Coefficient bounds for new subclasses of bi-univalent functions

Bilal Seker ${ }^{1}$ and Veysi Mehmetoglu ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Letters, Batman University, Batman, Turkey
${ }^{2}$ Graduate School of Natural and Applied Science, Batman University, Batman, Turkey

Received: 26 March 2016, Accepted: 20 June 2016
Published online: 23 June 2016.

Abstract

In the present paper, introduction of new subclasses of bi-univalent functions in the open disk was defined. Moreover,by using Salagean operator,in these new subclasses for functions, upper bounds for the second and third coefficients were found. Presented results are a generalization of the results obtained by Srivastava et al.[12], Frasin and Aouf [7] and Çağlar et al.[5].

Keywords: Univalent functions, bi-univalent functions, coefficient bounds, coefficient estimates, salagean operator.

1 Introduction

We will denote the class of functions of the form as \mathscr{A}

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ and provide the normalization condition $f(0)=f^{\prime}(0)-1=0$. Let \mathscr{S} symbolize the subclass of functions in \mathscr{A} which are univalent in \mathbb{U} (for details, see [6]).

In 1983, Differential operator was established by Salagean [10] as $D^{n}: \mathscr{A} \rightarrow \mathscr{A}$ defined by

$$
\begin{aligned}
& D^{0} f(z)=f(z) \\
& D^{1} f(z)=D f(z)=z f^{\prime}(z)
\end{aligned}
$$

and

$$
D^{n} f(z)=D\left(D^{n-1} f(z)\right), \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)
$$

We express that

$$
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, \quad\left(n \in \mathbb{N}_{0}\right)
$$

It is known that every univalent function f has an inverse f^{-1} satisfying

$$
f^{-1}(f(z))=z,(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right) .
$$

In fact, the inverse function f^{-1} is given by

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2}
\end{equation*}
$$

A function $f \in \mathscr{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. We denote by Σ the class of all bi-univalent functions in \mathbb{U} stated by Taylor-Maclaurin series expansion (1).

For a brief history and examples of subclasses in the class Σ, see [12](see,for example [4,8,9,14]; see also [3,13]). Recently, Srivastava et al.[11-12], Frasin and Aouf [7], Altınkaya and Yalçın [1-2] and Çağlar et al.[5] have investigated estimate on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the various subclasses of the function class Σ.

The aim of this paper is to introduce two new subclasses of the function class Σ related with Salagean differential operator and find estimate on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the function class Σ. We also generalize results of Srivastava et al.[12], Frasin and Aouf [7] and Çağlar et al.[5]. In order to prove our main results, we require the following lemma due to [6].

Lemma 1. If $p \in \mathscr{P}$ then $\left|c_{k}\right| \leq 2$ for each k, where \mathscr{P} is the family of functions p analytic in \mathbb{U} for which $\operatorname{Re}\{p(z)\}>$ $0, p(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ for $z \in \mathbb{U}$.

2 Coefficient bounds for the function class $N_{\Sigma}^{n, \mu}(\alpha, \lambda)$

Definition 1. A function $f(z)$ given by (1) is said to be in the class $N_{\Sigma}^{n, \mu}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
\begin{gather*}
f \in \Sigma \text { and }\left|\arg \left\{(1-\lambda)\left(\frac{D^{n} f(z)}{z}\right)^{\mu}+\lambda \frac{D^{n+1} f(z)}{z}\left(\frac{D^{n} f(z)}{z}\right)^{\mu-1}\right\}\right|<\frac{\alpha \pi}{2} \tag{3}\\
\left(0<\alpha \leq 1 ; \lambda \geq 1 ; \mu \geq 0 ; n \in \mathbb{N}_{0} ; z \in \mathbb{U}\right)
\end{gather*}
$$

and

$$
\begin{gather*}
\left|\arg \left\{(1-\lambda)\left(\frac{D^{n} g(w)}{w}\right)^{\mu}+\lambda \frac{D^{n+1} g(w)}{w}\left(\frac{D^{n} g(w)}{w}\right)^{\mu-1}\right\}\right|<\frac{\alpha \pi}{2} \tag{4}\\
\left(0<\alpha \leq 1 ; \lambda \geq 1 ; \mu \geq 0 ; n \in \mathbb{N}_{0} ; w \in \mathbb{U}\right)
\end{gather*}
$$

where the function $g(w)$ is given by (2).

