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Abstract: The purpose of this paper is to investigate the use of exponential Chebyshev collocation method for solving systems of linear
ordinary differential equations with variable coefficients in unbounded domains, with most general form of conditions. The definition
of the exponential Chebyshev (EC) functions allows us to deal with systems of differential equations defined in the wholedomain
and with infinite boundaries without singularities or divergence. The method transforms the system of differential equations and the
given conditions to block matrix equation with unknown EC coefficients. By means of the obtained matrix equations, a new system of
equations which corresponds to the system of linear algebraic equations is gained. Numerical examples are included to illustrate the
validity and applicability of the method.
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1 Introduction

In recent years, systems of high order ordinary differential equations have been solved intensively by using approximate

iterative methods such as variational iteration method [1], differential transformation method [2], Adomian

decomposition method [3], differential transform method [4], Homotopy analysis method [5]. In addition to these

methods, the spectral methods are also used to solving systems of linear differential equations. Chebyshev collocation

method [6] and Taylor collocation method [7] are also applied to solve these systems of differential equations. The

well-known Chebyshev polynomialsTn(t) are orthogonal polynomials on the interval [-1, 1], see [8].These polynomials

have many applications in numerical analysis and spectral methods. One of the applications of Chebyshev polynomials is

the solution of systems of differential equations with mixed conditions, with collocation points [6]. Therefore, this

limitation of the Chebyshev approach fails in the problems that are naturally defined on all domains, especially including

infinity. Under a transformation that maps the interval [-1,1] into a semi-infinite domain [0,∞), Boyd [9, 10], Parand and

Razzaghi [11, 12], Sezer et al. [13, 14], and Ramadan et al. [15-19] successfully applied different spectral methods to

solve problems on semi-infinite domain. Recently, the authors of [20] have proposed modified form of Chebyshev

polynomials as an alternative to the solutions of the problems given in all domains. In their studies, the basis functions

called exponential Chebyshev functions (EC)En(t)that are orthogonal in(−∞,∞). This kind of extension tackles the

problems over the whole real domain. The EC functions are defined as

En(t) = Tn

(

et −1
et +1

)

, (1)
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where, the corresponding recurrence relation is

E0(t) = 1, E1(t) =
et −1
et +1

, En+1(t) = 2

(

et −1
et +1

)

En(t)−En−1 (t). n≥ 1 (2)

Now, in this paper we will use the EC collocation method for solving systems of linear ordinary differential equations

with variable coefficients in unbounded domains, with most general form of conditions. The paper is organized as follows.

In section 2, preliminaries introduced while in section 3 properties of the exponential Chebyshev (EC) functions are

presented. In section 4, we seek the form of the fundamental matrix relation based on collocation points. In section 5,

method of solution is presented. Finally, section 6 contains numerical illustrations and results that are compared with the

exact solutions to demonstrate the applicability of the present method.

2 Preliminaries

The system of high-order linear ordinary differential equations system considered here is a set ofk linear differential

equations with variable coefficients of themth order in the form [6]

m

∑
n=0

k

∑
j=1

pn
i j (t)y(n)j (t) = fi (t) , i = 1,2, . . . ,k (3)

This system can be written in compact matrix notation as

m

∑
i=0

Pi (t)y(i) (t) = f(t) , (4)

where thepn
i j (t) and fi(t) are well defined functions on the interval(−∞,∞), where the matricesPi (t) , y(i) (t) and f (t)

are of the form

Pi(t) =





















pi
11 pi

12 ... pi
1k

pi
21 pi

22 ... pi
2k

. . .

. . .

. . .

pi
k1 pi

k2 ... pi
kk





















, y(i)(t) =





















y(i)1 (t)

y(i)2 (t)

.

.

.

y(i)k (t)





















, f(t) =





















f1(t)

f2(t)

.

.

.

fk(t)





















.

We consider the above system under the most general form of conditions defined as

m−1

∑
i=0

aiy
(i) (a)+biy

(i) (b)+ ciy
(i) (c) = λ ,−∞ < a≤ c≤ b< ∞ (5)

where ai , bi , ci andλ are real valued vectors, anda, bmaybe tends to the boundaries that isa, b→±∞.

