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Abstract: The initial version of a Stefan problem is the melting of a serfinite sheet of ice. This problem is described by a
parabolic partial differential equation along with two lodiary conditions on the moving boundary which are used terdene the
boundary itself and complete the solution of the differ@ngquation. In this paper firstly, we use variable space gréthod,
boundary immobilisation method and isotherm migrationhudtto get rid of the trouble of the Stefan problem. Then,omaltion
finite element method based on cubic B-spline bases furscttoapplied to model problem. The numerical schemes of faldment
methods provide a good numerical approximation for the rhpoeblem. The numerical results show that the present tesué in
good agreement with the exact ones.

Keywords: Stefan problems, variable space grid method, boundary tilisation method, isotherm migration method, collocatio
finite element method.

1 Introduction

Many problems in various areas of applied mathematics agtheering can be modelled as partial differential equation
posed in domains whose boundaries are to be determinedtasd ga solution. Such problems are usually referred to as
moving boundary problems. Base of Stefan problem was stavith reference to early work of J. Stefaty] who is
interested in melting of the polar ice cap. We encountertltygse of problems in wide-ranging applications physical an
biological sciences, engineering, metallurgy, soil medts decision and control theory. In these mentioned athas
material undergoes to changing phase with a moving bourttiatyhas to be determined as part of the solution. As a
result, Stefan problems are non-linear problems and thees tha limited analytical solutions. Due to the shortagehef t
analytical solutions, numerical methods have been used ownmonly £].

There are two numerical techniques to obtain the solutiothefStefan problems. The first one is the front-tracking
method, in which the position of the moving boundary is combiusly tracked by some iterative procedure. Variable
space grid method3[4], variable time step method] and heat balance integral methad] pre examples of tracking
methods for the moving boundary. The other approach is tadismnt-fixing methods. Boundary immobilisation method
[7], isotherm migration method[9,10] and enthalpy methodLfl] are alternatives to fix the moving boundary.

In this paper, we are going to concern with the melting of aidafinite sheet of ice, initially at the melting temperagur
taken to be zero. Firstly, we are going to apply variable spg@éd method, boundary immobilisation method and
isotherm migration method. Then, we are going to obtain migaksolutions with finite element method (FEM) based
on cubic B-splines. The computational results of tempeeadiistribution, the position of the moving boundary and the
velocity of moving boundary are given in the section 8.
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2 Model problem

In the one-dimensional Stefan problem, the functi(m,t) is temperature distribution governed by the heat equation

ou o

T O<x<s(t), t>0 1)
subject to

u@o,t)=1, U(s(t),t)=0, t>0 2)

boundary conditions wherd (0,t) is the constant surface temperature. Also, one furtheritonds needed on the
moving interface to determine the position of the interfaself which is known as Stefan condition. In this problem
Stefan condition is

ds(t) ou _
—~ = Seo. x=s), t>0 3
with the initial condition
s(0)=0 (4)

wheres(t) is the position of the moving boundary afte = % is the Stefan numbeg, is the specific heat capacity of
liquid, At is a reference temperature ahds the latent heat.

The model problem has the exact solution for temperatutglaition and the moving boundary

o erf(x/2\1)
U(x,t)_l—w, 0<x<s(t), t>0 (5)
stt)=2Avt, t>0 (6)

where parameter known as melting/solidification parameter is root of thes@endental equation
e erf(d) = 1. @)

The exact solution is used to initialize the numerical cotapans and compare the numerical results for temperature
distribution, the velocity of moving boundary and the piositof moving boundary.

