
NTMSCI 4, No. 3, 58-72 (2016) 58

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2016318805

Bipolar Fuzzy Trees

Muhammad Akram1 and Adeel Farooq2

1Punjab University College of Information Technology,University of the Punjab, Old Campus,Lahore-54000, Pakistan
2Department of Mathematics, COMSATS Institute of Information Technology, Lahore, Pakistan

Received: 2 March 2016, Accepted: 17 March 2016
Published online: 19 June 2016.

Abstract: Connectivity has an important role in different disciplines of computer science including computer network. In the design
of a network, it is important to analyze connections by the levels. The structural properties of bipolar fuzzy graphs provide a tool that
allows for the solution of operations research problems. Inthis paper, we introduce various types of bipolar fuzzy bridges, bipolar fuzzy
cut-vertices, bipolar fuzzy cycles and bipolar fuzzy treesin bipolar fuzzy graphs, and investigate some of their properties. Most of these
various types are defined in terms of levels. We also describecomparison of these types.
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1 Introduction

Graph theory has numerous applications to problems in computer science, electrical engineering, system analysis,

operations research, economics, networking routing, and transportation. However, in many cases, some aspects of a

graph-theoretic problem may be uncertain. For example, thevehicle travel time or vehicle capacity on a road network

may not be known exactly. In such cases, it is natural to deal with the uncertainty using the methods of fuzzy sets and

fuzzy logic. A (crisp) setA in a universeX can be defined in the form of its characteristic functionµA : X → {0,1}

yielding the value 1 for elements belonging to the setA and the value 0 for elements excluded from the setA. The most

of the generalization of the crisp set have been introduced on the unit interval[0,1] and they are consistent with the

asymmetry observation. In other words, the generalizationof the crisp set to fuzzy sets [19] relied on spreading positive

information that fit the crisp point{1} into the interval[0,1]. The theory of fuzzy sets has become a vigorous area of

research in different disciplines including medical and life sciences, management sciences, social sciences, engineering,

statistics, graph theory, artificial intelligence, signalprocessing, multiagent systems, pattern recognition, robotics,

computer networks, expert systems, decision making and automata theory. There have been several generalizations of

this fundamental concept. In 1994, Zhang [22] initiated the concept of bipolar fuzzy sets as a generalization of fuzzy sets

[19]. Bipolar fuzzy sets are an extension of fuzzy sets whose membership degree range is[−1,1]. In a bipolar fuzzy set,

the membership degree 0 of an element means that the element is irrelevant to the corresponding property, the

membership degree(0,1] of an element indicates that the element somewhat satisfies the property, and the membership

degree[−1,0) of an element indicates that the element somewhat satisfies the implicit counter-property.

Kaufmann’s initial definition of a fuzzy graph [9] was based on Zadeh’s fuzzy relations [20]. Rosenfeld [17] introduced

the fuzzy analogue of several basic graph-theoretic concepts including bridges, cut-nodes, connectedness, trees and

cycles. Bhattacharya [7] gave some remarks on fuzzy graphs, and Sunitha and Vijayakumar [18] characterized fuzzy

trees. Bhutani and Rosenfeld [8] introduced the concepts of strong arcs, fuzzy end nodes andgeodesics in fuzzy graphs
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and types of arcs in a fuzzy graph are described in [11]. Akram et al.[1-5] has introduced many concepts, including

bipolar fuzzy graphs, regular bipolar fuzzy graphs, bipolar fuzzy hypergraphs and metric aspects of bipolar fuzzy graphs.

In this paper, we introduce various types of bipolar fuzzy bridges, bipolar fuzzy cut-vertices, bipolar fuzzy cycles and

bipolar fuzzy trees in bipolar fuzzy graphs, and investigate some of their interesting properties. Most of these various

types are defined in terms of levels. We also describe comparison of these types.

We have used standard definitions and terminologies in this paper. For other notations, terminologies and applications

not mentioned in the paper, the readers are referred to [10-13 19, 20].

2 Preliminaries

In this section, we review some elementary concepts whose understanding is necessary fully benefit from this paper.

By a graph, we mean a pairG∗ = (V,E), whereV is the set andE is a relation onV. The elements ofV are vertices ofG∗

and the elements ofE are edges ofG∗. We write xy ∈ E to mean(x,y) ∈ E, and if e= xy∈ E, we sayx and y are

adjacent. A path in a graphG∗ is an alternating sequence of vertices and edgesv0, e1, v1, e2, · · · ,vn−1, en, vn. The path

graph withn vertices is denoted byPn. A path is sometime denoted byPn : v0v1 · · ·vn (n> 0). The lengthof a pathPn in

G∗ is n. A pathPn : v0v1 · · ·vn in G∗ is called acycleif v0 = vn andn≥ 3. Note that path graph,Pn, hasn−1 edges and

can be obtained from cycle graph,Cn, by removing any edge. An undirected graphG∗ is connectedif there is a path

between each pair of distinct vertices. Ablock is a maximal biconnected subgraph of a given graphG. An edgee in a

connected graphG is a bridge (cut-edge or cut arc) ifG− e is disconnected. A vertexv in a connected graphG is a

cut-vertexif G− v is disconnected. The graphs with exactlyn−1 bridges are exactly the trees, and the graphs in which

every edge is a bridge are exactly the forests. Aspanning treein a connected graphG is a subgraph ofG that includes all

the vertices ofG and is also a tree. Aforestis an undirected graph, all of whose connected components are trees; in other

words, the graph consists of a disjoint union of trees.

A fuzzy subsetµ on a setX is a mapµ : X → [0,1]. A fuzzy binary relationν on X is a fuzzy subsetν on X×X. By a

fuzzy relationν, we mean a fuzzy binary relation given byν : X ×X → [0,1]. Let ν ◦ ν be a fuzzy set ofE ⊆ V ×V

defined byν ◦ ν(x,y) = sup{min{ν(x,y),ν(y,z)}|z∈ V}. Thenν ◦ ν is called the composition ofν with itself. Since

composition is associative, we getνk = νk−1◦ν for k=1, 2,3,· · · . Define the fuzzy subsetν∞ of V ×V by

ν∞(x,y) = sup{νk(x,y) : k= 1,2, · · ·}.

