Valuation rings and modules

M. H. Hosseini and M. Zolfaghari
Academic member of School of Mathematics, University of Birjand,Iran

Received: 14 August 2014, Revised: 4 October 2014, Accepted: 17December 2014
Published online: 4 March 2015

Abstract: The purpose of this paper is to compare and investigate relations between valuation rings and valuation modules.
Keywords: Multiplication module, valuation ring, valuation module.

1 Introduction

Throughout this paper, \mathscr{R} denotes an integral domain, with quotient field $K, T=\mathscr{R}-\{0\}$ and M is a unitary \mathscr{R}-module. An \mathscr{R}-module M is called a multiplication \mathscr{R}-module, if for each submodule N of M, there exists an ideal Iof \mathscr{R} such that $N=I M$.(For more information about multiplication modules, see[2,4]). An integral domain \mathscr{R} is called a valuation ring, if for each $x \in K=\mathscr{R}-\{0\}, x \in R$ or $x^{-1} \in \mathscr{R}$. In [3], valuation modules in case module is torsion-free investigated. Morover in [1], nofinitely generated submodules of faithful multiplication valuation modules is investigated.

2 Valuation Rings

Definition 2. 1. A subring \mathscr{R} of a field K is called a valuation ring of K if for every $\alpha \in K, \alpha \neq 0$, either $\alpha \in R$ or $\alpha^{-1} \in R$.

Example 2. 1.

1) Any field of K is a valuation ring of K.
2) Let p be a fixed prime. Let $R \subset Q$, the field of rationals, be defined by

$$
R=\left\{\left.p^{r} \frac{m}{n} \right\rvert\, r \geq 0,(p, m)=(p, n)=(m, n)=1\right\} .
$$

Then \mathscr{R} is a valuation ring of \mathbb{Q}.

Proposition 2. 1. Let V be a valuation ring of K. Then

1. K is the qoutiont field of V.
2. Any subring of K containing V is a valuation ring of K.

[^0]3. V is a local ring.
4. V is integrally closed.

Proposition 2. 2. The ideals of a valuation ring are totally ordered by inclusion. Conversely if the ideals of domain V with quotient field K are totally ordered by inclusion, then V is a valuation ring of K.

Corollary 2.1. If V is a valuation ring of K and P is a prime ideal of V, then V_{p} and $\frac{V}{P}$ are valuation ring.

Corollary 2.2. Any Noetherian valuation ring is a principal ideal domain.

Corollary 2.3. Let V be a Noetherian valuation ring. Then there exists an irredusible element $p \in V$ such that every ideal of V is of the type $I=\left(p^{m}\right), m \geq 1$ and $\cap_{m=1}^{\infty}\left(p^{m}\right)=0$.

3 Valuation Modules

Let R be an integral domain with quotient field K and M a torsionfree \mathscr{R}-module. For $y=\frac{r}{s} \in K$ and $x \in M$, we say that $y x \in M$ if there exists $m \in M$ such that $r x=s m$.

Lemma 3. 1. Let R be an integral domain with quotient field K and M a torsionfree \mathscr{R}-module. Then the following conditions are equivalent:

1) For all $y \in K$ and all $x \in M, y x \in M$ or $y^{-1} M \subseteq M$;
2) For all $y \in K, y M \subseteq M$ or $y^{-1} M \subseteq M$.

Definition 3.1. Let R be an integral domain with quotient field K. A torsionfree \mathscr{R}-module M is called valuation module $(V M)$ if one of the condition of Lemma 3.1 holds.

Example 3.1.

1) Any vector space is a valuation module.
2) Let \mathscr{R} be a domain. \mathscr{R} is a valuation ring if and only if \mathscr{R} is a valuation \mathscr{R}-module.
3) Let $R=Z$ and p be a prime integer number. If

$$
M=\left\{\left.p^{n} \frac{a}{b} \right\rvert\, a, b, n \in Z, b \neq 0, n \geq 1,(p, a)=(p, b)=(a, b)=1\right\}
$$

then M is a valuation module.
4) Z is not a valuation Z-module.

An \mathscr{R}-module M is said to be integrally closed whenever $y^{n} m_{n}+\cdots+y m_{1}+m_{0}=0$ for some $n \in N, y \in K$ and $m_{i} \in M$, then $y m_{n} \in M$.

Lemma 3.2. Any valuation module is integrally closed.

