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Abstract: In this paper, a rational Chebyshev (RC) collocation methodis presented to solve high-order linear Fredholm integro-
differential equations with variable coefficients under the mixed conditions, in terms of RC functions by two proposed schemes. The
proposed method converts the integral equation and its conditions to matrix equations, by means of collocation points on the semi–
infinite interval, which corresponding to systems of linearalgebraic equations in RC coefficients unknowns. Thus, by solving the matrix
equation, RC coefficients are obtained and hence the approximate solution is expressed in terms of RC functions. Numerical examples
are given to illustrate the validity and applicability of the method. The proposed method numerically compared with others existing
methods as well as the exact solutions where it maintains better accuracy.
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1 Introduction

In recent years, the studies of mixed integro-differentialequations are developed very rapidly and intensively.

Integro-differential equation is an equation that the unknown function appears under the sign of integration and it also

contains the derivatives and functional arguments of the unknown function. It can be classified to Fredholm

integro-differential equations and Volterra integro-differential equations. In this paper we focus on Fredholm

integro-differential equations, but all algorithms in ourwork can be applied to Volterra integro-differential equations

with a little modification. Integro-differential equations are important, but they are hard to solve even numerically,so the

progress on how to solve them is slow. The concepts of integro-differential equations have motivated a huge size of

research work in recent years, several numerical methods were used such as wavelet-Galerkin method [1], Lagrange

interpolation method [2], Taylor polynomials [3] and [4], Chebyshev polynomials [5], [6] and [7], Adomian

decomposition method [8] and [9], the differential transformation method [10] and [11], Legendre polynomial [12], CAS

Wavelet operational matrix [13], Reduced differential transform method[14], Homotopy perturbation method [15]. In our

work, we apply rational Chebyshev (RC) collocation method [16] and [17] for solving high-order linear Fredholm

integro-differential equations and we will show that convergent rate of RC is more accelerate than other existing method.

The organization of this paper, in Section 2, preliminariesintroduced while in section 3, properties of the RC functions

are presented. In Section 4, we formulated the fundamental matrix relation based on collocation Points. In Section 5, the

method of solution is presented. Section 6, contains numerical illustrations and results that are compared with the exact

solution and other existed methods. Finally, section 7, concludes this article with a brief summary.
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2 Preliminaries

Consider themth order linear Fredholm integro-differential equation with variable coefficients

m

∑
k=0

Pk(x)y
(k)(x) = g(x)+λ

∫ a

0
K(x, t)y(t)dt,0≤ x, t ≤ a < ∞, (1)

under the mixed conditions

m−1

∑
k=0

(a jky(k)(α)+b jky(k)(β )+ c jky(k)(γ)) = µ j , α ≤ γ ≤ β , j = 0,1, ...,m−1 (2)

wherea jk,b jk,c jkandµ j are suitable constants andPk(x),g(x),K(x, t)are function defined in interval 0≤ x, t ≤ a< ∞.We

assume that the solution of this system can be expressed in terms of a truncated RC functions as follows:

yi(x) =
N

∑
n=0

anRn(x), i = 1,2, ...,k,0≤ x< ∞, (3)

whereN is chosen any positive integer such thatN≥ m andan are unknown RC coefficients.

3 Properties of the rational Chebyshev functions

3.1 Rational Chebyshev functions

The well-known Chebyshev polynomials are orthogonal in theinterval [-1, 1] with respect to the weight functionw(x) =

1/
√

1− x2and can be determined with the aid of the recurrence formulae

T0(x) = 1,T1(x) = x,Tn+1(x) = 2xTn(x)−Tn−1(x)n≥ 1 (4)

The RC functions are defined by

Rn(x) = Tn

(

x−1
x+1

)

The recurrence relation is

R0(x) = 1,R1(x) =
x−1
x+1

,Rn+1(x) = 2

(

x−1
x+1

)

Rn(x)−Rn−1(x),n≥ 1 (5)

RC functions are orthogonal with respect to the weight function w(x) = 1
/

((x+1)
√

x) in the interval[0,∞),with the

orthogonally property:

∞
∫

0

Rn(x)Rm(x)w(x)dx=
cmπ

2
δnm

with

cm =

{

2,m= 0

1,m≥ 1

whereδnmis the Kronecker function.
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Since the set of RC functions is orthogonal and completey(x)defined over the interval[0,∞) can be expanded as:

y(x) =
∞

∑
n=0

anRn(x),

where

ai =
2

ciπ

∞
∫

0

Ri(x)y(x)w(x)dx.

