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Abstract: In this paper, a powerful recent non-standard finite different method by nonlocal approximation is improved. Also, compared
standard finite difference method to this non-standard finite different method in terms of stability and accuracy. As a numerical example,
Hybrid Selection & Genetics equation is considered as the candidate from class of first order ODEs with polynomial right-hand sides.
Furthermore, results obtained from the non-standard finitedifferent method and MATLAB ODE solvers (ode15s,ode23s) compared in
terms of stability, accuracy, and execution time.
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1 Introduction

Ordinary differential equations have significant influencein almost all scientific fields such that Biology, Chemistry,

Economics, Engineering, and Physics. Therefore, solving ODEs become very important. There are lots of numerical

methods to solve ODEs such that Euler method, Runge - Kutta method or many of others. Also, there are ODE solvers

in MATLAB such ode 45, ode15s and ode23s etc. However, all these standard methods do not have time step freedom.

But, time step freedom is provided by the non-standard finitedifference method that is mentioned in the paper. Interest

of the paper is to improve the non-standard finite different method that showed in [1]. R. Anguelov and J.M.-S. Lubuma

interest is non-linear terms of ODEs. But, linear term is also taken in the account in this paper. To show idea, the initial

value problem for an autonomous first order ordinary differential equation with third degree polynomial right-hand sides

is considered.

dy
dt

= f (y),y(t0) = y0 (1)

where the functiony≡ y(t) : [t0,T)→ R is known ,y0 ∈ R and the functionf : R→ R given. Here, T could be∞ but t0 is

finite.

As in shown in [1], numerical approximation of (1) is replacethe continuous interval[t0,T) by the mesh of discrete points

{tk− t0+ kh | k ≥ 0} whereh> 0 is the step size.yk ≡ y(tk) is the solution attk. After applying finite difference method

to (1), the sequence(yk) will be solution of a finite difference equation of the form

yk+1 = F(h;yk). (2)
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Definition 1.The equation (2) is called a non-standard finite difference method (NSFDM) if at least one of the following

conditions is satisfied:
dy
dt

=
(yk+1− yk)

ϕ(h)
(3)

whereϕ(h) is non negative function such thatϕ(h) = h+O(h2) as h→ 0.

Nonlinear terms in f(y) are approximated in a nonlocal way, i.e. by a function of several points of the mesh [1].

Definition 2.Assume that the solution of (1) satisfies some properties. Ifthe numerical scheme (2) satisfies same

properties then (2) is called stable with respect to the properties such that monotonicity, boundedness, equilibrium

points, and positivity.

In this paper, monotonicity and equilibrium points will be focused on. By [2-4] and the above definition, the NSFDM is

more powerful than the standard ones.

2 Numerical method

Assume that the functionF(h,y) in (2) has continuous derivatives with respect to both variables forh> 0, y∈ Rsatisfies

F(0;y) = y,
∂F
∂h

(0;y) = f (y) (4)

Let us note that consistency implies that (4) is satisfied when y is the solution of (1) (see [5, 6]).

Theorem 1.The difference equation (2) is stable with respect to monotone dependence on initial value if

∂F
∂h

(h;y)≥ 0 (5)

where y∈ R, h> 0

Theorem 2.Assume that the difference equation (2) is stable with respect to monotone dependence on initial value. Assume

also that for every h> 0 the equations F(h;y) = y and f(y) = 0 in y have the same roots considered with their multiplicity.

Then the difference equation (2) is stable with respect to monotonicity of solutions.

Theorem 3.Under the assumptions of theorem 2, the difference equation(2) is elementary stable. Theorem 1, 2 and 3

stated and proved in [1].

Scheme 1.
For the scheme 1, just nonlinear terms will be formalized as in [1].

dy
dt

= σy3+ γy2+βy+α (6)

whereσ ,γ,β ,α ∈ R

Left hand side of (6) is represented byyk+1−yk
ϕ(h) . For the nonlinear termsy3,y2 nonlocal approximation successively are;

y3 ≈ ay3
k +(1−a)y2

kyk+1andy2 ≈ by2
k +(1−b)ykyk+1a,b∈ R

after plugging in (6), obtained

yk+1− yk

ϕ(h)
= aσy3

k +(1−a)σy2
kyk+1+bγy2

k+(1−b)γykyk+1+βyk+α (7)
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or

yk+1 =
yk+aϕ(h)σy3

k+bϕ(h)γy2
k+β ϕ(h)yk+αϕ(h)

1− (1−a)ϕ(h)σy2
k− (1−b)ϕ(h)γyk

yk+1 = F(ϕ(h);yk) (8)

with

F(ϕ(h);y) =
y+aϕ(h)σy3+bϕ(h)γy2+β ϕ(h)y+αϕ(h)

1− (1−a)ϕ(h)σy2− (1−b)ϕ(h)γy

To find values of the parametera andb, theorem 1 is applied to (8). Also, by theorems 1-3, (8) is stable with respect to

monotonicity and equilibrium points. According to theorem1, it should be

∂F
∂y

(ϕ(h);y)> 0,F(ϕ(h);y) = y↔ f (y) = 0 (9)

Scheme 2.
For the scheme 2, we consider all terms linear and nonlinear.For the all terms of (6)y3,y2,andynonlocal approximation

successively are;

y3 ≈ ay3
k +(1−a)y2

kyk+1,y
2 ≈ by2

k +(1−b)ykyk+1,y≈ cyk+(1− c)yk+1a,b,c∈ R

after plugging in (6), obtained

yk+1− yk

ϕ(h)
= aσy3

k+(1−a)σy2
kyk+1+bγy2

k+(1−b)γykyk+1+βyk+ cβyk+(1− c)βyk+1+α

or

yk+1 =
yk+aϕ(h)σy3

k+bϕ(h)γy2
k+β ϕ(h)yk+ cϕ(h)βyk+αϕ(h)