For functions in the class $N_{\Sigma}^{n, \mu}(\alpha, \lambda)$, we start by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.
Theorem 1. Let the function $f(z)$ given by (1) be in the class $N_{\Sigma}^{n, \mu}(\alpha, \lambda)$ $\left(0<\alpha \leq 1 ; \lambda \geq 1 ; \mu \geq 0 ; n \in \mathbb{N}_{0} ; z \in \mathbb{U}\right)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2^{2 n}\left((\mu+\lambda)^{2}-\alpha(\lambda(2+\lambda)+\mu)\right)+2 \alpha \cdot 3^{n}(\mu+2 \lambda)}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2 \alpha}{3^{n}(\mu+2 \lambda)}+\frac{4 \alpha^{2}}{2^{n}(\mu+\lambda)^{2}} \tag{6}
\end{equation*}
$$

Proof. It can be written that the inequalities (3) and (4) are equivalent to

$$
\begin{equation*}
(1-\lambda)\left(\frac{D^{n} f(z)}{z}\right)^{\mu}+\lambda \frac{D^{n+1} f(z)}{z}\left(\frac{D^{n} f(z)}{z}\right)^{\mu-1}=[p(z)]^{\alpha} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{D^{n} g(w)}{w}\right)^{\mu}+\lambda \frac{D^{n+1} g(w)}{w}\left(\frac{D^{n} g(w)}{w}\right)^{\mu-1}=[q(w)]^{\alpha} \tag{8}
\end{equation*}
$$

where $p(z)$ and $q(w)$ in \mathscr{P} and have the forms

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots \tag{10}
\end{equation*}
$$

Now, equating the coefficients in (7) and (8), we obtain

$$
\begin{gather*}
2^{n}(\mu+\lambda) a_{2}=\alpha p_{1} \tag{11}\\
2^{2 n-1}(\mu-1)(\mu+2 \lambda) a_{2}^{2}+3^{n}(\mu+2 \lambda) a_{3}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2} \tag{12}\\
-2^{n}(\mu+\lambda) a_{2}=\alpha q_{1} \tag{13}
\end{gather*}
$$

and

$$
\begin{equation*}
2^{2 n-1}(\mu-1)(\mu+2 \lambda) a_{2}^{2}+3^{n}(\mu+2 \lambda)\left(2 a_{2}^{2}-a_{3}\right)=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} \tag{14}
\end{equation*}
$$

From (11) and (13), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{2 n+1}(\mu+\lambda)^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{16}
\end{equation*}
$$

Also from (12), (14) and (16), we find that

$$
\begin{aligned}
{\left[2^{2 n}(\mu-1)(\mu+2 \lambda)+2.3^{n}(\mu+2 \lambda)\right] a_{2}^{2} } & =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right) \\
& =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2} \frac{2^{2 n+1}(\mu+\lambda)^{2} a_{2}^{2}}{\alpha^{2}}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{2^{2 n}\left((\mu+\lambda)^{2}-\alpha(\lambda(2+\lambda)+\mu)\right)+2 \alpha \cdot 3^{n}(\mu+2 \lambda)} . \tag{17}
\end{equation*}
$$

If we can apply Lemma 1 for the coefficients p_{2} and q_{2}, we have

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2^{2 n}\left((\mu+\lambda)^{2}-\alpha(\lambda(2+\lambda)+\mu)\right)+2 \alpha \cdot 3^{n}(\mu+2 \lambda)}}
$$

This gives the desired estimate for $\left|a_{2}\right|$ as asserted (5).