3.2 Fundamental matrix derivative relation of RC by first scheme (RRC)[16]

The derivative of the vectorR(x) =
[

R0(x) R1(x) ... RN(x)
]

can be expressed by

R′(x) =
dR(x)

dx
≈ R(x)DT (6)

whereD is (N+1)× (N+1)operational matrix for the derivative.

Differentiating relation (4) we get:

R′
n+1(x) =

4

(x+1)2
Rn(x)+2

(

x−1
x+1

)

R′
n(x)−R′

n−1(x),n≥ 1.

The derivative ofR1(x) is 2
(x+1)2

which can be expressed as follows:

R′
1(x) =

2

(x+1)2
=

3
4

R0(x)−R1(x)+
1
4

R2(x),

Form above, the elementsdi j ,of the matrixD can be obtained from











R′
0(x) = 0,

R′
1(x) =

3
4R0(x)−R1(x)+

1
4R2(x),

R′
n+1(x) = 2(R1(x).Rn(x))

′−R′
n−1(x),n> 1,

(7)

where

RmRn =
1
2
[Rm+n+R|m−n|]

The general form of the matrixD is a lower- Heisenberg matrix. The matrixD can be expressed asD = D1+D2, where

D1is a tridiagonal matrix which is obtained from

D1 = diag.

(

7
4
(i −1),− (i −1),

1
4
(i −1)

)

,

and thedi j elements of matrixD2are obtained fromd21 =−1 and

di j =

{

0, j ≥ i −1

k(i −1)c j , j < i −1

wherek= (−1)i+ j+1,c1 = 1 andc j = 2 for j ≥ 2. ForN =5 we have
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D =





















0 0 0 0 0 0

3/4 −1 1/4 0 0 0

−2 7/2 −2 1/2 0 0

3 −6 21/4 −3 3/4 0

−4 8 −8 7 −4 1

5 −10 10 −10 35/4 −5





















.

Consequently, thekth derivative of the matrixR(x)defined in (5), can be obtained as

R(k)(x)≈ R(x)(DT)k (8)

3.3 Fundamental matrix derivative relation of RC by second scheme (IRC)[17]

It is clear that using (8) leads to a truncated last term of relation (7). Moreover in the higher derivatives the truncation is

more than one term. For example using forth order derivativeatn=3, the truncated terms will vanish in the last four terms

in R4, R5, R6, R7. This will lead to unsatisfied approximating using RRC scheme. Therefore, we will try to improve the

definition of the derivative of RC functions. It is noted thatin [16] the last term is truncated to get a square matrix so the

matrix product is possible.

Now, we will add a vector to (8) to keep the truncated term which will improve our approximation. This technique will

be called an improved regular RC functions and denoted by IRC.

Thus, we can obtain general form as:

R′(x) =
dR(x)

dx
= R(x)DT +B(x) (9)

where

B(x) =
[

0 0 · · · 0 dN+1,N+2RN+1(x)
]

1×(N+1)

To obtain the matrixR(k)(x) we can use the relation (9):

R(0)(x) = R(x)(DT)0

R(1)(x) = R(x)(DT)1+B(0)(x)

R(2)(x) = R(1)(x)DT +B(1)(x) = R(x)(DT)2+B(0)(x)DT +B(1)(x)

R(3)(x) = R(1)(x)(DT)2+B(1)(x)DT +B(2)(x) = R(x)(DT)3+B(x)(DT)2+B(1)(x)DT +B(2)(x)

...

Consequently, thekth derivative of the matrixR(x) defined as:

R(0)(x) = R(x),R(k)(x) = R(x)(DT)k+
k−1

∑
i=0

B(i)(x)(DT)k−i−1k≥ 1 (10)
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where

B(k)(x) =
[

0 0 · · · 0 dN+1,N+2R(k)
N+1(x)

]

.