ν∞(x,y) denotes the “strength of connectedness” between two nodesx andy. That is,ν∞(x,y) is defined as the maximum

of the strengths of all paths betweenx andy.

Definition 1. [12,22] Let X be a nonempty set. Abipolar fuzzy setB in X is an object having the form

B= {(x, µP
B(x), µN

B (x)) |x∈ X}

whereµP
B : X → [0, 1] andµN

B : X → [−1, 0] are mappings.

We use the positive membership degreeµP
B(x) to denote the satisfaction degree of an elementx to the property

corresponding to a bipolar fuzzy setB, and the negative membership degreeµN
B (x) to denote the satisfaction degree of an

elementx to some implicit counter-property corresponding to a bipolar fuzzy setB. If µP
B(x) 6= 0 andµN

B (x) = 0, it is the

situation thatx is regarded as having only positive satisfaction forB. If µP
B(x) = 0 andµN

B (x) 6= 0, it is the situation thatx

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 3, 58-72 (2016) /www.ntmsci.com 60

does not satisfy the property ofB but somewhat satisfies the counter property ofB. It is possible for an elementx to be

such thatµP
B(x) 6= 0 andµN

B (x) 6= 0 when the membership function of the property overlaps thatof its counter property

over some portion ofX.

For the sake of simplicity, we shall use the symbolB= (µP
B , µN

B ) for the bipolar fuzzy set

B= {(x, µP
B(x), µN

B (x)) |x∈ X}.

Definition 2.[22] Let X be a nonempty set. Then we call a mappingA = (µP
A ,µ

N
A ) : X ×X → [0,1]× [−1,0] a bipolar

fuzzy relationonX such thatµP
A(x,y) ∈ [0,1] andµN

A (x,y) ∈ [−1,0].

Definition 3.[12] The support of a bipolar fuzzy set A= (µP
A ,µ

N
A ), denoted by supp(A), is defined by

supp(A) = suppP(A)∪suppN(A), suppP(A) = {x|µP
A(x)> 0}, suppN(A) = {x|µN

A (x)< 0}.

We call suppP(A) as positive support and suppN(A) as negative support.

Definition 4.[12] Let A= (µP
A ,µ

N
A ) be a bipolar fuzzy set on X and letα ∈ [0,1]. α-cut Aα of A can be defined as

Aα = AP
α ∪AN

α , AP
α = {x | µP

α(x)≥ α}, AP
α = {x | µN

α (x)≤−α}.

We call AP
α as positiveα-cut and AN

α as negativeα-cut. The height of a bipolar fuzzy set A= (µP
A ,µN

A ) is defined as

h(A) = max{µP
A(x)|x ∈ X}. The depth of a bipolar fuzzy set A= (µP

A ,µ
N
A ) is defined as d(A) = min{µN

A (x)|x ∈ X}. We

shall say that bipolar fuzzy set A is normal, if there is at least one x∈ X such thatµP
A(x) =1 or µN

A (x) =−1.

Definition 5.[1] A bipolar fuzzy graphG= (V,A,B) is a non-empty setV together with a pair of functionsA= (µP
A ,µ

N
A ) :

V → [0,1]× [−1,0] andB= (µP
B ,µN

B ) : V ×V → [0,1]× [−1,0] such that for allx,y∈V,

µP
B(x,y)≤ min(µP

A(x),µ
P
A(y)) and µN

B (x,y)≥ max(µN
A (x),µ

N
A (y)).

Notice thatµP
B(x,y) > 0, µN

B (x,y) < 0 for (x,y) ∈V ×V, µP
B(x,y) = µN

B (x,y) = 0 for (x,y) 6∈V ×V, andB is symmetric

relation.

Definition 6.[1] A bipolar fuzzy graph is called complete if µP
B(x,y) = min(µP

A(x),µP
A(y)),

µN
B (x,y) = max(µN

A (x),µ
N
A (y)) for all x, y∈V.

Definition 7. The support of A, denoted by A∗, is defined by

A∗ = ((µP
A)

∗,(µN
A )

∗) = {x∈V |µP
A(x)> 0 andµN

A (x)< 0}.

The support of B , denoted by B∗, is defined by

B∗ = ((µP
B)

∗,(µN
B )

∗) = {(x,y) ∈ E |µP
B(x,y)> 0 andµN

B (x,y)< 0}.

Let G∗ = (A∗,B∗). For s∈ (0,1], t ∈ [−1,0), A(s,t) = {x∈V |µP
A(x) ≥ s , µN

A (x)≤ t} is called an(s, t)-level subset of A,

B(s,t) = {(x,y) ∈ E |µP
B(x,y)≥ s , µN

B (x,y)≤ t} is called an(s, t)-level subset of B. Let G(s,t) = (A(s,t),B(s,t)).

Definition 8.[4] A path Pin a bipolar fuzzy graphG is a sequence of distinct verticesv1,v2, · · · ,vn such that either one

of the following condition is satisfied:
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(1) µP
B(x,y)> 0 and µN

B (x,y)< 0 for somex, y.

(2) µP
B(x,y)> 0 and µN

B (x,y) = 0 for somex, y.

(3) µP
B(x,y) = 0 and µN

B (x,y)< 0 for somex, y.

When µP
B(x,y) = µN

B (x,y) = 0 for somex, y, then there is no edge betweenx andy. Otherwise, there exists an edge

betweenx andy.

Definition 9.[4] A bipolar fuzzy graphG is connectedif any two vertices are joined by a path.

Definition 10.[4] If x,y∈V, theµP− strength of connectednessbetweenx andy is

(µP
B)

∞(x,y) = sup{(µP
B)

k(x,y) | k= 1,2, · · · ,n},

(µP
B)

∞(x,y) = sup{µP
B(x,v1)∧µP

B(v1,v2)∧ ...∧µP
B(vk−1,y) | x,v1,v2, · · · ,vk−1,y∈V, k= 1,2, · · · ,n}.

TheµN− strength of connectednessbetweenx andy is

(µN
B )

∞(x,y) = inf{(µN
B )

k(x,y) | k= 1,2, · · · ,n},

(µN
B )

∞(x,y) = inf{µN
B (x,v1)∨µN

B (v1,v2)∨ ...∨µN
B (vk−1,y) | x,v1,v2, · · · ,vk−1,y∈V, k= 1,2, · · · ,n}.