Proposition 3.1. Let K be the quotient field of a domain \mathscr{R} and M a torsionfree \mathscr{R}-module. Let S be the set, ordered by inclusion, of all nonempty subsets of M. Then the following conditions are equivalent:

1) M is a valuation module;
2) $S^{\prime}=\{(N: M) \mid N \in S\}$ is totally ordered;
3) For $U=\{r M \mid r \in R\}$ the subset of S, U^{\prime} is totally ordered.

Corollary 3.1. Let \mathscr{R} be a domain and M a torsionfree \mathscr{R}-module. Then M is a valuation module if and only if for any submodules N, L of $M,(N: M) \subseteq(L: M)$ or $(L: M) \subseteq(N: M)$.

Corollary 3.2. Let \mathscr{R} be a domain and M a faithful multiplication \mathscr{R}-module. Then M is a valuation module if and only if for any two submodules N, L of $M, N \subseteq L$ or $L \subseteq N$.

Remark 3.1. R^{2} is a valuation \mathscr{R}-module, but not a multiplication \mathscr{R}-module. Note that $R \oplus(0) \nsubseteq(0) \oplus R$ and $(0) \oplus R \nsubseteq(0) \oplus R$.

Note that \mathscr{R} does not have non-zero maximal submodules as an \mathscr{R}-module. Any vector space is a $V M$, but an infinite dimensional vector space has infinite number of maximal submodules. So it is not necessary that each valuation module has a (unique) maximal submodule.

Theorem 3.1. Let M be a valuation \mathscr{R}-module. Then the following statements are true.

1) For any submodule N of M, such that $\frac{M}{N}$ is a torsionfree \mathscr{R}-module, $\frac{M}{N}$ is a $(V M)$.
2) If M is finitely generated, then for each $p \in \operatorname{Spec}(R), M_{p}$ is a valuation R_{p}-module.
3) If M^{\prime} is a torsionfree \mathscr{R}-module and $\varphi: M \longrightarrow M^{\prime}$ is an epimorphism, then M^{\prime} is a valuation module too.

The following give the relations between valuation rings and valuation modules.

Lemma 3.3. Let \mathscr{R} be a valuation ring and M a torsionfree \mathscr{R}-module. Then M is a valuation \mathscr{R}-module.

Lemma 3.4. If M is a multiplication valuation \mathscr{R}-module, then M is finitely generated and \mathscr{R} is a valuation ring.

Lemma 3.5. Let \mathscr{R} be a valuation domain. Then every finitely generated torsion-free \mathscr{R}-module is free.

Lemma 3.6. Let \mathscr{R} be a domain. Then \mathscr{R} is a valuation ring if and only if every free \mathscr{R}-module is a valuation module.

Corollary 3.3. Let M be a multiplication valuation module over an integral domain \mathscr{R}. Then M is isomorphic to \mathscr{R}.

An element u of an \mathscr{R}-module M is said to be unit provided that u is not contained in any maximal submodule of M. In a multiplication \mathscr{R}-module $M, u \in M$ is unit if and only if $M=R u$.

Theorem 3.2. Let \mathscr{R} be a local ring (not necessarily an integral domain) with unique principal maximal ideal $I=(p)$ and M a multiplication \mathscr{R}-module such that

$$
\cap_{n=1}^{\infty}\left(p^{n}\right) M=(0) .
$$

Then the only proper submodules of M are (0) and $\left(p^{m}\right) M$, for some $m \geq 1$. Furthermore, if M is faithful, then either p is nilpotent or M is a valuation module.

Theorem 3.3. Let M be a finitely generated module over an integrally closed ring \mathscr{R}. If M is a valuation module, then M is a free \mathscr{R}-module and \mathscr{R} is a valuation ring.

References

[1] M.M. Ali, Invertibility of multiplication modules II. New Zealand J. Math., 39 (2009), 45-64.
[2] Z. Abd El-bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755-779.
[3] J. Moghaderi and R. Nekooei, Valuation, discrete valuation and Dedekind modules, Int. Electron. J. Algebra, 8 (2010), 18-29.
[4] P.F. Smith, Some remarks on multiplication modules, Arch. Math. 50 (1988), 223-235.
[5] M.D. Larsen and P.J. McCarthy, Multiplicative theory of ideals, Academic Press, London,(1971). pp 105-107.
[6] N. S. Gopalakrishnan, Commutative Algebra, New Delhi, Oxanian Press (1983). pp 106-111.

[^0]: * Corresponding author e-mail: mhhosseini@birjand.ac.ir