This problem has been recently solved by Savovic’ & Cald&ellwan [12] with employing the nodal integral method
(NIM) and finite difference method (FDM) constructed on bdary immobilisation method. We have compared the
numerical solutions reached in referentg][and the present solutions obtained using finite elemertoaet

3 Cubic B-splines collocation finite element method

Let us divide intervala, b] into N uniform elements consisting of the knatg such as = xp < x; < ... < xy = b. Cubic
B-splines@y spannindga, bl are@_1, @, @1, ..., 1. SOUn(X,t) approximate solution fdd (x,t) can be written as

N-+1

UNXD= Y ()Y ®)
m= -1

wheregy, are trial functions given following expressions adyglare time-dependent variables which will be determined
boundary and collocation conditions for the Stefan problé@ime cubic B-spline bases functions are defined by the
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following relationship

(x— Xm—2)3; [Xm—2,Xm-1]
L h3 + 302 (X — Xm_1) + 3N(X— Xm-1)2 — 3(X— Xm_1)%, [Xm_1.Xm]
@n(X) = 3 h3 ++ 302 (Xmy 1 — X) + 30(Xmi1 — X)2 = 3(Xmr1— X)3,  [XmXmia] 9)
(X2 — X)sa [ X1, Xm+2]
0, otherwise

whereAXx =h=Xn—Xm_1 forall mm=-210,1,.... N+ 1.

The cubic splinegy, and its principle derivativeg, and ¢, disappear the outside of the interyah_2,xm:2] . We can
tabulate values of the functiom, ¢, and ¢, at the knots¢y as the following table

Table 1: B-Spline values at the knots.

X Xm—2 Xm-1 Xm Xmil  Xmi2

@ 0 1 4 1 0
3 3

W 0 om0, 0

% O @& % w0

Now, we can define finite element approximation of nodal v&feeU, U’ andU” at the knotxm,

U =U(Xm) = 0m-1+40m~+ Omt1
U’ = U ot) = (B + Bne) (10)

m= -
U = U () = (81~ 28+ Gnia), [13]

4 Variable space grid method

Murray and Landis3] kept the number of space intervals betweea 0 andx = s(t) constant, equal tdl, for all time.
As a result, the moving boundary is always on Mt grid line. In that case, the grid size mustye- s(t)/N which is
changed with the time.

For the linex;, partial differentiation with respect to timds given by the following equation

ou | dx au
‘ ~ X ’t dt i (1)
and at the'" grid point variation O%‘ is given as
dx, X ds

By substituting (12) into (11) the one dimensional heat ¢iqndbecomes

) _ % dsou)  ou
otli st)dt oxlt
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and dimensionless Stefan problem turns into the followinggation

oU x dsdu 92U
W—@aﬁ‘f’ﬁ; O<X<S('[) (13)

subject to (2)-(4) boundary and initial conditions.

By substitutingJ and its derivativet)’,U” given with equation (10) into equation (13), we obtain thiéofeing equation

n(9"3

81488+ i1 =X o

~(=Om-1+0mi1) + 2(5m71—25m+5m+1)-
And using Crank-Nicolson approach and forward differerggraximation for two time levels andn+ 1, such as

n+1 n . n+1l __ sn
M Om = u (14)

om=—"—"—" At

whered are the parameters at the timét and “” demonstrates derivative respected to time. We have the ffément
system by using some mathematical operations

OO T + OO ™ + Ot 1 = Amadin_1 + AnsOm+ Omedmy 1, M=0,1,...,N (15)

where the coefficients are

G 1@ 3OUE"BAL L 3AKY 3t
m= MAXS  (Axn)2) ™ M2AXS T (AX")2
6At 6At
4 —4-
=t e T @y
At (S)" A ' A
Gy 1y 3AUS" B 30K 3t

M2AXS | (AX)2
for finite element method based on variable space grid methdlis schemessis the position of moving boundaryjs
the velocity of moving boundarj"(= AX") is mesh size anki(= At) is time step.

M2AXS  (AxX")2’

Furthermore, for finite element method based on variableesgad method (VSG FEMX(t) is updated at each time
step by using a suitable finite difference form of the Stefandition d3<tt) = fSte— on x = s(t). Therefore we are
going to use the following three point backward differenctha moving boundary

ou 3Un —4Un-1+Un-2 2
OX Ix=s(t) 2AX +0O(4%) (16)
[14] and forward difference approximation faﬁ,
dst) &"*l-g
- = A 17
ot A ol 17)
So, iterative relation of moving boundary is obtained as
sHl_g'—ge— At (83U —4U{_;+UJ ,) n=0,12 (18)
2AXN N — N-—-1 N-2 — YLy
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subject to

L=0

initial condition. So, the grid sizé"*! = is updated each time step whe¥eis the number of element. For the
VSG-FEM, temperature distributida, ~ U (X0, t,) is calculated at the pointd), = mh",t, = to + nk wherety is initial
time.