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (14) from (12), we get

$$
\begin{gather*}
2.3^{n}(\mu+2 \lambda) a_{3}-2.3^{n}(\mu+2 \lambda) a_{2}^{2}=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right) \\
a_{3}=\frac{\alpha\left(p_{2}-q_{2}\right)}{2.3^{n}(\mu+2 \lambda)}+\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2^{2 n+1}(\mu+\lambda)^{2}} \tag{18}
\end{gather*}
$$

We apply Lemma 1 one more time for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we obtain

$$
\left|a_{3}\right| \leq \frac{2 \alpha}{3^{n}(\mu+2 \lambda)}+\frac{4 \alpha^{2}}{2^{2 n}(\mu+\lambda)^{2}}
$$

This complete the proof of the Theorem 1.

If we take $\mu=1$ in Theorem 1, we obtain the following corollary.

Corollary 1. Let $f(z)$ given by (1) be in the class $N_{\Sigma}^{n, \mu}(\alpha, \lambda), 0<\alpha \leq 1, \lambda \geq 1$ and $n \in \mathbb{N}_{0}$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2^{2 n}\left((1+\lambda)^{2}-\alpha(\lambda(2+\lambda)+1)\right)+2 \alpha \cdot 3^{n}(1+2 \lambda)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha}{3^{n}(1+2 \lambda)}+\frac{4 \alpha^{2}}{2^{2 n}(1+\lambda)^{2}}
$$

Remark.For $n=0$ in Corollary 1, provides an improvement of the following estimates obtained by Frasin and Aouf [7].

If we take $\lambda=\mu=1$ in Theorem 1, we have the following corollary.

Corollary 2. Let $f(z)$ given by (1) be in the class $N_{\Sigma}^{n, \mu}(\alpha, \lambda), 0<\alpha \leq 1$ and $n \in \mathbb{N}_{0}$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2^{2 n+2}(1-\alpha)+2 \alpha \cdot 3^{n+1}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha}{3^{n+1}}+\frac{\alpha^{2}}{2^{2 n}}
$$

Remark. For $n=0$ in Corollary 3, provides an improvement of the following estimates obtained by Srivastava et al. [12].

Remark. For $n=0$, Theorem 1 reduces to a result in [5].

3 Coefficient bounds for the function class $N_{\Sigma}^{n, \mu}(\beta, \lambda)$

Definition 2. A function $f(z)$ given by (1) is said to be in the class $N_{\Sigma}^{n, \mu}(\beta, \lambda)$ if the following conditions are satisfied:

$$
\begin{gather*}
f \in \Sigma \text { and } \operatorname{Re}\left\{(1-\lambda)\left(\frac{D^{n} f(z)}{z}\right)^{\mu}+\lambda \frac{D^{n+1} f(z)}{z}\left(\frac{D^{n} f(z)}{z}\right)^{\mu-1}\right\}>\beta \tag{19}\\
\left(0 \leq \beta<1 ; \lambda \geq 1 ; \mu \geq 0 ; n \in \mathbb{N}_{0} ; z \in \mathbb{U}\right)
\end{gather*}
$$

and

$$
\begin{gather*}
\operatorname{Re}\left\{(1-\lambda)\left(\frac{D^{n} g(w)}{w}\right)^{\mu}+\lambda \frac{D^{n+1} g(w)}{w}\left(\frac{D^{n} g(w)}{w}\right)^{\mu-1}\right\}>\beta \tag{20}\\
\left(0 \leq \beta<1 ; \lambda \geq 1 ; \mu \geq 0 ; n \in \mathbb{N}_{0} ; w \in \mathbb{U}\right)
\end{gather*}
$$