4 Fundamental matrix relation based on collocation points

In this section we will provide fundamental matrix relationbased on collocation points of the solution of (1) with (2) by

two schemes. First assume that the solutiony(x) of (1) can be expressed in the form (3), which is a truncated Chebyshev

series in terms of RC functions. Theny(x)and its derivativey( j) (x) can be put in the matrix forms

[y(x)] = R(x)A,

and

[y( j)(x)] = R( j)(x)A, j = 0,1, . . . ,m≤ N, (11)

where

R( j)(x) =
[

R( j)
0 (x) R( j)

1 (x) ... R( j)
N (x)

]

, A=
[

a0 a1 · · · aN

]T

Now, let us write (1) in the form

F(x) = g(x)+λ I(x), (12)

where the differential part

F(x) =
m

∑
k=0

Pk(x)y
(k)(x), (13)

and the Fredholm integral part

I(x) =
∫ a

0
K(x, t)y(t)dt, (14)

Let us now form the matrix relation for Fredholm integral part (14). The kernel functionK(x, t) can be approximated by

the truncated RC series as follows

K(x, t) =
N

∑
l=0

N

∑
s=0

klsRl (x)Rs(t),

where

kls =
4

cl csπ2

∫ ∞

0

∫ ∞

0
Rl (x)Rs(t)K(x, t)w(x)w(t)dxdt.

Then the matrix representation ofK(x, t) can be given by

[K(x, t)] = R(x)KRT(t), (15)

where

K =













k00 k01 . . . k0N

k10 k11 . . . k1N
...

...
. . .

...

kN0 kN1 . . . kNN
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The matrix representation ofy(t) can be given by

[y(t)] = R(t)A (16)

Substituting (15), (16) into (14), we get

[I(x)] =
∫ a

0
R(x)KRT(t)R(t)Adt= R(x)KMA, (17)

where

M =
∫ a

0
RT(t)R(t)dt.

4.1 Fundamental matrix relation by first scheme (RRC)

From relations (8) and (11), then (13), takes the form

F(x) =
m

∑
k=0

Pk(x)R(x)(D
T)kA (18)

Substituting (17) and (18) into (12), we get

m

∑
k=0

Pk(x)R(x)(D
T)kA= g(x)+λR(x)KMA (19)

Now, let us define the collocation points as

s= 0,1, ...,N (20)

Upon substituxs =
c
Ns, ting points (20) into (19) we obtain

m

∑
k=0

Pk(xs)R(xs)(D
T)kA= g(xs)+λR(xs)KMA (21)

The obtained system (21) can be written farther in the matrixform

m

∑
k=0

PkR(DT)kA= G+λRKMA, (22)

where

Pk =













Pk(x0) 0 . . . 0

0 Pk(x1) . . . 0

0 0
...

...

0 0 . . . Pk(xN)













,G=













g(x0)

g(x1)
...

g(xN)













,

R=













R(x0)

R(x1)
...

R(xN)













=













R0(x0) R1(x0) . . . RN(x0)

R0(x1) R1(x1) . . . RN(x1)
...

...
. . .

...

R0(xN) R1(xN) . . . RN(xN)













.
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Then the fundamental matrix for solving of Fredholm integro-differential equation obtains as:

(

m

∑
k=0

PkR(DT)
k−λRKM

)

A= G (23)

Similarly, we form the matrix representations of the mixed conditions.

Substituting the matricesy(k)(α), y(k)(β ) and y(k)(γ) which depends on the RC coefficients matrixA into (2) and

simplifying the result we obtain

m−1

∑
k=0

{a jkR(α)+b jkR(β )+ c jkR(γ)}(DT)kA= µ j (24)

4.2 Fundamental matrix relation by second scheme (IRC)

Similarly, the second scheme IRC gives us derivative RC functions ofkth order as:

R(0)(x) = R(x),R(k)(x) = R(x)(DT)k+
k−1

∑
i=0

B(i)(x)(DT)k−i−1, k≥ 1.

