New Trends in Mathematical Sciences

Valuation rings and modules

M. H. Hosseini and M. Zolfaghari

Academic member of School of Mathematics, University of Birjand, Iran

Received: 14 August 2014, Revised: 4 October 2014, Accepted: 17December 2014 Published online: 4 March 2015

Abstract: The purpose of this paper is to compare and investigate relations between valuation rings and valuation modules.

Keywords: Multiplication module, valuation ring, valuation module.

1 Introduction

Throughout this paper, \mathscr{R} denotes an integral domain, with quotient field K, $T = \mathscr{R} - \{0\}$ and M is a unitary \mathscr{R} -module. An \mathscr{R} -module M is called a multiplication \mathscr{R} -module, if for each submodule N of M, there exists an ideal I of \mathscr{R} such that N = IM.(For more information about multiplication modules, see[2,4]). An integral domain \mathscr{R} is called a valuation ring, if for each $x \in K = \mathscr{R} - \{0\}$, $x \in R$ or $x^{-1} \in \mathscr{R}$. In [3], valuation modules in case module is torsion-free investigated. Morover in [1], nofinitely generated submodules of faithful multiplication valuation modules is investigated.

2 Valuation Rings

Definition 2.1. A subring \mathscr{R} of a field *K* is called a valuation ring of *K* if for every $\alpha \in K, \alpha \neq 0$, either $\alpha \in R$ or $\alpha^{-1} \in R$.

Example 2.1.

1) Any field of *K* is a valuation ring of *K*.

2) Let *p* be a fixed prime. Let $R \subset Q$, the field of rationals, be defined by

$$R = \left\{ p^r \frac{m}{n} | r \ge 0, (p,m) = (p,n) = (m,n) = 1 \right\}.$$

Then \mathscr{R} is a valuation ring of \mathbb{Q} .

Proposition 2.1. Let V be a valuation ring of K. Then

- 1. K is the qoutiont field of V.
- 2. Any subring of *K* containing *V* is a valuation ring of *K*.

3. *V* is a local ring.

169

4. *V* is integrally closed.

Proposition 2. 2. The ideals of a valuation ring are totally ordered by inclusion. Conversely if the ideals of domain V with quotient field K are totally ordered by inclusion, then V is a valuation ring of K.

Corollary 2.1. If V is a valuation ring of K and P is a prime ideal of V, then V_p and $\frac{V}{P}$ are valuation ring.

Corollary 2.2. Any Noetherian valuation ring is a principal ideal domain.

Corollary 2.3. Let V be a Noetherian valuation ring. Then there exists an irredusible element $p \in V$ such that every ideal of V is of the type $I = (p^m), m \ge 1$ and $\bigcap_{m=1}^{\infty} (p^m) = 0$.

3 Valuation Modules

Let R be an integral domain with quotient field K and M a torsionfree \mathscr{R} -module. For $y = \frac{r}{s} \in K$ and $x \in M$, we say that $yx \in M$ if there exists $m \in M$ such that rx = sm.

Lemma 3. 1. Let R be an integral domain with quotient field K and M a torsionfree \mathscr{R} -module. Then the following conditions are equivalent:

1) For all $y \in K$ and all $x \in M$, $yx \in M$ or $y^{-1}M \subseteq M$;

2) For all $y \in K$, $yM \subseteq M$ or $y^{-1}M \subseteq M$.

Definition 3.1. Let R be an integral domain with quotient field *K*. A torsionfree \mathscr{R} -module *M* is called valuation module (VM) if one of the condition of Lemma 3.1 holds.

Example 3.1.

1) Any vector space is a valuation module.

2) Let \mathscr{R} be a domain. \mathscr{R} is a valuation ring if and only if \mathscr{R} is a valuation \mathscr{R} -module.

3) Let R = Z and p be a prime integer number. If

$$M = \left\{ p^n \frac{a}{b} | a, b, n \in \mathbb{Z}, b \neq 0, n \ge 1, \ (p, a) = (p, b) = (a, b) = 1 \right\}$$

then *M* is a valuation module.

4) Z is not a valuation Z-module.

An \mathscr{R} -module M is said to be integrally closed whenever $y^n m_n + \cdots + ym_1 + m_0 = 0$ for some $n \in N, y \in K$ and $m_i \in M$, then $ym_n \in M$.

170

Lemma 3.2. Any valuation module is integrally closed.