1
N

5 Boundary immobilisation method

Boundary immobilisation method based on fixing moving bamds a convenient method to solve Stefan problems. In
this method, by using transformation Sf—t), moving interfacex = s(t) is turned into fixed boundar§ = 1, at new
coordinate systenié,t). This approach firstly was used by Landali &nd applied to moving boundary problems by

using finite difference and finite element methods in receaty L0, 11].

In coordinate systerf€ ,t), reformulation equation of (1) can be written as

ou| dudé oduU X dsdu ouU

Dt dat T atle” FMdter  atle
So dimensionless Stefan problem becomes

U & dsou 1 o«

ot @aﬁJr%d—fz’ 0<é<l, t>0 (29)
subject to
U0 =1, U(Lt) =0, dz—(tt)z—?lt)‘;—g, F—1 t>0 (20)

boundary conditions and (4) initial condition. And exadusion (5) turns into equation

erf(EA)

V&Y =1-5F0

,0<8<1 t>0
along with equations (6)-(7). Differently from variablesse grid method Stefan condition takes the forré at 1

At
§’]+l == Sn - SeZA—ES(?:U“ —4U,(|]71+U,(|]72), n= O, 1, 2,

with the aid of three point backward difference at the mowngndary in the transformed coordinate systént)

+0(A8)?

ouU ‘ ~ 3Un—4Un-1+Un-2
08 le=1 2A¢

and (17) forward difference approximation fgﬁtm

As the finite element method is applied to equation (19) widcbbtained by using boundary immobilisation method
subjected to (20) boundary conditions, we track similar waty variable space grid method. By using equation (10)
defined in(&,t) coordinate system for equation (19), we obtain

(9" 3 6a

81+ 40m+ O = Em?ﬁ(_ém—l‘f' Omi1) + m(ém—l_ 20m+ Om+1)
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and by using Crank-Nicolson approach and time derivativergby equation (14) we obtain finite element system (15)
which coefficients are

Gy — 14 EmSAt(s)“ I g — 1 Em3At(S)” L3t
208" (SAE)2 20ES | (§AE)?
amz — 4+ ﬂ ams =4 ﬂ
(S48)?’ (s"4¢)2
3At(5)" 34t 3At(s)" 34t

O =1—¢n Ome = 14ém

2AES  (SAE)2 20ES | (S4E)?

for BIM-FEM. In this schemessis the position of moving boundaryjs the velocity of moving boundarii(= A& = ﬁ)
is the grid size and(= At) is time step. For BIM-FEM, temperature distributioff, ~ U (ém,tn) is calculated at the
pointsém = mh, ty = tg+ nk wherety is initial time.

6 Isotherm migration method (IMM)

In the isotherm migration method, the temperature distigioll) can be interchanged with the space variablso that
the solution is evaluateqU ,t) instead of the more tridiation&l (x,t) [2]. This method was proposed by Chernouso [
and Dix&Cizek P] who independently studied. This method provides condianndaries to solve model problem. For
this reason it is one of the most popular method for obtaimingerical solutions of moving boundary problems
especially subjected to time dependent boundary conditiBecently, Esen&Kutluayl[] have obtained numerical
solutions of the Stefan problem with Neumann boundary d@by using isotherm migration method constructed
finite difference method.