3 Properties of exponential Chebyshev (EC) functions

In this section we list some of the properties of the EC functions.
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3.1 Orthogonality of EC functions

The weight functionw(t) corresponding to EC functions [20], such that they are orthogonal in the interval (−∞,∞) is

given by
√

et/(et +1) , with the orthogonality condition

∫ ∞

−∞
En(t)Em(t)w(t)dt =

cmπ
2

δnm, (6)

where

cm =

{

2, m= 0

1, m 6= 0

andδnm is the Kronecker delta function. Also the product relation of the EC functions is

En(t)Em(t) =
1
2
[En+m(t)+E|n−m|(t)], (7)

which used in the derivative relations.

3.2 Function expansion in terms of EC functions

A function f (t) that well-defined over the interval (−∞,∞), may be expanded as

f (t) =
∞

∑
n=0

anEn(t), (8)

where

an =
2

cnπ

∫ ∞

−∞
En(t) f (t)w(t)dt.

If f (t) in expression (8) is a truncated toN < ∞ in terms of the EC functions takes the form

f (t)∼=
N

∑
n=0

anEn(t), (9)

also, the (k)th-order derivative off (t) can be written as

f (k)(t)∼=
N

∑
n=0

an(En(t))
(k) , (10)

where(En(t))
(0) = En(t).

3.3 The derivatives relations

In the next proposition the operational matrix of the derivative of EC functions that introduced for first time in [20] is

presented and proved.

Proposition 1. The relation between the vector E(x) and its (r)th-order derivative is given as

E(r)(t)∼= E(t)(DT)r , (11)
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where, D is the(N+1)×(N+1)operational matrix for the derivative, and the general formof the matrix D is a tridiagonal

matrix which is obtained from

D=diag

(

i
4
, 0,

i
4

)

, i = 0, 1, ..., N (12)

Proof.Derivatives of the EC functions can be found by differentiating relation (2), and by the help of (8) we get

(E0(t))
′
= 0, (13)

(E1(t))
′
=

2et

(1+et)2 =
1
4

E0(t)−
1
4

E2(t), (14)

and
(En+1(t))

′
= d

dx[2E1(t)En(x)−En−1(t)]

= d
dx[2(E1(t))

(0) (En(t))
(0)− (En−1(t))

(0)]

= [2(E1(t))
(1) (En(t))

(0)+2(E1(t))
(0) (En(t))

(1)− (En−1(t))
(1)],

that can be written as

(En+1(t))
′
= 2{(E1(t)En(t))

′}− (En−1(t))
′
. (15)

By using the relations (13)-(15) and by the help of product relation (7) for n= 0, 1, ..., N then we get



































(E0(t))
′
= 0,

(E1(t))
′
= 1

4E0(t)− 1
4E2(t),

(E2(t))
′
= 1

2E1(t)− 1
2E3(t),

...

(En(t))
′
= n

4En−1(t)− n
4En+1(t), n> 1.

(16)

The above equalities (16) form (N+1)× (N+2) rectangular matrix. Then a truncation to the last column gives square

operational matrixD given in (12), then to obtain the matrixE(r)(t) we can use (16) as

E′(t)∼= E(t)DT ,

E′′(t)∼= E′(t)DT = (E(t)DT)DT = E(t)(DT)2,

E(3)(t)∼= E′′(t)DT = E(t)(DT)3

...
,

then by induction we can write

E(r)(t)∼= E(t)(DT)r . (17)

Proposition and its proof derived a regular scheme with truncation in the matrixD, for the relation between the vector

E(t) and its (r)th-order derivative.

Now, we turn to the improved scheme without any truncation for the relation ofE(t) and its (r)th-order derivative that

leads us to get equality sign in (17), that introduced by us in [21] in next proposition.

Proposition 2. The derivatives of the vector E(t)= [E0(t) E1(t) .... EN(t)] , can be expressed with equality sign if we

added the truncated last column in the following form as

E′(t) = E(t)DT +B(t), (18)
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where D is given in(2), and B(t) is 1× (N+1) row vector which was truncated in(16) and will be the actual term to get

the equality sign of(17). The row vector B(t) is deduced as shown next

B(t) = [0 0 .... 0
−N
4

EN+1(t)]. (19)

Consequently, to obtain the matrix E(r)(t), we can use(18) as

E′(t) = E(t)DT +B(t),

(E(t))
′′
= E′(t)DT +B′(t) =

(

E(t)DT +B(t)
)

DT +B′(t),

then by induction we find

E(r)(t) = E(t)(DT)r +
r−1

∑
i=0

B(i)(t) (DT)r−i−1 , r ≥ 1 (20)

where

B(i)(t) =
[

0 0 · · · 0 −N
4 E(i)

N+1(t)
]

.