where the function $g(w)$ is given by (2).
Theorem 2. Let the function $f(z)$ given by (1) be in the class $N_{\Sigma}^{n, \mu}(\beta, \lambda)$
$\left(0 \leq \beta<1 ; \lambda \geq 1 ; \mu \geq 0 ; n \in \mathbb{N}_{0} ; z \in \mathbb{U}\right)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{2^{2 n-1}(\mu-1)(\mu+2 \lambda)+3^{n}(\mu+2 \lambda)}} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left(\frac{1-\beta}{2^{n}(\mu+\lambda)}\right)^{2}+\frac{2(1-\beta)}{3^{n}(\mu+2 \lambda)} \tag{22}
\end{equation*}
$$

Proof. It follows from (19) and (20) that there exists $p(z) \in \mathscr{P}$ and $q(z) \in \mathscr{P}$ such that

$$
\begin{equation*}
(1-\lambda)\left(\frac{D^{n} f(z)}{z}\right)^{\mu}+\lambda \frac{D^{n+1} f(z)}{z}\left(\frac{D^{n} f(z)}{z}\right)^{\mu-1}=\beta+(1-\beta) p(z) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda)\left(\frac{D^{n} g(w)}{w}\right)^{\mu}+\lambda \frac{D^{n+1} g(w)}{w}\left(\frac{D^{n} g(w)}{w}\right)^{\mu-1}=\beta+(1-\beta) q(w) \tag{24}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (9)and (10), respectively. Equating coefficients in (23) and (24) yields

$$
\begin{equation*}
2^{n}(\mu+\lambda) a_{2}=(1-\beta) p_{1} \tag{25}
\end{equation*}
$$

$$
\begin{gather*}
2^{2 n-1}(\mu-1)(\mu+2 \lambda) a_{2}^{2}+3^{n}(\mu+2 \lambda) a_{3}=(1-\beta) p_{2} \tag{26}\\
-2^{n}(\mu+\lambda) a_{2}=(1-\beta) q_{1} \tag{27}
\end{gather*}
$$

and

$$
\begin{equation*}
2^{2 n-1}(\mu-1)(\mu+2 \lambda) a_{2}^{2}+3^{n}(\mu+2 \lambda)\left(2 a^{2}-a_{3}\right)=(1-\beta) q_{2} \tag{28}
\end{equation*}
$$

From (25) and (27), we get

$$
\begin{equation*}
p_{1}=-q_{1}, \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
2^{2 n+1}(\mu+\lambda)^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{30}
\end{equation*}
$$

Also from (26)and (28), we find that

$$
\left[2^{2 n}(\mu-1)(\mu+2 \lambda)+2 \cdot 3^{n}(\mu+2 \lambda)\right] a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right)
$$

Thus, we have

$$
\begin{aligned}
& \left|a_{2}^{2}\right| \leq \frac{(1-\beta)\left(\left|p_{2}\right|+\left|q_{2}\right|\right)}{\left[2^{2 n}(\mu-1)(\mu+2 \lambda)+2.3^{n}(\mu+2 \lambda)\right]} \\
& \left|a_{2}^{2}\right| \leq \frac{2(1-\beta)}{2^{2 n-1}(\mu-1)(\mu+2 \lambda)+3^{n}(\mu+2 \lambda)}
\end{aligned}
$$

which is the bound on $\left|a_{2}\right|$ as given in the (21).

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (28) from (26), we get

$$
2.3^{n}(\mu+2 \lambda) a_{3}-2.3^{n}(\mu+2 \lambda) a_{2}^{2}=(1-\beta)\left(p_{2}-q_{2}\right)
$$

or equivalently

$$
a_{3}=a_{2}^{2}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2.3^{n}(\mu+2 \lambda)}
$$

Upon substituting the value of a_{2}^{2} from (30), we have

$$
a_{3}=\frac{(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2^{2 n+1}(\mu+\lambda)^{2}}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2.3^{n}(\mu+2 \lambda)}
$$

Applying Lemma 1, once again for the coefficients p_{1}, p_{2}, q_{1} and q_{2}, we obtain

$$
\left|a_{3}\right| \leq\left(\frac{1-\beta}{2^{n}(\mu+\lambda)}\right)^{2}+\frac{2(1-\beta)}{3^{n}(\mu+2 \lambda)}
$$

which is the bound on $\left|a_{3}\right|$ as asserted in (22).