From relations (10) and (11), then (13), takes the form

F(x) =
m

∑
k=0

Pk(x){R(x)(DT)
k
+

k−1

∑
i=0

B(i)(x)(DT)k−i−1}A, (25)

Substituting (17) and (25) into (12), we get

m

∑
k=0

Pk(x){R(x)(DT)k+
k−1

∑
i=0

B(i)(x)(DT)k−i−1}A= g(x)+λR(x)KMA. (26)

Upon substituting points (20) into (26) we obtain

m

∑
k=0

Pk(xs){R(xs)(D
T)k+

k−1

∑
i=0

B(i)(xs)(D
T)k−i−1}A= g(xs)+λR(xs)KMA, (27)

The obtained system (27) can be written farther in the matrixform

m

∑
k=0

Pk{R(DT)
k
+

k−1

∑
i=0

B(i)(DT)k−i−1}A= G+λRKMA, (28)

where

Pk =













Pk(x0) 0 . . . 0

0 Pk(x1) . . . 0

0 0
...

...

0 0 . . . Pk(xN)













,G=













g(x0)

g(x1)
...

g(xN)













,
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R=













R(x0)

R(x1)
...

R(xN)













=













R0(x0) R1(x0) . . . RN(x0)

R0(x1) R1(x1) . . . RN(x1)
...

...
. . .

...

R0(xN) R1(xN) . . . RN(xN)













,

B =













B(x0)

B(x1)
...

B(xN)













=













B0(x0) B1(x0) . . . BN(x0)

B0(x1) B1(x1) . . . BN(x1)
...

...
. . .

...

B0(xN) B1(xN) . . . BN(xN)













.

Then the fundamental matrix for solving of Fredholm integro-differential equation takes the form:

(

m

∑
k=0

Pk{R(DT)
k
+

k−1

∑
i=0

B(i)(DT)k−i−1}−λRKM

)

A= G (29)

Similarly, we form the matrix representations of the mixed conditions.

Substituting the matrixy(k)(α), y(k)(β )and y(k)(γ) which depends on the RC coefficients matrixA into the (5.2) and

simplifying the result we obtain

m−1
∑

k=0
{a jk{R(α)(DT)

k
+

k−1
∑

i=0
B(i)(α)(DT)k−i−1}+b jk{R(β )(DT)k+

k−1
∑

i=0
B(i)(β )(DT)k−i−1}+ c jk{R(γ)(DT)k+

k−1
∑

i=0
B(i)(γ)(DT)k−i−1}}A= µ j .

(30)

5 Method of solution

The fundamental matrix equations (23) and (29) for (1) correspond to a system of (N+1) algebraic equations for the (N+1)

unknown coefficientsa0,a1, ...,aN. One writes equations (23) and (29) in short form as:

WA= G or [W; G] (31)

We can obtain the matrix form for the mixed conditions (2), bymeans of equations (24) and (30) briefly as

UiA= [λi ] (32)

so thatW andUi for first scheme defined by:

W = [wpq] =
m

∑
k=0

PkR(DT)k−λRKM, p,q= 0,1, ...,N

and

Ui =
[

ui0 ui1 . . . uiN

]

=
m−1

∑
k=0

{a jkR(α)+b jkR(β )+ c jkR(γ)}(DT)k

while, the definition ofW andUi for second scheme obtained as:

W = [wpq] =
m

∑
k=0

Pk{R(DT)
k
+

k−1

∑
i=0

B(i)(DT)k−i−1},
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and

Ui =
[

ui0 ui1 . . . uiN

]

=
m−1
∑

k=0
a jk{R(α)(DT)

k
+

k−1
∑

i=0
B(i)(α)(DT)k−i−1}+

b jk{R(β )(DT)k+
k−1
∑

i=0
B(i)(β )(DT)k−i−1}+ c jk{R(γ)(DT)k+

k−1
∑

i=0
B(i)(γ)(DT)k−i−1}

Now, the solution of (1) under the conditions (2), can then beobtained by replacing the rows of matrices (32) by the last

m rows of the matrix (31), we get the required augmented matrix

[

W̃; G̃
]

=































w00 w01 . . . w0N ; g(x0)

w10 w11 . . . w1N ; g(x1)

. . . . . . . . . . . . ; . . .

wN−m,0 wN−m,1 . . . wN−m,N ; g(xN−m)

u00 u01 . . . u0N ; λ0

u10 u11 . . . u1N ; λ1

. . . . . . . . . . . . ; . . .

um−1,0 um−1,1 . . . um−1,N ; λm−1































. (33)

If rankW̃ = rank[W̃; G̃] = N+1,then we can write the matrix equation (31) as:

A= (W̃)−1G̃ (34)

and therefore the coefficientsan ; n =0, 1,. . . ,N are uniquely determined by (33).