The µP-strength andµN-strength of connectedness betweenx andy in G is denoted by(µP
G)

∞(x,y) and (µN
G)

∞(x,y),

respectively. Also(µP
B)

′∞(x,y) and(µN
B )

′∞(x,y) denote(µP
G−(x,y))

∞(x,y) and(µN
G−(x,y))

∞(x,y), whereG−(x,y) is obtained

from G by deleting the arc(x,y).

3 Bridges, cut-vertices and blocks

We define here a bipolar fuzzy edge graphG= (V,B) whenV is a crisp vertex set andB= (µP
B ,µN

B ) is a bipolar fuzzy

relation onV.

Definition 11. A bipolar fuzzy edge graph on a crisp graph G∗ = (V,E) is an ordered pair of the form̂G = (V,B),

where V is the crisp vertex set, the functionsµP
B : V ×V → [0,1] and µN

B : V ×V → [0,1] are defined byµP
B(x,y) ≤

min{µA(x),µA(y)} andµN
B (x,y)≥ max{µN

A (x),µ
N
A (y)} for all xy∈ E. Notice thatµP

B(x,y) > 0, µN
B (x,y)< 0 for (x,y) ∈

V ×V, µP
B(x,y) = µN

B (x,y) = 0 for (x,y) 6∈V ×V, and B is symmetric relation.

Definition 12.[?] A bridge(x,y) in bipolar fuzzy graphG is said to beµP-bridge, if deleting(x,y) reduces theµP-strength

of connectedness between some pair of vertices. A bridge(x,y) is said to beµN-bridge, if deleting(x,y) increases the

µN-strength of connectedness between some pair of vertices. Abridge(x,y) is said to be a bipolar fuzzy bridge, if it is

µP-bridge andµN-bridge.

Definition 13. Let (x,y) ∈ E.

(1) (x,y) is called a bridge if(x,y) is a bridge of G∗ = (A∗,B∗).

(2) (x,y) is called a bipolar fuzzy bridge if(µ́P
B)

∞(u,v)< (µP
B)

∞(u,v) and(µ́N
B)

∞(u,v)> (µN
B )

∞(u,v) for some(u,v)∈

E, whereµ́P
B and µ́N

B are µP
B andµN

B restricted to V×V −{(x,y),(y,x)}.

(3) (x,y) is called a weak bipolar fuzzy bridge if there exists(s, t) ∈ (0,h(B)]× [d(B),0) such that(x,y) is a bridge of

G(s,t).

(4) (x,y) is called a partial bipolar fuzzy bridge if(x,y) is a bridge for G(s,t) for all (s, t) ∈ (d(B),h(B)]∪{h(B)}.

(5) (x,y) is called a full bipolar fuzzy bridge if(x,y) is a bridge for G(s,t) for all (s, t) ∈ (0,h(B)]× [d(B),0).
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Example 1.Consider a connected bipolar fuzzy graph as shown in the Fig.1.

Fig. 1: Connected bipolar fuzzy graph.

By routine computations, we haved(B) = −0.2, h(B) = 0.8. Thus(s, t) ∈ (0,0.8]× [−0.2,0). For 0< s≤ 0.7, −0.2≤

t < 0, G(s,t) = (V,{(x,y),(y,z)}). For 0.7< s≤ 0.8,−0.2≤ t < 0, G(s,t) = (V,{(y,z)}). Hence we conclude that(y,z) is

a full bipolar fuzzy bridge and(x,y) is a weak bipolar fuzzy bridge, but not a partial bipolar fuzzy bridge. Both(x,y) and

(y,z) are bridges and bipolar fuzzy bridges.

Example 2.Consider a connected bipolar fuzzy graph as shown in the Fig.2.

Fig. 2: Connected bipolar fuzzy graph.

By routine computations, we haved(B) = −0.4, h(B) = 0.9. For 0 < s ≤ 0.1, −0.4 ≤ t < 0,

G(s,t) = (V,{(x,y),(x,z),(y,z)}). For 0.1 < s ≤ 0.8, −0.1 ≤ t < 0, G(s,t) = (V,{(x,y),(x,z)}). For

0.8< s≤ 0.9,−0.1≤ t < 0, G(s,t) = (V,{(x,z)}). Thus(x,z) is a bipolar fuzzy bridge and a partial bipolar fuzzy bridge,

but not a bridge. The edge(y,z) is not any of five types of bridges.

Example 3.Consider a connected graphG∗ = (V,E) such thatV = {x,y,z}, E = {(x,y),(y,z),(x,z)}. Let A be a bipolar

fuzzy set ofV and letB be a bipolar fuzzy set ofE ⊆V ×V defined by

µP
A(x) = µP

A(y) = µP
A(z) = 1, µN

A (x) = µN
A (y) = µN

A (z) =−1,
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µP
B(x,y) = µP

B(y,z) = µP
B(x,z) = 0.9, µN

B (x,y) = µN
B (y,z) = µN

B (x,z) =−0.1.

Routine computations show that connected bipolar fuzzy graphG has no bridges of any of the five types.

Example 4.Consider a connected graphG∗ = (V,E) such thatV = {x,y,z,w}, E = {(x,y),(y,z),(x,z),(z,w)}. Let A be a

bipolar fuzzy set ofV and letB be a bipolar fuzzy set ofE ⊆V ×V defined by

µP
A(x) = µP

A(y) = µP
A(z) = µP

A(w) = 1, µN
A (x) = µN

A (y) = µN
A (z) = µN

A (w) =−1,

µP
B(x,y) = µP

B(y,z) = 0.1, µP
B(x,z) = µP

B(w,z) = 0.9, µN
B (x,y) = µN

B (y,z) =−0.5, µN
B (x,z) = µN

B (w,z) =−0.1.

By routine computations, we haved(B) = −0.5, h(B) = 0.9. For 0 < s ≤ 0.1, −0.5 ≤ t < 0,

G(s,t) = (V,{(x,y),(y,z),(x,z),(z,w)}). For 0.1< s≤ 0.9,−0.1≤ t < 0, G(s,t) = (V,{(x,z),(z,w)}). Thus(z,w) is a full

bipolar fuzzy bridge and(x,z) is a partial bipolar fuzzy bridge, but not a full bipolar fuzzy bridge.