Proposition 3.1. Let *K* be the quotient field of a domain \mathscr{R} and *M* a torsionfree \mathscr{R} -module. Let *S* be the set, ordered by inclusion, of all nonempty subsets of *M*. Then the following conditions are equivalent:

1) *M* is a valuation module;

2) $S' = \{(N:M) | N \in S\}$ is totally ordered;

3) For $U = \{rM | r \in R\}$ the subset of *S*, U' is totally ordered.

Corollary 3.1. Let \mathscr{R} be a domain and M a torsionfree \mathscr{R} -module. Then M is a valuation module if and only if for any submodules N, L of $M, (N : M) \subseteq (L : M)$ or $(L : M) \subseteq (N : M)$.

Corollary 3.2. Let \mathscr{R} be a domain and M a faithful multiplication \mathscr{R} -module. Then M is a valuation module if and only if for any two submodules N, L of $M, N \subseteq L$ or $L \subseteq N$.

Remark 3.1. R^2 is a valuation \mathscr{R} -module, but not a multiplication \mathscr{R} -module. Note that $R \oplus (0) \not\subseteq (0) \oplus R$ and $(0) \oplus R \not\subseteq (0) \oplus R$.

Note that \mathscr{R} does not have non-zero maximal submodules as an \mathscr{R} -module. Any vector space is a VM, but an infinite dimensional vector space has infinite number of maximal submodules. So it is not necessary that each valuation module has a (unique) maximal submodule.

Theorem 3.1. Let *M* be a valuation \mathscr{R} -module. Then the following statements are true. 1) For any submodule *N* of *M*, such that $\frac{M}{N}$ is a torsionfree \mathscr{R} -module, $\frac{M}{N}$ is a (*VM*).

2) If *M* is finitely generated, then for each $p \in Spec(R)$, M_p is a valuation R_p -module.

3) If M' is a torsionfree \mathscr{R} -module and $\varphi: M \longrightarrow M'$ is an epimorphism, then M' is a valuation module too.

The following give the relations between valuation rings and valuation modules.

Lemma 3.3. Let \mathscr{R} be a valuation ring and M a torsionfree \mathscr{R} -module. Then M is a valuation \mathscr{R} -module.

Lemma 3.4. If *M* is a multiplication valuation \mathscr{R} -module, then *M* is finitely generated and \mathscr{R} is a valuation ring.

Lemma 3.5. Let \mathscr{R} be a valuation domain. Then every finitely generated torsion-free \mathscr{R} -module is free.

Lemma 3.6. Let \mathscr{R} be a domain. Then \mathscr{R} is a valuation ring if and only if every free \mathscr{R} -module is a valuation module.

Corollary 3.3. Let *M* be a multiplication valuation module over an integral domain \mathcal{R} . Then M is isomorphic to \mathcal{R} .

An element *u* of an \mathscr{R} -module *M* is said to be unit provided that *u* is not contained in any maximal submodule of *M*. In a multiplication \mathscr{R} -module *M*, $u \in M$ is unit if and only if M = Ru.

Theorem 3.2. Let \mathscr{R} be a local ring (not necessarily an integral domain) with unique principal maximal ideal I = (p) and M a multiplication \mathscr{R} -module such that

$$\bigcap_{n=1}^{\infty} (p^n) M = (0).$$

Then the only proper submodules of *M*are (0) and $(p^m)M$, for some $m \ge 1$. Furthermore, if *M* is faithful, then either *p* is nilpotent or *M* is a valuation module.

Theorem 3.3. Let *M* be a finitely generated module over an integrally closed ring \mathscr{R} . If *M* is a valuation module, then *M* is a free \mathscr{R} - module and \mathscr{R} is a valuation ring.

References

[1] M.M. Ali, Invertibility of multiplication modules II. New Zealand J. Math., 39 (2009), 45-64.

[2] Z. Abd El-bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755-779.

[3] J. Moghaderi and R. Nekooei, Valuation, discrete valuation and Dedekind modules, Int. Electron. J. Algebra, 8 (2010), 18-29.

[4] P.F. Smith, Some remarks on multiplication modules, Arch. Math. 50 (1988), 223-235.

[5] M.D. Larsen and P.J. McCarthy, Multiplicative theory of ideals, Academic Press, London, (1971). pp 105-107.

[6] N. S. Gopalakrishnan, Commutative Algebra, New Delhi, Oxanian Press (1983). pp 106-111.