If N = 4 the form of D and B(t) is

D =















0 0 0 0 0
1
4 0 −1

4 0 0

0 1
2 0 −1

2 0

0 0 3
4 0 −3

4

0 0 0 1 0















, B (t) = [0 0 ... 0 −E5(t)] .

4 Fundamental matrix relation based on collocation points

In this section we will provide the fundamental matrix relation based on collocation points of the solution of (3), with

mixed conditions (5), by the representation of the derivative of EC functions given in equation (20).

Now, we define the collocation points [20] and [21], so that−∞ < ts < ∞, as

ts = Ln

[

1+ cos
(

sπ
N

)

1− cos
(

sπ
N

)

]

, s= 1, ..., N−1 (21)

and at the boundaries i.e.(s= 0, s= N) t0 → ∞, tN → −∞, since the EC functions are convergent at both boundaries

±∞, i.e their values are±1. Then, the appearance of infinity in the collocation pointsdoes not cause a problem in the

method or cause any divergence.

Now, assume that the solutionsyi(t) of (3) can be expressed in the form (9), which is a truncated Chebyshev series in

terms of EC functions. Thenyi(t) and its derivativesy( j)
i (t) can be written in the matrix form as

yi(t) = E(t)Ai , (22)

and

y( j)
i (t) = E( j)(t)Ai , i = 1,2, . . . ,k, j = 0,1, . . . ,m (23)

where

Ai =
[

ai0 ai1 · · · aiN

]T
.
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Then, we substitute the collocation points (21) into (4) to obtain the system

m

∑
i=0

P̃iY
(i) = F, (24)

where

P̃i =













Pi(t0) 0 · · · 0

0 Pi(t1) · · · 0
...

...
.. .

...

0 0 · · · Pi(tN)













,Y(i) =













y(i)(t0)
y(i)(t1)

...

y(i)(tN)













,F =













f(t0)
f(t1)

...

f(tN)













,

Now, substituting relation (23) into (20), we get

y( j)
i (t) =

(

E(t)(DT)k+
k−1

∑
i=0

B(i)(t) (DT)k−i−1

)

Ai . j = 0,1, . . . ,m (25)

Hence, the matrixy(i)(t) defined as a column matrix that is formed ofith derivatives of unknown functions, can be

expressed by

y(i)(t) =

(

E(t)(DT)k+
k−1

∑
i=0

B(i)(t) (DT)k−i−1

)

A, (26)

where

E(t) =













E(t) 0 · · · 0

0 E(t) · · · 0
...

...
.. .

...

0 0 · · · E(t)













k×k

,DT =













DT 0 · · · 0

0 DT · · · 0
...

...
.. .

...

0 0 · · · DT













k×k

,

A =













A0

A1
...

Ak













k×1

, B(i)(t) =













B(i)(t) 0 · · · 0

0 B(i)(t) · · · 0
...

...
.. .

...

0 0 · · · B(i)(t)













k×k

.

Putting the collocation pointsts, in relation (26) we have the matrix system

y(i)(ts) =

(

E(ts)(DT)k+
k−1

∑
i=0

B(i)(ts) (DT)k−i−1

)

A, (27)

this system can be written as

Y(i) =

(

Ẽ(DT)k +
k−1

∑
i=0

B̃(i)
(DT)k−i−1

)

A,

where

Ẽ =













E(t0)
E(t1)

...

E(tN)













, B̃ =













B(t0)
B(t1)

...

B(tN)













.
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with the aid of this equation, expression (4) becomes

m

∑
i=0

P̃i

(

Ẽ(DT)k +
k−1

∑
i=0

B̃(i)
(DT)k−i−1

)

A = F. (28)

Similarly, we form the matrix representations of the mixed conditions.

Substituting the matricesy(i)(a),y(i)(b) andy(i)(c) which depend on the exponential Chebyshev coefficients matrix A
into (5) and simplifying the result we obtain

∑m−1
i=0 ai

(

E(a)(DT)k+∑k−1
i=0 B(i)(a) (DT)k−i−1

)

A

+bi

(

E(b)(DT)k+∑k−1
i=0 B(i)(b) (DT)k−i−1

)

A

+ci

(

E(c)(DT)k+∑k−1
i=0 B(i)(c) (DT)k−i−1

)

A = λ

. (29)

5 The collocation method

The fundamental matrix equation (28) for (4) corresponds to system ofk(N+1) algebraic equations fork(N+1) unknown

coefficientsai0,ai1, . . . ,aiN , i = 1, 2, . . . ,k.