We state the following propositions without their proofs.

Proposition 1. Let (x,y) be a bridge in G∗. Then(x,y) is a bipolar fuzzy bridge if and only ifµP
B(x,y) > µ́P

∞
B(x,y) and

µN
B (x,y)< µ́N

∞
B(x,y).

Proposition 2.(x,y) is a bipolar fuzzy bridge if and only if(x,y) is not a weakest bridge of any cycle.

Proposition 3. (x,y) is a bipolar fuzzy bridge if and only if(x,y) is a bridge for G∗ andµP
B(x,y) = h(B),µN

B (x,y) = d(B).

Proof. Suppose(x,y) is a full bridge. Then(x,y) is a bridge forG(s,t) ∀(s, t) ∈ (0,h(B)]× (0,d(B)]. Hence(x,y) ∈ Bh(B)

and soµP
B(x,y) = h(B), µN

B (x,y) = d(B). Since(x,y) is a bridge forG(s,t) for all (s, t) ∈ (0,h(B)]× (0,d(B)], it follows

that(x,y) is a bridge forG∗ sinceV = Ad(B) andE = Bh(B).

Conversely, suppose that(x,y) is a bridge for G∗ and µP
B(x,y) = h(B), µN

B (x,y) = d(B). Then

(x,y) ∈ B(s,t)∀(s, t) ∈ (0,h(B)] × [d(B),0). Thus since also(x,y) is a bridge for G∗, (x,y) is a bridge for

G(s,t)∀(s, t) ∈ (0,h(B)]× [d(B),0) since eachG(s,t) is a subgraph ofG∗. Hence(x,y) is a full bipolar fuzzy bridge.

Proposition 4. Suppose that(x,y) is not contained in a cycle of G∗. Then the following conditions are equivalent:

(1) µP
B(x,y) = h(B),µN

B (x,y) = d(B).

(2) (x,y) is a partial bipolar fuzzy bridge.

(3) (x,y) is a bipolar full fuzzy bridge.

Proof. Since(x,y) is not contained in a cycle ofG∗, (x,y) is a bridge ofG∗. Hence by Proposition 3.9, (1)⇔ (3).

Clearly, (3)⇔ (2). Suppose that (2) holds. Then(x,y) is a bridge forG(s,t) ∀(s, t) ∈ (d(B),h(B)] and so(x,y) ∈Bh(B). Thus

µP
B(x,y) = h(B), µN

B (x,y) = d(B), i.e., (1) holds.

Proposition 5. If (x,y) is a bridge, then(x,y) is a weak bipolar fuzzy bridge and a bipolar fuzzy bridge.

Proposition 6. (x,y) is a bipolar fuzzy bridge if and only if(x,y) is a weak bridge.

Proof. Suppose(x,y) is a weak bipolar fuzzy bridge. Then∃(s, t) ∈ (0,h(B)]× [d(B),0) such that(x,y) is a bridge for

G(s,t). Hence removal of(x,y) disconnectsG(s,t). Thus any path fromx to y in G has an edge(u,v) with µP
B(u,v) < s,

µN
B (u,v) > t. Thus the removal of(x,y) results in(µP

B)
′ ∞(x,y) < s6 (µP)∞(x,y), (µN

B )
′ ∞(x,y) < t 6 (µN)∞(x,y) .

Hence(x,y) is a bipolar fuzzy bridge.
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Conversely, suppose(x,y) is a bipolar fuzzy bridge. Then∃(u,v) such that removal of(x,y) results in

(µP
B)

′ ∞(u,v) < (µP
B)

∞(u,v), (µN
B )

′ ∞(u,v) > (µN
B )

∞(u,v). Hence(x,y) is on every strongest path connectingu andv and

in fact, µP
B(u,v) > andµN

B (u,v) 6 this value. Thus there does not exist a path (other than(x,y)) connectingx andy in

G(µP
B(x,y),µ

N
B (x,y)), else this other path without(x,y) would be of strength> µP

B(x,y), 6 µN
B (x,y) and would be part of a

path connectingu andv of strongest length, contrary to the fact(x,y) is on every such path. Hence(x,y) is a bridge of

G(µP
B(x,y),µ

N
B (x,y)) and 0< µP

B(x,y)≤ h(B), 0< µN
B (x,y)≤ d(B). ThusµP

B(x,y) andµN
B (x,y) are desired(s, t).

Definition 14.[3] A vertex x ∈ V in G is calledµP-cut vertex, if deleting it reduce theµP-strength of connectedness

between some pair of vertices. A vertexx ∈ V in called µN-cut vertex, if deleting it increase theµN-strength of

connectedness between some pair of vertices. A vertexx ∈ V is a bipolar fuzzy cut vertex, if it isµP-cut vertex and

µN-cut vertex.

Definition 15. Let x∈V.

(1) x is called a cut-vertex if x is a cut-vertex of G∗ = (A∗,B∗).

(2)x is called an bipolar fuzzy cut-vertex if(µ́P
B)

∞(u,v)< (µP
B)

∞(u,v) and(µ́N
B)

∞(u,v)> (µN
B )

∞(u,v) for some u,v∈V,

whereµ́P
B and µ́N

B are µP
B andµN

B restricted to V×V −{(x,z),(z,x)|z∈V}.

(3) x is called a weak bipolar fuzzy cut-vertex if there exists(s, t) ∈ (0,h(B)]× [d(B),0) such that x is a cut-vertex of

G(s,t).

(4) x is called a partial bipolar fuzzy cut-vertex if x is a cut-vertex for G(s,t) for all (s, t) ∈ (d(B),h(B)]∪{h(B)}.

(5) x is called a full bipolar fuzzy cut-vertex if x is a cut-vertex for G(s,t) for all (s, t) ∈ (0,h(B)]× [d(B),0).

Example 5.Consider a connected bipolar fuzzy graph as shown in Fig. 2.

