1.10933 1.10926 1.10921 1.10920 s(t)
IMM-FEM 1.11187 1.10999 1.10942 1.10926
VSG-FEM 0.69363 0.69333 0.69327 0.69326
BIM-FEM 0.69363 0.69333 0.69329 0.69325 0.69325 ˙s(t)
IMM-FEM 0.69396 0.69376 0.69376 0.69329

In this manuscript, finite element method constructed with VSG, BIM and IMM was applied to melting problem described
on semi-infinite domain. The computational results was compared with the numerical solutions obtained by using finite
difference method and nodal integral method. The present numerical results of temperature distribution have more accurate
solution than FDM and NIM forSte = 0.2. The newly numerical solutions for temperature distribution, the position of
moving boundary and the velocity of the moving boundary are in good agreement with the exact solutions. It was shown
that with increasing element numbers the numerical solutions converge to exact solutions for the position of moving
boundary and the velocity of moving boundary. It can be seen the tables finite element methods based on VSG, BIM and
IMM reasonably more accurate solutions for small values of Stefan numbers and larger numbers of elements. For the large
numbers of elements, finite element methods can be applied the Stefan problem easily to attain a high degree of accuracy.
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