Now, we can write equation (28) in short form as:

WA=F or [W; F], (30)

We can obtain the matrix form for the conditions (5), by means of equations (29) in a short form as

UA= [λi ], (31)

And, the definition ofW andU is obtained as:

W = [wpq] =
m

∑
i=0

P̃i

(

Ẽ(DT)k +
k−1

∑
i=0

B̃
(i)

(DT)k−i−1

)

, p, q= 1, 2, . . . , k(N+1)

similarly, the elements ofU formed by equation (29).

Now, the solution of (3), under the conditions (5) can then be obtained by replacing the rows of matrices (31) by some

rows of the matrix (30), we get the required augmented matrix

W̃A = F̃ or
[

W̃; F̃
]

. (32)

Hence, EC coefficients can be simply computed and the approximate solution of system (3) under the mixed conditions

(5) can be obtained.

6 Numerical test examples

In this section, six numerical test examples are given to illustrate the accuracy and effectiveness of our method. All

examples are performed on the computer using software programs written in MATHEMATICA 7.0.
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Example 1. First, we consider the simple system of constant coefficients

x′− y′+ y= tanh
(

t
2

)

x′+ y′+ x= 2+sinh(t)
1+cosh(t) , −∞ < t < ∞

(33)

with the conditionsx(0) = 0, and y(t) = 1 at t → ∞, where the exact solutionsx(t) = y(t) = tanh
(

t
2

)

.For this example

we have,

k= 2, m= 1, f1(t) = tanh
(

t
2

)

, f2(t) =
2+sinh(t)
1+cosh(t) , p0

11(t) = 0,

p0
12(t) = 1, p0

21(t) = 1, p0
22(t) = 0, p1

11(t) = 1, p1
12(t) =−1,

p1
21(t) = 1, p1

22(t) = 1.

Then, forN = 2, the collocation points aret0 → ∞, t1 = 0, t2 →−∞, and the fundamental matrix of the problem using

our proposed method is

{P̃0Ẽ(DT)+ P̃1Ẽ(DT + B̃)}A = F,

whereP̃0, P̃1, Ẽ , D, B̃ are matrices of order (6×6) given as:

P̃0 =





















0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0





















, Ẽ =





















1 1 1 0 0 0

0 0 0 1 1 1

1 0 −1 0 0 0

0 0 0 1 0 −1

1 −1 1 0 0 0

0 0 0 1−1 1





















,

D =





















0 0 0 0 0 0
1
4 0 − 1

4 0 0 0

0 1
2 0 0 0 0

0 0 0 0 0 0

0 0 0 1
4 0 − 1

4

0 0 0 0 1
2 0





















, B̃ =





















0 0 − 1
2 0 0 0

0 0 0 0 0− 1
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1
2 0 0 0

0 0 0 0 0 1
2





















,

P̃1 =





















1 −1 0 0 0 0

1 1 0 0 0 0

0 0 1−1 0 0

0 0 1 1 0 0

0 0 0 0 1−1

0 0 0 0 1 1





















, F =
[

1 1 0 1−1 −1
]T

,

the augmented matrix for the given conditions withN = 2 is

[

1 0−1 0 0 0 ; 0
]

,

for the first conditionx(0) = 0, and for the other conditiony= 1 att → ∞ is

[

0 0 0 1 1 1; 1
]

.
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Table 1: Numeric results of approximate and exact solution in example 2.

t Exact solution u(x),N = 8 u(x),N = 16 u(x),N = 24
0.0 -1.000000 -1.00116 -1.000000 -1.000000
0.5 -0.886819 -0.887187 -0.886818 -0.886819
1.0 -0.648054 -0.645356 -0.648055 -0.648054
1.6 -0.387978 -0.385007 -0.387977 -0.387978
1.8 -0.321805 -0.319594 -0.321805 -0.321805
2.0 -0.265802 -0.264341 -0.265803 -0.265802
2.5 -0.163071 -0.162688 -0.163071 -0.163071
3.0 -0.0993279 -0.0991032 -0.0993274 -0.0993279

Table 2: Error norms of example 2.