6 Numerical examples

In this section, numerical examples are given to illustratethe applicability, accuracy and effectiveness of the proposed

techniques. All examples are performed on the computer using a program written in MATHEMATICA 7.0. The obtained

numerical results are presented as shown in the illustrative Tables. The absolute errors, in tables, are given by the values

of e(x) = |y(x)− yN(x)| evaluated at selected points.

Example 1. Let us first consider the linear Fredholm integro-differential equation

y′′(x)− 2

(1+ x)2
y(x) =

ln[11]
1+ x

−
∫ 10

0

1
1+ x

y(t)dt, x∈ [0,10],

with y(0) = 1,y(1) = 1
2. For this example we have,

m= 2,P0(x) =
−2

(x+1)2
,P1(x) = 0,P2(x) = 1,g(x) =

ln[11]
x+1

,K(x, t) =
1

x+1
.

Then forN = 2, the collocation points are

x0 = 0,x1 = 5,x2 = 10

Where P0,P1,P2, K, Mare matrices of order (3×3) defined by

P0 =







−2 0 0

0 −1/18 0

0 0 −2/121






,P1 =







0 0 0

0 0 0

0 0 0






,P2 =







1 0 0

0 1 0

0 0 1






,
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K =







1/2 0 0

−1/2 0 0

0 0 0






,M =







10 −2(−5+ ln[11]) 190
11 −8ln[11]

−2(−5+ ln[11]) 150
11 −4ln[11] 2890

121 −10ln[11]
190
11 −8ln[11] 2890

121 −10ln[11] 162010
3993 −16ln[11]






,

The augmented matrix forms of the conditions forN = 2 are

[

1 −1 1 ; 1
]

,
[

1 0 −1 ; 1/2
]

,

The fundamental matrix equation by IRC scheme (29) of problem is

(

P0R+P1(RDT +B)+P2(R(D
T)

2
+BDT +B′)−λRKM

)

A= G

R=







1 −1 1

1 2
3 − 1

9

1 9
11

41
121






, DT =







0 3
4 −2

0 −1 7
2

0 1
4 −2






, (DT)2 =







0 − 5
4

53
8

0 15
8 − 21

2

0 − 3
4

39
8






,

B =







0 0 − 1
2

0 0 − 11
27

0 0 − 351
2662






, B′ =







0 0 9

0 0 7
108

0 0 609
14641






.

Then, we obtain the augmented matrix (33) as

[W̃; G̃] =







8 −2−2(−5+ ln[11] 520
11 −8ln[11] ; ln[11]

1 −1 1 ; 1

1 0 −1 ; 1/2






,

we then obtain the solution for WA=G
A=

[

1/2 −1/2 0
]

,

Therefore, we find the solution

y(x) =
2

∑
n=0

anRn(x),

to be in the form

y(x) =
1
2

R0(x)−
1
2

R1(x),

or in the form

y(x) =
1

x+1
,

which is exact solution of this problem.

The fundamental matrix equation (23) of problem by RRC scheme is

(

P0R+P1RDT +P2R(DT)
2−λRKM

)

A= G

for N = 2 we get badly approximate but forN = 3 we will get the exact solution of this problem.
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Example 2. Let us first consider the integro-differential equation [10], [13]

y′(x) = 1− 1
3

x+
∫ 1

0
xty(t)dt, x∈ [0,1],

with y(0) = 0. The numerical solutions obtained from the IRC scheme and RRC scheme forN = 4. In table 1 the errors

given by the two proposed schemes compared with errors calculated by CAS Wavelet method [13] and differential

transformation method [10] in the interval[0, 1]. It is noted from table 1 that the present method by two schemes is better

than the differential transform method in [10]. On the otherhand, the results obtained by CAS Wavelet method [13] are

close to the results obtained by the present method.