1− (1−a)ϕ(h)σy2
k− (1−b)ϕ(h)γyk− (1− c)ϕ(h)β

(10)

yk+1 = F(ϕ(h);yk) (11)

with

F(ϕ(h);y) =
y+aϕ(h)σy3+bϕ(h)γy2+β ϕ(h)y+ cϕ(h)βy+αϕ(h)

1− (1−a)ϕ(h)σy2− (1−b)ϕ(h)γy− (1− c)ϕ(h)β

To find values of the parametera,bandc, theorem 1 is applied to (211). Also, by theorems 1-3, (11) isstable with respect

to monotonicity and equilibrium points. According to theorem 1, (9) satisfied.

Scheme 3.
To compare using time step classicalh or ϕ(h), scheme ofϕ(h) denominator function is defined below as in [7-8].

R∗ := max{| Ri |: Ri =
d( f (y))

dy
|y=ȳ(i) ; i = 1 : n}
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whereȳ(i) are fixed points.

ϕ(h,R∗) =
1−eR∗h

R∗
=: ϕ(h) (12)

3 Numerical example

Hybrid selection equation & genetics

dy
dt

= ky(1− y)(l −my) (13)

In (31), y represents the portion of the population,t is the time (measured in generation),l , m, andk are constants that

depend on genetic characteristic. In our casel = 2,m= 1, andk= 1 [9].

NSFDM without linear term combination by scheme (1)

dy
dt

= y(1− y)(2− y) = y3−3y2+2y (14)

After applying (7), we get

yk+1− yk

ϕ(h)
= ay3

k+(1−a)y2
kyk+1−3by2

k+(1−b)(−3)ykyk+1+2yk

Equivalently

yk+1 =
aϕ(h)y3

k−3bϕ(h)y2
k+2ϕ(h)yk+ yk

1− (1−a)ϕ(h)y2
k+3ϕ(h)(1−b)yk

From (8)

F(ϕ(h);y) =
aϕ(h)y3−3bϕ(h)y2+2ϕ(h)y+ y

1− (1−a)ϕ(h)y2
k+3ϕ(h)(1−b)yk

From (2.6), we geta> 1 andb< 0 . If a andb are like these,

F(h;y) = y↔ f (y) = 0 for everyh> 0.

NSFDM with linear term combination by scheme (2)

After applying (10) to (14), we get

yk+1− yk

ϕ(h)
= ay3

k +(1−a)y2
kyk+1−3by2

k+(1−b)(−3)ykyk+1+2yk+2cyk+2(1− c)yk+1

Equivalently

yk+1 =
aϕ(h)y3

k−3bϕ(h)y2
k+2ϕ(h)yk+ yk

1− (1−a)ϕ(h)y2
k+ϕ(h)(1−b)yk−2ϕ(h)(1− c)

From (11)

F(ϕ(h);y) =
aϕ(h)y3−3bϕ(h)y2+2ϕ(h)y+ y

1− (1−a)ϕ(h)y2+ϕ(h)(1−b)y−2ϕ(h)(1−c)

From (9), we geta> 1,b≤ 1,c> 1. If a,b andc are like these,

F(h;y) = y↔ f (y) = 0 for everyh> 0.

Denominator functionϕ(h); ȳ1 = 0, ȳ2 = 1, ȳ3 = 2 are fixed pointes. Thus, by schema (3)ϕ(h) = 1−e−2h

2 obtained.
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Fig. 1: Numerical approximation of the solution
of Eq. (3.2) forh= 0.2 andy0 = 0.5

Fig. 2: Numerical errors of the solution of Eq.
(3.2) forh= 0.2andy0 = 0.5.

Fig. 3: Numerical approximation of the solution
of Eq. (3.2) forh= 2 andy0 = 0.5.

Fig. 4: Numerical errors of the solution of Eq.
(3.2) forh= 2andy0 = 0.5.

Fig. 5: Numerical approximation of the solution
of Eq. (3.2) h=0.2 forϕ(h) = (1−e−2h)/2 and
y0 = 0.5.

Fig. 6: Numerical approximation of the solution
of Eq. (3.2) h=2 forϕ(h) = (1− e−2h)/2 and
y0 = 0.5.
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Table 1: Comparison of MATLAB ODE solvers and NSFDMs for eq. (3.2) fory0 = 0.5 based on execution time.

Solvers Time in second
NSFDM 0.00067(h= 0.2) 0.0007(h= 2)

NSFDML 0.00065(h= 0.2) 0.0007(h= 2)
Ode15s 0.4744
Ode23s 0.4022

4 Conclusion

First order stable nonstandard finite difference schema, improved and analyzed in this paper. The improved numerical

method is applicable to solving arbitrary first-order differential equation with polynomial right hand side. Making linear

term combination in the NSFDM, we get better results in termsof accuracy (see figure 1-4). For denominator function,

the graphical result (see, fig. 5-6) shows that using traditional h is the best for the NSFDM. Nonstandard finite difference

methods work with big time step (see fig 3-4) but standard difference method fails with big time step. Therefore, NSFDMs

have time step freedom. Additionally, MATLAB ODE solvers have same problem which is time step restriction. We

experimented with the MATLAB ODE solvers, namely, ode15s and ode 23s. The significant point is that none of these

solver is free of step-size restriction. Also, table 1 demonstrates that NSFDMs are faster than MATLAB ODE solvers

since NSFDMs have time step freedom but MATLAB ODE solvers donot.
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