By routine computations, we haved(B)=−0.2,h(B)=0.8. Thus(s, t)∈ (0,0.8]× [−0.1,0).For 0< s≤ 0.6,−0.2≤ t <0,

G(s,t) =(V,{(x,y),(y,z),(x,z)}). For 0.6< s≤ 0.7,−0.2≤ t < 0,G(s,t) =(V,{(x,y),(x,z)}). For 0.6< s≤ 0.8,−0.1≤ t <

0, G(s,t) = (V,{(x,z)}). Thusx is a bipolar fuzzy cut-vertex and a weak bipolar fuzzy cut-vertex, but neither a cut-vertex

nor a partial cut-vertex.

Example 6.Consider a connected graphG∗ = (V,E) such thatV = {x,y,z}, E = {(x,y),(y,z),(x,z)}. Let A be a bipolar

fuzzy set ofV and letB be a bipolar fuzzy set ofE ⊆V ×V defined by

µP
A(x) = µP

A(y) = µP
A(z) = 1, µN

A (x) = µN
A (y) = µN

A (z) =−1,

µP
B(x,y) = µP

B(x,z) = 0.9, µP
B(y,z) = 0.5 µN

B (x,y) = µN
B (x,z) =−0.1, µN

B (y,z) =−0.4.
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By routine computations, we haved(B) = −0.4, h(B) = 0.9. For 0 < s ≤ 0.5,−0.4 ≤ t < 0,

G(s,t) = (V,{(x,y),(y,z),(x,z)}). For 0.5< s≤ 0.9, −0.1≤ t < 0, G(s,t) = (V,{(x,y),(x,z)}). Thusx is a bipolar fuzzy

cut-vertex and a partial bipolar fuzzy cut-vertex, but neither a cut-vertex nor a full cut-vertex.

Example 7.Consider a connected graphG∗ = (V,E) such thatV = {x,y,z}, E = {(x,y),(y,z),(x,z)}. Let A be a bipolar

fuzzy set ofV and letB be a bipolar fuzzy set ofE ⊆V ×V defined by

µP
A(x) = µP

A(y) = µP
A(z) = 1, µN

A (x) = µN
A (y) = µN

A (z) =−1,

µP
B(x,y) = µP

B(x,z) = 0.9, µN
B (x,y) = µN

B (x,z) =−0.1.

By routine computations, we haved(B) = −0.1, h(B) = 0.9. For 0< s≤ 0.9,−0.1≤ t < 0, G(s,t) = (V,{(x,y),(x,z)}).

Thusx is a full bipolar fuzzy cut-vertex, a bipolar fuzzy cut-vertex and a cut-vertex.

We state the following propositions without their proofs.

Proposition 7.Let G be a bipolar fuzzy graph such that G∗ is a cycle. Then a node is a bipolar fuzzy cut-node of G if and

only if it is a common node of two bipolar fuzzy bridges.

Proposition 8. If z is a common node of at least two bipolar fuzzy bridges, then z is a bipolar fuzzy cut-node.

Proposition 9. If G is a complete bipolar fuzzy graph, then(µP
B)

∞(u,v) = µP
B(u,v) and(µN

B )
∞(u,v) = µN

B (u,v).

Proposition 10.A complete bipolar fuzzy graph has no bipolar fuzzy cut-vertex.

Definition 16.

(1) G is called a block if G∗ is a block.

(2) G is called an bipolar fuzzy block if it has no bipolar fuzzy cut-vertices.

(3) G is called a weak bipolar fuzzy block if there exists(s, t) ∈ (0,h(B)]× [d(B),0) such that G(s,t) is a block.

(4) G is called a partial bipolar fuzzy block if G(s,t) is a block for for all(s, t) ∈ (d(B),h(B)]∪{h(B)}.

(5) G is called a full bipolar fuzzy block if G(s,t) is a block for all(s, t) ∈ (0,h(B)]× [d(B),0).

Example 8.Consider a connected bipolar fuzzy graph as shown in the Fig.3.

Fig. 3: Connected bipolar fuzzy graph.

By routine computations, we haved(B) = −0.3, h(B) = 0.7. Thus(s, t) ∈ (0,0.7]× [−0.2,0). For 0< s≤ 0.5, −0.3≤

t < 0, G(s,t) = (V,{(x,y),(y,z),(x,z)}). For 0.5 < s≤ 0.7, −0.2 ≤ t < 0, G(s,t) = (V,{(x,z)}). Thus G is a block, a
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bipolar fuzzy block and a weak bipolar fuzzy block.G is not a partial bipolar fuzzy block sinceG(s,t) is not a block for

0.5< s≤ 0.7,−0.2≤ t < 0.

Example 9.Consider a connected graphG∗ = (V,E) such thatV = {x,y,z}, E = {(x,y),(y,z),(x,z)}. Let A be a bipolar

fuzzy set ofV and letB be a bipolar fuzzy set ofE ⊆V ×V defined by

µP
A(x) = µP

A(y) = µP
A(z) = 1, µN

A (x) = µN
A (y) = µN

A (z) =−1,

µP
B(x,y) = µP

B(x,z) = 0.9,µP
B(y,z) = 0.5 µN

B (x,y) = µN
B (x,z) =−0.1,µN

B (y,z) =−0.4.

By routine computations, we haved(B) = −0.4, h(B) = 0.9. For 0 < s ≤ 0.5, −0.4 ≤ t < 00,

G(s,t) = (V,{(x,y),(y,z),(x,z)}). For 0.5< s≤ 0.9, −0.1≤ t < 0, G(s,t) = (V,{(x,y),(x,z)}). ThusG is a block and a

weak bipolar fuzzy block. However,G is not a bipolar fuzzy block sincex is a bipolar fuzzy cut-vertex ofG. Also G is

not a partial bipolar fuzzy block sincex is a cut-vertex for 0.5< s≤ 0.9,−0.1≤ t < 0.

Example 10.Consider a connected graphG∗ = (V,E) such thatV = {x,y,z}, E = {(x,y),(y,z),(x,z)}. Let A be a bipolar

fuzzy set ofV and letB be a bipolar fuzzy set ofE ⊆V ×V defined by

µP
A(x) = µP

A(y) = µP
A(z) = 1, µN

A (x) = µN
A (y) = µN

A (z) =−1,

µP
B(x,y) = µP

B(x,z) = µP
B(y,z) = 0.9 µN

B (x,y) = µN
B (x,z) = µN

B (y,z) =−0.1.