L2 L∞ (max error)
N = 8 6.6718×10−5 0.00353909
N = 16 7.40886×10−12 1.04052×10−6

N = 24 4.18177×10−18 7.72064×10−10

After the augmented matrices of the system and conditions are computed, we obtain the coefficients solution as

A =
[

0 1 0 0 1 0
]T

.

Therefore, we find the solutions as

x(t) = 0∗E0+1∗E1+0∗E2 and y(t) = 0∗E0+1∗E1+0∗E2

or in the form x(t) = y(t) = et−1
et+1 = tanh

(

t
2

)

, which represent the exact solution of this problem.

Example 2. It is clear that ifk= 1 in (3) the proposed system reduced to be high-order ordinary differential equations and

that will be special case of our method. Boyd in his paper [22]and his book [10] list some examples are naturally defined

in the infinite interval we apply our method to the transformed associated Legender equation [22] in the following form

u′′+2sech2(x)u=−sech(x) (34)

equation (34) has exact solutionP1
1 [tanh(x)] wherePm

n [x] is the associated Legender polynomials and the transformation

which produced equation (34) made byx→ tanh(x).

Where the subjected conditions of (34) are u(x) = 0 where |x| → ∞. Some numeric results found in Table.1 of

approximate and exact solution with differentN and Table.2 represent the error normsL2, L∞, where

L2 =

√

h
I

∑
i=0

(

yi
Exact− yi

Approximat

)2
, L∞ = Max

∣

∣yi
Exact− yi

Approximat

∣

∣ .

where the Figure.2 obtained the comparison of absolute errors atN=8,16 and 24 and Figure.1 comparing the results of

exact and approximate solutions atN=8,16 and 24 wherex∈ [−5,5].
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Fig. 1: Exact and approximate solutions at
differentN. Fig. 2: Comparison of absolute errors.

Example 3. Consider now the following linear system of first order with variable coefficients and the subjected condition

tends to infinity as
x′+ y′+ x+ y= 1+3et

(1+et )3

x′+ y′+ 1
1+et x+ 1

1+et y= 1−2e2t

(1+et )3
, −∞ < t < ∞

(35)

with the conditionsx= 0, y= 0 at t → ∞,where the exact solutions arex(t) = 1
1+et andy(t) = et

(1+et )2
. Then, forN =4

andk=2, the fundamental matrix is

{P̃0Ẽ(DT)+ P̃1Ẽ(DT + B̃)}A = F,

and the formed system become(10×10), finally we obtain the coefficients as

A =
[

1
2 − 1

2 0 0 0 1
8 0 − 1

8 0 0
]T

.

Therefore, we find the solutionx(t) = 1
2E0− 1

2E1 , and y(t) = 1
8E0− 1

8E2, or in the form

x(t) =
1
2
− 1

2

(

et −1
et +1

)

=
1

et +1
,

and

y(t) =
1
8
− 1

8

[

2

(

et −1
et +1

)2

−1

]

=
et

(1+et)2 ,

which is the exact solution of example 3.

Example 4. Consider the system of the form

x′+ x+ y=−sech(t)(−2+ tanh(t)) ,

x′− y′+ x−2y=−sech(t), −∞ < t < ∞
(36)

and the given conditions found asx(t) = 0, y(t) = 0 att → ∞, and exact solutions is

x(t) = y(t) = sech(t) .
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Table 3: Error norms of example 2.

L2 for x(t) L2 for y(t) L∞ for x(t) L∞ for y(t)
N = 6 0.00678295 0.0139659 0.0404235 0.0871772
N = 10 6.22781×10−5 8.60452×10−6 0.00451133 0.00283974
N = 16 9.56755×10−10 6.55061×10−10 2.3491×10−5 2.184×10−5

Table 4: Numeric results approximate and exact solution in example 4.

t Exact x(t),N = 10 y(t),N = 10 x(t),N = 16 y(t),N = 16
-3.0 0.0993279 0.0948166 0.0964882 0.0993514 0.0993061
-2.5 0.163071 0.158355 0.163204 0.163048 0.163061
-2.0 0.265802 0.26457 0.26707 0.265806 0.265800
-1.8 0.321805 0.322034 0.322959 0.321813 0.321802
-1.6 0.387978 0.389091 0.388816 0.387980 0.387975
-1.0 0.648054 0.648187 0.648181 0.648054 0.648054
-0.5 0.886819 0.886735 0.886999 0.886817 0.886820
0.0 1.000000 1.000000 0.999783 1.000000 0.999999
0.5 0.886819 0.886968 0.887074 0.886819 0.886820
1.0 0.648054 0.648059 0.647989 0.648054 0.648054
1.6 0.387978 0.387927 0.387924 0.387978 0.387978
1.8 0.321805 0.321803 0.321835 0.321805 0.321804
2.0 0.265802 0.265833 0.265873 0.265802 0.265802
2.5 0.163071 0.163100 0.163102 0.163071 0.163071
3.0 0.0993279 0.0993268 0.0993085 0.0993279 0.0993278

Fig. 3: Exact and approximate,N = 10. Fig. 4: Exact and approximate,N = 16.