By using the usual partial derivatives we have derivatives

(o U (ox) o -
dx \ouU oo ou ou?2

[2] and for the reasodU = 0 we have

ox_ 0 ox 0u  ox(ox\ @2
gt dtou - ot Jt \odu
After substituting equations (21)-(22) into heat equafiby we obtain
ox ax\ 2 92
E—(%) W, O<U<1, t>0 (23)
subject to
B _odst) ax\ B
x(0,t) =s(t), x(1,t)=0, e —-Se (d_U> , uU=1  t>0 (24)

boundary and (4) initial condition. And the exact solutiéh jecomes the following equation
x(U,t) =2vierf1((1-U)erf(A)), 0<U<1, t>0

along with equations (6)-(7). Also by using three point fardidifference

ox =3+ —X

X _ 2
ouU lu=1 2AU +0(au)
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and (17) forward difference approximation tt), Stefan condition takes the formldt= 1

2(AU)(At)

+1 _ - g
R i

n=0,1,...
for isotherm migration method.

As the finite element method is applied to equation (23), tilesrof dependent variablé and independent space
variablex are changed in equation (10) given with nodal approximati@y substituting« and its derivatives subjected
toU (X andx”) into heat equation (1), we obtain

6(Om-1—20m+ Om1)

Sm1+ 40m+ O i1 = .
Om-1+40m~+ Omt1 (o1t Son)?

And by using Crank-Nicolson approach and time derivativeiby equation (14), we obtain finite element system (15)
for the equation (23) in which coefficients are

Om = 1—3Z(m), apy =1+ 3Z(m)
Omp = 44 6Z(m), ams = 4—6Z(m)
Ons = 1—3Z(m), ape =1+ 3Z(m)

wherezZ(m) = Tt AL is non-linear term.

n
m+175m—1)

Numerical solutions of isothernd, ~ x(Um,tn) are calculated at the poirith, = mh, t, = to + nk , whereh(= AU = ﬁ)
is the mesh sizek(= At) is time step ant is initial time.

For the finite element methods based on variable space gridosheboundary immobilisation method and isotherm
migration method, we obtain same finite element system (Ubjested to different coefficients. All of these methods
have tridiagonal matrix systefd + 1 consisting of equations bl + 3 unknowns. To solve the system uniquely two
more equations are needed. We can obtain these equatiompdnandary conditions of the related method. And we use
in the system to eliminate fictitious parametérs anddy.1 for m= 0 andm= N. So, the system can be demonstrated
in matrix form

ASM=B&" +r

whereA,B are (N + 1) x (N + 1) tridiagonal matrixes and is a (N + 1) basing on boundary conditions. To start time
evaluation of the approximate solutia¥ must be determined, firstly.

Now, we consider determining of approximate solutiéfgor variable space grid method. The others can be considered
as the VSG-FEM. We tak&l and & the variables for BIM-FEMx andU for IMM-FEM instead ofU and x for
VSG-FEM. To attaind® vector we require two conditions faly (x, to)

N+1

Un(xto) = 3 03(t)am(x).

—1

(i) Initial conditionU (x,tg) andUn (x,tp) should be equal to each other fdr- 1 points.
(i) To be able to solve th&d° = b, we need two further equations which can be obtained fronfitstederivatives of
end points of the domain.

After we find initial vectord®, we get vector$?!, 62, ..., 8" respectively.
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7 Stability analysis

We can use Von-Neumann method for VSG-FEM and BIM-FEM fordtability analysis. But, we can’t use any stability
analysis method for IMM-FEM because of the non-linear t&m) presented in the finite element schemes of isotherm
migration method.

In the Von-Neumann theory, the growth factor of typical Feumode is defined as
5;[11 — ZneimBh

wheref is the mode number artdis element size. By substituting equation this equatioo @guation given with (15),
and by performing some simplification operations we obtain

. a;+ib
Z o azfib
where
6k 6k
o (2 %) cospn s (a- &)
6k
a= <2—h— cosBh+ (4+ h2>

for finite element method based on variable space grid and

6k 6k
a = (2+ ﬁ) cosBh+ (4— W)

6k 6k
a = <2 ﬁ) cosh+ (4+ ﬁ)

(3K (9" .
b= <F?Em sinfh
for finite element method b_ased on boundary immobilisatiethmd. For the stability of these methods, the growth factor
must satisfyi{| < 1, so g;f:g ‘ < 1if only if a% < a%. If we do essential processing we will see that the system%)f (1

is unconditionally stable for VSG-FEM and BIM-FEM. It shdube pointed thalh showsAx" for VSG-FEM and{ for
BIM-FEM andk showsAt for both of the methods.