By routine computations, we haved(B) = −0.1, h(B) = 0.9. For 0 < s ≤ 0.9, −0.1 ≤ t < 0,

G(s,t) = (V,{(x,y),(y,z),(x,z)}). ThusG is a block, a bipolar fuzzy block and a full bipolar fuzzy block.

Definition 17. A connected bipolar fuzzy graph G is said to be firm if

min{µP
A(x) | x∈V} ≥ max{µP

B(x,y) | (x,y) ∈ E},

max{µN
A (x) | x∈V} ≤ min{µN

B (x,y) | (x,y) ∈ E}.

Example 11.All connected bipolar fuzzy graphs as shown in the Fig. 1, Fig. 2 and Fig. 3 are firms.

Example 12.Consider a connected bipolar fuzzy graph as shown in the Fig.4.

Fig. 4: Connected bipolar fuzzy graph.
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By routine computations, we haved(B) =−0.4, h(B) = 0.8. Thus(s, t) ∈ (0,−0.8]× (0,−0.2]. For 0< s≤ 0.5,−0.4≤

t < 0, G(s,t) = (V,{(x,y),(y,z),(x,z)}). For 0.5< s≤ 0.8,−0.2≤ t < 0,G(s,t) = (V,{(x,z)}). ThusG is a block, a bipolar

fuzzy block and full bipolar fuzzy block. We note thatG is not firm.

4 Cycles and trees

Definition 18.

(1) G is called a cycle if G∗ is a cycle.

(2) G is called an bipolar fuzzy cycle if G∗ is a cycle and there does not exist unique(x,y) ∈ E such thatµP
B(x,y) =

min{µP
B(u,v)|(u,v) ∈ E},µN

B (x,y) = max{µN
B (u,v)|(u,v) ∈ E}.

(3) G is called a weak bipolar fuzzy cycle if there exists(s, t) ∈ (0,h(B)]× [d(B),0) such that G(s,t) is a cycle.

(4) G is called a partial bipolar fuzzy cycle if G(s,t) is a cycle for for all(s, t) ∈ (d(B),h(B)]∪{h(B)}.

(5) G is called a full bipolar fuzzy cycle if G(s,t) is a cycle for all(s, t) ∈ (0,h(B)]× [d(B),0).

Example 13.Consider a connected bipolar fuzzy graph as shown in Fig. 5.

Fig. 5: Connected bipolar fuzzy graph.

By routine computations, we haved(B) = −0.2, h(B) = 0.9. Thus(s, t) ∈ (0,−0.9]× (0,−0.1]. For 0< s≤ 0.5, 0≤ t <

−0.2, G(s,t) = (V,{(x,y),(x,w),(y,z),(w,z)}). For 0.5< s≤ 0.9, −0.1≤ t < 0, G(s,t) = (V,{(x,y),(z,w)}). ThusG is a

bipolar fuzzy cycle and weak bipolar fuzzy cycle butG is not partial bipolar fuzzy cycle.

Example 14.Consider a connected bipolar fuzzy graph as shown in the Fig.6.

Fig. 6: Connected bipolar fuzzy graph.
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By routine computations, we haved(B) = −0.4, h(B) = 0.9. Thus(s, t) ∈ (0,h(B)]× [d(B),0) means(s, t) ∈ (0,−0.9]×

[−0.1,0). For 0< s≤ 0.1, −0.4≤ t < 0, G(s,t) = (V,{(x,y),(y,z),(w,z),(w,x),(x,w)}) which is not a cycle. For 0.1<

s≤ 0.9, −0.1≤ t < 0, G(s,t) = (V,{(x,y),(y,z),(z,w),(w,x)}) which is a cycle. ThusG not cycle,G is a partial bipolar

fuzzy cycle but not a full bipolar fuzzy cycle.

The proofs of the following propositions are trivial.

Proposition 11. Suppose G is a cycle. Then G is a partial bipolar fuzzy cycle ifand only if G is a full bipolar fuzzy cycle.

Proposition 12. G is a full bipolar fuzzy cycle if and only if G is a cycle and B isconstant on E.

Definition 19. A connected bipolar fuzzy graph G= (A,B) is a bipolar fuzzy tree if it has a bipolar fuzzy spanning

subgraph H= (A,C) which is a tree, where for all arcs(x,y) not in H, µP
B(x,y)< (µP

B)
∞
C(x,y), µN

B (x,y)> (µN
B )

∞
C(x,y).

Definition 20.

(1) G is called a forest if G∗ is a forest.

(2) G is called a bipolar fuzzy forest if G has a bipolar fuzzy spanning subgraph H= (A,C) which is a forest such that

for all (u,v) ∈ E−W,µP
B(u,v)< (µP

C)
∞(u,v) andµN

B (u,v)> (µN
C )∞(u,v).

(3) G is called a weak bipolar fuzzy forest if for all(s, t) ∈ (0,h(B)]× [d(B),0) such that G(s,t) is a forest.

(4) G is called a partial bipolar fuzzy forest if G(s,t) is a forest for for all(s, t) ∈ (d(B),h(B)]∪{h(B)}.

(5) G is called a full bipolar fuzzy forest if G(s,t) is a forest for all(s, t) ∈ (0,h(B)]× [d(B),0).

Example 15.Consider a connected graphG∗ = (V,E) such thatV = {x,y,z,w}, E = {(x,y),(y,z),(x,w),(w,z)}. Let A be

a bipolar fuzzy set ofV and letB be a bipolar fuzzy set ofE ⊆V ×V defined by

µP
A(x) = µP

A(y) = µP
A(z) = µP

A(w) = 1, µN
A (x) = µN

A (y) = µN
A (z) = µN

A (w) =−1,

µP
B(x,y) = µP

B(w,z) = 0.9, µP
B(x,w) = µP

B(y,z) = 0.5, µN
B (x,y) = µN

B (w,z) =−0.1, µN
B (x,w) = µN

B (y,z) =−0.4.

By routine computations, we haved(B) = −0.4, h(B) = 0.9. For 0 < s ≤ 0.5, −0.4 ≤ t < 0,

G(s,t) = (V,{(x,w),(y,z),(x,y),(w,z)}), and for 0.5 < s≤ 0.9, −0.1 ≤ t < 0, G(s,t) = (V,{(x,y),(w,z)}). ThusG is a

partial bipolar fuzzy forest, but is neither a bipolar fuzzyforest nor a full bipolar fuzzy forest.