The numerical solutions obtained using the proposed methodfor N = 6, N = 10 andN = 16 are compared with the exact

solution in Table.4 where Table.3 shows the error normsL2, L∞, to estimate the errors at the differentN. Figure.3 show

the exact and approximate solutions at differentN , t ∈ [−6, 6]. In Figure.4 the comparison of the absolute errors ofx(t),

y(t)for the three casesN=6, 10, and 16 are given, and show that the greaterN give good accuracy.

Example 5. Consider the second order system of two equations as

x′′+ y′′− x=− 1+3et

(1+et )3

y′′+2x′ =− 1
1+cosh(t) −∞ < t < ∞

(37)
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Fig. 5: Comparison of absolute errors ofx(t). Fig. 6: Comparison of absolute errors ofy(t).

with conditionsx(0) = 1
2, y(0) = 1, x= 0 att → ∞, andy= 1 att → ∞,

where the exact solutions taken asx(t) = 1
1+et andy(t) = 1.

In this example we have,k= 2, m= 2

The fundamental matrix of this problem using our proposed method is

{

P̃0Ẽ(DT)+ P̃1

[

Ẽ(DT)+ B̃
]

+ P̃2

[

Ẽ(DT)2+ B̃DT + B̃′]}A = F.

ForN=4, we have the coefficient solution as

A =
[

1
2 − 1

2 0 0 0 1 0 0 0 0
]T

,

Therefore, we find the solution

x(t) =
1
2

E0(t)−
1
2

E1(t) and y(t) = E0(t),

or in the form

x(t) =
1
2
− 1

2

(

et −1
et +1

)

=
1

et +1
,

and

y(t) = 1,

which is the exact solution of the problem.

Example 6. Consider the linear system of three equations

y′1− y′2− y′3+ y3 =
et (−2+et )

(1+et )4

y′1+ y′2− y1+2y3 =− 1+3e2t

(1+et )3

3y′2+ y′3− y1− y2 =− 1+7e2t+5e3t

(1+et )4
−∞ < t < ∞

(38)

with the conditions y1(t) = y2(t) = y3(t) = 0 at t → ∞, where the exact solutions are

y1(t) = 1
1+et , y2(t) = et

(1+et )2
, y3(t) = et

(1+et )3
.
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In this example we have,k= 3, m= 1, for N=4, we have the solution

A = [0.5 −0.5 0 0 0 0.125 0−0.125 0 0

0.0625−0.03125−0.0625 0.03125 0]T .

Therefore, we find the solution

y1(t) = 0.5E0−0.5E1

y2(t) = 0.125E0−0.125E2

y3(t) = 0.0625E0−0.03125E1−0.0625E2+0.03125E3

After simplifying we get the exact solution of the problem (37).

7 Conclusions

Systems of high-order linear differential equations are usually difficult to solve analytically especially with variable

coefficients under mixed conditions. In many cases, obtaining the approximate solutions is necessary. For this reason,the

exponential Chebyshev collocation method can be proposed to obtain approximate solution of high-order linear systems

in infinite domain. The definition of the EC functions allow ussolve systems of high-order differential equations in

unbounded domains. The systems and the subjected conditions were transformed to matrix equation with unknown EC

coefficients. On the other hand, the EC functions approach deals directly with infinite boundaries without divergence.

This variant for our method gave us freedom to deal with the systems of differential equations with boundary conditions

tends to infinity. Illustrative examples are used to demonstrate the applicability of the proposed technique. Future work:

Recently, our research group examine a new operational matrix of derivatives of EC functions for solving ODEs in

unbounded domains [23] that may be applied for systems. In addition, we introduced a form of exponential Chebyshev

for the second kind (reported on line [24], [25]) for ordinary and partial differential equations that also can solve systems

which is still under revision but some modifications are required.
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