8 Numerical results and conclusion

In this section, we have demonstrated the numerical resbttgned by using VSG-FEM, BIM-FEM and IMM-FEM for
temperature distribution, the position of moving boundamg the velocity of the moving boundary. We have compared
the present solutions and other numerical solutions obdalny using FDM and NIM N = 10) [12]. Due to the
singularity at thep = 0, we usdp = 0.01 to initialize the numerical procedure. To compare theottumerical solutions
obtained by using finite difference, we use a constant gridberN = 10 and the time stet = 0.000002 which are
used in referencelp)].
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It should be noted that we use two differ&é numbers §e= 0.2 andSe= 1.0) for the computational results. And the
values ofA corresponded to relatefle = 0.2 andSte = 1.0 numbers are obtained by using the transcendental equation
(8), which areA =0.30642 and\ = 0.62006 respectively.

Table 2: Comparison of temperature distribution with results frdr#] for Se= 0.2 andt; = 1.6.

x/s VSG-FEM Rel.Err.% NIM[L2] Rel.Err.% FDM[2] Rel. Err.% ExactSolution
00 10 0.0 10 0.0 10 0.0 10

0.1 0896893 (0000000 0896893 (0000000 0896891 0000223 0896893
0.2 0793979 0000126 0793979 0000126 0793976 0000504 (0793980
0.3 0691451 0000145 0691451 0000145 0691446 0000868 0691452
0.4 0589500 0000000 0589498 (0000339 0589493 (0001187 (0589500
0.5 0488310 0000204 0488309 0000410 0488303 0001638 0488311
0.6 0388067 0000257 0388066 (0000515 0388060 0002061 0388068
0.7 0288946 0000346 0288945 (0000692 0288940 0002423 (0288947
0.8 0191120 0000523 0191120 0000523 0191115 0003139 0191121
0.9 0094753 (0000000 0094752 (0001055 0094750 0003166 0094753
10 00 0.0 0.0 0.0 0.0 0.0 0.0

In Table 2, the present computational results for VSG-FEM #re other numerical results obtained by the other
researchers are compared for temperature distributionn@uerical solutions are more accurate than the othersrand i
good agreement with the exact solution 8be = 0.2.

Table 3: Comparison of numerical solutions for the position of theving boundarys(t) with results from 12] for
Se= 0.2 at different time values.

tr VSG-FEM BIM-FEM IMM-FEM NIM[12] FDM[12] Exact Solution

02 027414 027414 027414 027409 027414 027407
04 038770 038770 038784 038763 038769 038759
0.6 047483 047483 047489 047474 047482 047470
0.8 054829 054829 054836 054819 054828 054814
10 061301 061301 061308 061289 061300 061284
12 067152 067152 067160 067139 067150 067133
14 072532 072532 072532 072541 072531 072512
16 077540 077540 077550 077525 077539 077519

tf Rel.Emr.% Rel.Emr.% Rel. Err.% Rel.Err.% Rel. Er. %
0.2 0.02554 002554 002554 000730 002554
0.4 0.02838 002838 006450 001032 002580
0.6 0.02738 002738 004002 000843 002528
0.8 0.02737 002737 004013 000912 002554
1.0 0.02773 002773 003916 000816 002611
12 0.02830 002830 004022 000894 002532
14 0.02758 002758 002758 000827 002620
16 0.02709 002709 003999 000774 002580

In Table 3 and Table 4, the position of moving boundary andiéiecity are given together with percentage relative
errors forSe = 0.2. As the nodal integral method applies, each of node nuntteehéat equation (1) are represented
differential equations system. As a result of this, for @aging the node number it is difficult to get the numerical
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solutions of NIM. But we easily obtain closer numerical dmns of the position of the moving boundary and its
velocity for the larger element numbers as given in the Table

In Table 5, we present the position of moving boundary andviiecity of moving boundary for the larger element
numbersSe = 0.2 andt; = 1.6. The obtained numerical results show that by the incrgasiesh sizes three different
finite element method based on cubic B-splines, VSG-FEM, BBM and IMM-FEM attain to expected convergence.