If we take $\mu=1$ in Theorem 2, we obtain the following corollary.

Corollary 3. Let $f(z)$ given by (1) be in the class $N_{\Sigma}^{n, \mu}(\beta, \lambda), 0 \leq \beta<1, \lambda \geq 1$ and $n \in \mathbb{N}_{0}$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3^{n}(1+2 \lambda)}}
$$

and

$$
\left|a_{3}\right| \leq\left(\frac{1-\beta}{2^{n-1}(1+\lambda)}\right)^{2}+\frac{2(1-\beta)}{3^{n}(1+2 \lambda)}
$$

Remark. For $n=0$ in Corollary 3, provides an improvement of the following estimates obtained by Frasin and Aouf [7].

If we take $\lambda=\mu=1$ in Theorem 2, we have the following corollary.

Corollary 4. Let $f(z)$ given by (1) be in the class $N_{\Sigma}^{n, \mu}(\beta, \lambda), 0 \leq \beta<1$ and $n \in \mathbb{N}_{0}$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3^{n+1}}}
$$

and

$$
\left|a_{3}\right| \leq\left(\frac{1-\beta}{2^{n}}\right)^{2}+\frac{2(1-\beta)}{3^{n+1}}
$$

Remark. For $n=0$ in Corollary 3, provides an improvement of the following estimates obtained by Srivastava et al. [12].
Remark. For $n=0$, Theorem 2 reduces to a result in [5].

4 Conclusion

In our present study, we have considered new subclasses $N_{\Sigma}^{n, \mu}(\alpha, \lambda)$ and $N_{\Sigma}^{n, \mu}(\beta, \lambda)$ of bi-univalent functions in the open disk \mathbb{U}. We have investigated estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions belonging to this classes. we have shown already that the results and corollaries presented in this paper would generalize and improve some recent works of Srivastava et al.[12], Frasin and Aouf [7] and Çağlar et al.[5].

References

[1] Altankaya Ş., Yalçın S., Faber polynomial coefficient bounds for a subclass of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math. 61 (1) (2016) 37-44.
[2] Altankaya Ş., Yalçın S., Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I 353 (12) (2015) 1075-1080.
[3] Ali R.M., Lee S.K., Ravichandran V. , Supramaniam S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Applied Mathematics Letters, 25 (2012) 344-351.
[4] Brannan D.A., Taha T.S., On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. See also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70-77.
[5] Çağlar M., Orhan H. and Yağmur N., Coefficient bounds for new subclasses of bi-univalent functions, Filomat 27(7) (2013),11651171.
[6] Duren P.L., Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[7] Frasin B.A. and Aouf M.K., New subclasses of bi-univalent functions, Applied Mathematics Letters, 24 (2011), 1569-1573.
[8] Lewin M. , On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967) 63-68.
[9] Netanyahu E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32 (1969) 100-112.
[10] Salagean G.S., Subclasses of univalent functions, Lecture Notes in Math., Springer, Berlin, 1013, 362-372, 1983.
[11] Srivastava H. M., Bulut S., Çağlar M., and Yağmur N., a Coefficient estimates for a general subclass of analytic and biunivalent functions, a Filomat, vol. 27, no. 5, pp.831-842, 2013.
[12] Srivastava H.M., Mishra A.K. and Gochhayat P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
[13] Srivastava H.M. , Sümer Eker S. , Ali RM., Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 29 (2015) 1839-1845.
[14] Taha T.S., Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.