Proposition 13.G is a full bipolar fuzzy forest if and only if G is forest.

Proof.Suppose thatG is a full bipolar fuzzy forest. ThenG∗ = Gd(B) is a forest.

Conversely, suppose thatG is a forest. ThenG∗ is a forest and hence so must beG(s,t) for all (s, t) ∈ (0,h(B)]× [d(B),0)

since each suchG(s,t) is a subgraph ofG∗. This completes the proof.

Example 16.Consider a connected graphG∗ = (V,E) such thatV = {x,y,z}, E = {(x,y),(y,z),(x,z)}. Let A be a bipolar

fuzzy set ofV and letB be a bipolar fuzzy set ofE ⊆V ×V defined by

µP
A(x) = µP

A(y) = µP
A(z) = 1, µN

A (x) = µN
A (y) = µN

A (z) =−1,

µP
B(x,y) = 0.9, µP

B(y,z) = 0.5, µN
B (x,y) =−0.1,µN

B (y,z) =−0.4.

By routine computations, we haved(B) = (0.5,−0.4), h(B) = (0.9,−0.1). For 0< s ≤ 0.5, −0.4 ≤ t < 0, G(s,t) =

(V,{(x,y),(y,z)}). For 0.5< s≤ 0.9,−0.1≤ t < 0,G(s,t) = (V,{(x,y)}). ThusG is a forest and a full bipolar fuzzy forest

without being a constant onE. Note thatGh(B) has more connected components thanG∗.
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Proposition 14. G is a weak bipolar fuzzy forest if and only if G does not contain a cycle whose edges are of strength

h(B).

Proof. SupposeG contains a cycle whose edges are of strengthh(B). ThenG(s,t),(s, t) ∈ (0,h(B)] contains this cycle and

so is not a forest. ThusG is not a weak bipolar fuzzy forest.

Conversely, supposeG does not contain a cycle all of whose edges are of strengthh(B). ThenGh(B) does not contain a

cycle and so is a forest.

Corollary 1. If G is a bipolar fuzzy forest, then G is a weak bipolar fuzzy forest.

Theorem 1.G is a forest and B is constant on E if and only if G is a full bipolar fuzzy forest, G∗ and Gh(B) have the same

number of connected components and G is firm.

Proof. Suppose thatG is a forest andB is constant onE. Then∀(s, t) ∈ (0,h(B)], G(s,t) = G∗ and soG is a full bipolar

fuzzy forest andG∗ andGh(B) have the same number of connected components. Clearly,G is firm sinceB is a constant

onE.

Conversely, supposeG is a full bipolar fuzzy forest,G∗ andGh(B) have the same number of connected components, and

G is firm. Suppose∃(s1, t1),(s2, t2) ∈ lm(B) such that 0< s1,s2, t1, t2. Then ∃(x,y) ∈ E such thatµP
B(x,y) = S1,

µN
B (x,y) = t1. Now (x,y) ∈ B(s1,t1),(x,y) /∈ B(s2,t2). HenceG(s2,t2) has more connected components thenG(s1,t1) sinceG is

firm, i.e., no vertices were lost. ThusGh(B) has more connected components thanG∗, a contradiction.

Corollary 2. G is a tree and B is constant on E if and only if G is a full bipolarfuzzy tree and G is firm.

Definition 21.

(1) G is called a tree if G∗ is a tree.

(2) G is called a bipolar fuzzy tree if G has a bipolar fuzzy spanning subgraph H= (A,C) which is a tree such that for

all (u,v) ∈ E−W, µP
B(u,v)< (µP

C)
∞(u,v) andµN

B (u,v)> (µN
C )∞(u,v).

(3) G is called a weak bipolar fuzzy tree if for all(s, t) ∈ (0,h(B)]× [d(B),0) such that G(s,t) is a tree.

(4) G is called a partial bipolar fuzzy tree if G(s,t) is a tree for for all(s, t) ∈ (d(B),h(B)]∪{h(B)}.

(5) G is called a full bipolar fuzzy tree if G(s,t) is a tree for all(s, t) ∈ (0,h(B)]× [d(B),0).

Example 17.Consider a connected graphG∗ = (V,E) such thatV = {x,y,z}, E = {(x,y),(y,z),(x,z)}. Let A be a bipolar

fuzzy set ofV and letB be a bipolar fuzzy set ofE ⊆V ×V defined by

µP
A(x) = µP

A(y) = 1, µP
A(z) = 0.5, µN

A (x) = µN
A (y) = 0, µN

A (z) =−0.2,

µP
B(x,y) = 0.9, µP

B(y,z) = 0.5, µN
B (x,y) = 0.1,µN

B (y,z) =−0.4.

By routine computations, we haved(B) = −0.4, h(B) = 0.9. For 0< s≤ 0.9,−0.1≤ t < 0, G(s,t) = (V,{(x,y),(y,z)}),

and for 0.5 < s≤ 0.9, −0.1≤ t < 0, G(s,t) = (V,{(x,y)}). ThusG is a tree,G is a full bipolar fuzzy tree, andG∗ and

Gh(B) has the same number of connected components. However,G is not firm andB= (µP
B ,µN

B ) is not constant onE.

Example 18.Consider a connected graphG∗ = (V,E) such thatV = {x,y,z}, E = {(x,y),(y,z),(x,z)}. Let A be a bipolar

fuzzy set ofV and letB be a bipolar fuzzy set ofE ⊆V ×V defined by

µP
A(x) = µP

A(y) = 1, µP
A(z) = 0.5, µN

A (x) = µN
A (y) =−1, µN

A (z) =−0.2,

µP
B(x,y) = 0.9, µP

B(x,z) = µP
B(y,z) = 0.5, µN

B (x,y) =−0.1,µN
B (x,z) = µN

B (y,z) =−0.4.
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By routine computations, we haved(B) = −0.4, h(B) = 0.9. For 0 < s ≤ 0.5, −0.4 ≤ t < 0,

G(s,t) = (V,{(x,y),(x,z),(y,z)}), and for 0.5 < s ≤ 0.9, −0.1 ≤ t < 0, G(s,t) = ({x,y},{(x,y)}). Thus G is a partial

bipolar fuzzy tree, but not a full bipolar fuzzy tree.G is not a bipolar fuzzy tree.