Table 4: Comparison of numerical solutions for the velocity of theuing boundarys(t) with results from 2] for
Se= 0.2 at different time values.

tr VSG-FEM BIM-FEM IMM-FEM NIM[12] FDM[12 Exact Solution

0.2 068538 068537 068546 068524 068536 068518
0.4 048463 048463 048469 048454 048462 048449
0.6 039570 039570 039575 039562 039569 039559
0.8 034268 034268 034273 034262 034268 034259
10 030651 030651 030654 030645 030650 030642
12 027980 027980 027983 027975 027979 027972
1.4  0.25904 025904 025904 025908 025904 025897
16 024231 024231 024234 024227 024231 024225

ts Rel.LErr.% Rel.Err.% Rel.Emr.% Rel.Er.% Rel.Emr.%
0.2 002919 002773 004086 000876 002627
0.4 0.02890 002890 004128 001032 002683
0.6 002781 002781 004044 000758 002528
0.8 0.02627 002627 004087 000876 002627
1.0 002937 002937 003916 000979 002611
1.2 002860 002860 003932 001073 002503
14 002703 002703 002703 000772 002703
16 002477 002477 003715 000826 002477

In Table 6, the numerical results of temperature distrdyutibtained by using VSG-FEM are compared NIM and FDM
for Se= 1.0 andt; = 0.8. Computational results have smaller percentage errarsFIDM. So, it can be said that with
increasing element number, temperature distributionlvélexpected, compared to FDM and NINZ.

Table 5: The position and velocity of moving boundary for differetgraent numbers ante= 0.2, t; = 1.6.

Method N=10 N=20 N=40 N=80 ExactSolution
VSG-FEM Q77540 077525 077521 077520

BIM-FEM 0.77540 077525 077521 077520 077519 s(t)
IMM-FEM 0.77550 077528 077522 077520

VSG-FEM 024231 024226 024225 024225

BIM-FEM  0.24231 024227 024225 024225 024225 s(t)
IMM-FEM  0.24234 024227 024226 024225
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Table 6: Comparison of temperature distribution with results frdr#] for Se= 1.0 andt; = 0.8.

x/s VSG-FEM Rel.Err.% NIM[L2] Rel.Err.% FDM[2] Rel Err.% Exact Solution
00 10 0.0 10 0.0 10 0.0 10

0.1 0887205 (0000902 0887190 (0000789 0887180 0001916 0887197
0.2 0775274 0002193 0775245 0001548 0775224 0004257 Q775257
0.3 0665049 0003609 0665007 0002707 0664978 0007067 0665025
0.4 0557331 0004665 0557283 (0003948 0557248 0010228 (0557305
0.5 0452876 0006846 0452822 (0005079 0452783 0013691 0452845
0.6 0352353 0008514 0352300 0006528 0352260 0017881 0352323
0.7 0256357 0010143 0256310 0008193 0256173 0022627 0256331
0.8 0165386 0030241 0165350 0009676 0165320 0027817 0165336
09 0079836 0013780 0079816 0011275 0079798 0033824 0079825
10 00 0.0 0.0 0.0 0.0 0.0 0.0

In Table 7 and Table 8, the position of the moving boundaryiendelocity are given together with percentage relative
errors for&e= 1.0. NIM has the more accurate solution in tables, but we caaiolzioser numerical solutions of the
temperature distribution, the position of the moving boanycand its velocity for the larger element numbers thanmgive
in the Table 7 and Table 8. Since the moving boundary moveerfésr largerSe numbers, the Stefan problems get
difficult for larger Stefan numbers. This can be shown bothidmperature distribution, the position of moving bourydar
and its velocity fore = 1.0 compared to those obtained e = 0.2.