We state the following propositions without their proofs.

Proposition 15.If G is a bipolar fuzzy tree, then G is not complete.

Proposition 16.If G is a bipolar fuzzy tree, then arcs of spanning subgraph H are the bipolar fuzzy bridges of G.

Proposition 17.If G is a bipolar fuzzy tree, then internal nodes of spanning subgraph H are the bipolar fuzzy cutnodes of

G.

Proposition 18.G is a bipolar fuzzy tree if and only if the following are equivalent:

(a) (x,y) is a bipolar fuzzy bridge.

(b) (µP
B)

∞(x,y) = µP
B(x,y) and(µN

B )
∞(x,y) = µN

B (x,y).

Proposition 19.A bipolar fuzzy graph is a bipolar fuzzy tree if and only if it has a unique maximum spanning tree.

Proposition 20.Suppose that G is firm. If G is a weak bipolar fuzzy tree, then G is a bipolar fuzzy tree.

Proof.There exist(s, t) ∈ (0,h(B)] such thatG(s,t) is a tree. SinceG is firm, G(s,t) is a bipolar fuzzy spanning subgraph of

G which is a tree. If(u,v) is in E B(s,t), thenµP
B(u,v)< s, µN

B (u,v)> t and so it follows thatG is a bipolar fuzzy tree.

Definition 22.

(1) G is called a connected if G∗ is a connected.

(2) G is called a bipolar fuzzy connected if G is a bipolar fuzzy block.

(3) G is called a weak bipolar fuzzy connected if there exists(s, t) ∈ (0,h(B)]× [d(B),0) such that G(s,t) is a connected.

(4) G is called a partial bipolar fuzzy connected if G(s,t) is a connected for for all(s, t) ∈ (d(B),h(B)]∪{h(B)}.

(5) G is called a full bipolar fuzzy connected if G(s,t) is a connected for all(s, t) ∈ (0,h(B)]× [d(B),0).

Proposition 21.If G is connected, then G is weakly connected.

Proof. Gconnected impliesG∗ is connected. NowG∗ = Gh(B) and soG is weakly connected.

Proposition 22.If G is firm and weakly connected, then G is connected.

Proof. If G(s,t) is connected for some(s, t) ∈ (0,h(B)], thenG∗ is connected sinceG is firm.

Proposition 23.

(1) If G is a weak bipolar fuzzy tree, then G is weakly connected and G is a weak bipolar fuzzy forest. Conversely, if

∃(s1, t1), (s2, t2) ∈ (0,h(B)] with s1 < s2, t1 < t2 such that G(s1,t1) is a forest and G(s2,t2) is connected, then G is a weak

bipolar fuzzy tree.

(2) G is a tree if and only if G is a forest and G is connected.

(3) G is partial bipolar fuzzy tree if and only if G is a partial bipolar fuzzy forest and G is a partially bipolar fuzzy

connected.

(4) G is a full bipolar fuzzy tree if and only if G is a full bipolar fuzzy forest and G is fully connected.

Proof. (1) If G(s,t) is a tree for some(s, t) ∈ (0,h(B)], thenG(s,t) is connected and is a forest. For the converse, we note

thatG(s2,t2) must also be a forest. Since alsoG(s2,t2) is connected,G(s2,t2) is a tree.

The proofs of (2),(3) and(4)are immediate.
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Proposition 24.G is a firm if and only if G(s,t) is firm∀(s, t) ∈ (0,h(B)].

Proof. SupposeG is firm. Let(s, t) ∈ (0,h(B)]× [d(B),0). Let (x,y) ∈ (µP)(s,t). Then

s≤ µP
B(x,y)≤ min{µP

A(x)|x∈V} ≤ min{µP
A(x)|x∈ (µP

A)
s},

t ≥ µN
B (x,y)≥ max{µN

A (x)|x∈V} ≥ max{µN
A (x)|x∈ (µN

A )
t}.

Hence max{µP
B(x,y)|(x,y) ∈ (µP

B)
s} ≤ min{µP

A(x)|x ∈ (µP
A)

s}, min{µN
B (x,y)|(x,y) ∈ (µN

B )
t} ≥ max{µN

A (x)|x ∈ (µN
A )

t}.

Thus we conclude thatB(s,t)∗ = B(s,t) andA(s,t)∗ = A(s,t), G(s,t) is firm.

Conversely, supposeG(s,t) is firm ∀(s, t) ∈ (0,h(B)]× [d(B),0). Let min{µP
A(x)|x ∈ V} = s0, max{µN

A (x)|x ∈ V} = t0.

Thent0 > 0. Now max{µP
B(x,y)|(x,y) ∈ (µP

B)
s0} ≤ s0, min{µN

B (x,y)|(x,y) ∈ (µN
B )

t0} ≥ t0 sinceG(s0,t0) is firm andV =

A(s0,t0) = A(s0,t0)∗. Let (x,y) ∈ E−B(s,t)∗. ThenµP
B(x,y)< s0, µN

B (x,y)> t0. Thus

max{µP
B(x,y)|(x,y) ∈ E} ≤ s0 = min{µP

A(x)|x∈V},

min{µN
B (x,y)|(x,y) ∈ E} ≥ t0 = max{µN

A (x)|x∈V}.

HenceG is firm.

5 Conclusions

In a network, each arc is assigned a weight. The weight of a path or a cycle is defined as the minimum weight of its arcs.

The maximum of weights of all paths between two nodes is defined as the strength of connectedness between the nodes.

In network applications, the reduction in the strength of connectedness is more relevant than the total disconnection of the

graph. A graph is totally weighted if both node set and arc setare weighted. Fuzzy graph theory is finding an increasing

number of applications in modeling real time systems. Sincebipolar fuzzy models give more precision, flexibility and

compatibility to the system as compared to the fuzzy models,we have investigated some properties of bipolar fuzzy

cycles, bipolar fuzzy trees, bipolar fuzzy bridges, and bipolar fuzzy cut-vertices in bipolar fuzzy graphs in this paper. We

plan to extend our research of fuzzification to (1) Bipolar fuzzy soft trees, (2) Soft cycles and soft trees, (3), and Rough

cycles and rough trees.
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