In Table 9, we show the position of moving boundary and theaigl of moving boundary for the larger element
numbersSe = 1.0 andt; = 0.8. It is clearly seen that newly obtained numerical solutiohthe position of moving
boundary and the velocity of moving boundary are so closeaotesolutions for the larger element number.

Table 7: Comparison of numerical solutions for the velocity of theuing boundarys(t) with results from L2 for
Se= 1.0 at different time values.

tr VSG-FEM BIM-FEM IMM-FEM NIM[12] FDM[17 Exact Solution

0.1 039235 039235 039302 039224 036226 039216
0.2 055488 055489 055589 055473 055474 055460
0.3 067960 067960 068085 067941 067942 067924
04 078474 078474 078619 078451 078453 078432
05 087736 087737 087900 087711 087713 087690
0.6 096111 096111 096260 096083 096085 096060
0.7 108811 103812 104006 103782 103784 103756
0.8 110979 110979 111187 110948 110950 110920

tf Rel.Emr.% Rel.Emr.% Rel. Err.% Rel.Er.% Rel. Er. %
0.1 0.04844 004844 021930 002040 002550
0.2 0.05049 005229 023260 002344 002524
0.3 0.05300 005300 023703 002503 002650
0.4 0.05355 005355 023842 002422 002677
0.5 0.05246 005360 023948 002395 002623
0.6 0.05310 005310 020820 002394 002603
0.7 0.05301 005397 024095 002506 002699
0.8 0.05319 005319 024071 002524 002705
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Table 8: Comparison of numerical solutions for the velocity of theuing boundarys(t) with results from 2] for
Se= 1.0 at different time values.

tr VSG-FEM BIM-FEM IMM-FEM NIM[12] FDM[12] Exact Solution

0.1 196198 196196 196604 196140 196137 196080
0.2 138729 138728 139004 138689 138688 138650
03 113271 113270 113492 113238 113238 113207
04 098095 098094 098285 098066 098067 098040
05 087738 087738 087908 087713 087714 087690
0.6 080094 080093 080248 080071 080071 080049
0.7 074152 074152 074295 074131 074132 074111
0.8 069363 069363 069496 069343 069344 069325

tr Rel.Emr.% Rel.Err.% Rel.Er.% Rel.Err.% Rel Err.%
0.1 006018 005916 026724 003060 002907
0.2 0.05698 005626 025532 002813 002741
0.3 0.05653 005565 025736 002738 002738
0.4 005610 005610 024990 002652 002754
0.5 005474 005474 024860 002623 002737
0.6 005621 005622 024860 002748 002548
0.7 0.05532 005532 024828 002699 002834
0.8 005481 005481 024666 002596 002741

Table 9: The position and velocity of moving boundary for differefgraent numbers ane= 1.0, t; = 0.8.

Method N=10 N=20 N=40 N=80 ExactSolution
VSG-FEM 110979 110933 110923 110921

BIM-FEM 1.10979 110933 110926 110921 110920 s(t)
IMM-FEM 1.11187 110999 110942 110926

VSG-FEM 069363 069333 069327 069326

BIM-FEM  0.69363 069333 069329 069325 069325 s(t)
IMM-FEM 0.69396 069376 069376 069329

In this manuscript, finite element method constructed wifGyBIM and IMM was applied to melting problem described
on semi-infinite domain. The computational results was caneg with the numerical solutions obtained by using finite
difference method and nodal integral method. The presenenigal results of temperature distribution have more eateu
solution than FDM and NIM fo&e = 0.2. The newly numerical solutions for temperature distitdnutthe position of
moving boundary and the velocity of the moving boundary argdod agreement with the exact solutions. It was shown
that with increasing element numbers the numerical saisticonverge to exact solutions for the position of moving
boundary and the velocity of moving boundary. It can be shendbles finite element methods based on VSG, BIM and
IMM reasonably more accurate solutions for small valuesefé® numbers and larger numbers of elements. For the large
numbers of elements, finite element methods can be appke8téfan problem easily to attain a high degree of accuracy.
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