Table 1: Comparison between absolute error obtained by present method and other existed methods fory(x) of Exam. 2.

X
CAS

Wavelet[13]

Differential
transformation

method[10]

RRC
N=4

IRC
N = 4

0.1 2.17942375e-004 1.66666667e-003 4.44627459e-004 7.48179732 e-004

0.2 6.38548213e-004 6.09388620e-003 5.89430306e-004 1.63253385 e-003

0.3 7.91370487e-004 1.32017875e-002 2.40171141e-003 3.51161586 e-003

0.4 2.15586005e-002 2.29140636e-002 6.73535353e-003 7.27152372 e-003

0.5 4.99358429e-003 3.51578404e-002 1.40138093e-002 1.36200176 e-002

0.6 2.21728815e-002 6.69648304e-002 2.44620175e-002 2.30527344 e-002

0.7 1.05645449e-004 7.12430514e-002 3.81931054e-002 3.58782889 e-002

0.8 1.43233681e-003 8.63983845e-002 5.52463654e-002 5.22579230 e-002

0.9 2.07747461e-002 1.08103910e-001 7.56088331e-002 7.22435281 e-002

Example 3. Consider the following linear Fredholm integro –differential equation [10]

y′(x) = xex+ex− x
∫ 1

0
xy(t)dt x∈ [0,1],

with y(0) = 0.

The numerical solutions obtained by the IRC scheme forN = 4. In table 2 comparing the error obtained with CAS

wavelet method [13] and differential transformation method [10].

Table 2: Comparison between absolute error obtained by present method and other existed methods fory(x)of Exam. 3.

X CAS Wavelet[13] DTM[10] IRC N = 4
0.1 1.34917637e-003 1.00118319e-002 2.33899689e-002
0.2 1.15960044e-003 2.78651355e-002 4.32236340e-002
0.3 5.67152531e-003 5.08730892e-002 4.19865348e-002
0.4 5.93105645e-002 7.55356316e-002 2.88393798e-002
0.5 1.32330751e-002 9.71888592e-002 1.16259014e-002
0.6 4.39287720e-002 1.09551714e-001 8.45940052e-003
0.7 1.41201624e-002 1.04133232e-001 3.62299942e-002
0.8 1.34514117e-002 6.94512700e-002 8.08146109e-002
0.9 1.32045209e-002 1.00034260e-002 1.54221606e-001
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Example 4. Consider the third order linear intgro-differential equation

y′′′(x)+ xy′(x)+ xy(x) = e−x−e+1+e
∫ 1

0
y(t)dt,

with y(0) = 1, y′(0) =−1, y′′(0) = 1.

The exact solution of this problem isy(x) = e−x. The solution obtained by IRC scheme. In table 3 the errors calculated

with differentN, clearly indicates that when we increase the truncation limit N, we have good accuracy.

Table 3: Comparison between absolute error functions obtained by IRC scheme fory(x) of Example 4 forN = 8,10,12
and 16.

X eN=8 eN=10 eN=12 eN=16

0.1 2.29514 e-007 8.41043 e-008 2.45139 e-008 2.21017e-008

0.2 1.54099 e-006 5.06277 e-007 1.35645 e-007 1.83008e-008

0.3 4.08800 e-006 1.29587 e-006 3.39746 e-007 1.00211e-008

0.4 7.89477 e-006 2.46579 e-006 6.40228 e-007 2.9693e-009

0.5 1.30008 e-005 4.02634 e-006 1.03977 e-006 1.77792e-008

0.6 1.94259 e-005 5.98439 e-006 1.54011 e-006 3.25369e-008

0.7 2.71767 e-005 8.34151 e-006 2.14169 e-006 4.64512e-008

0.8 3.62373 e-005 1.10928 e-005 2.84334 e-006 5.93424e-008

0.9 4.65865 e-005 1.42107 e-005 3.64141 e-006 7.13077e-008

1.0 5.82724 e-005 1.75925 e-005 4.52514 e-006 8.25347e-008

Example 5.Consider the following linear Fredholm integro –differential equation

xy′(x)− y(x) =
3+Ln[16]

1+ x
−2

∫ 3

0

t
x+ xt+ t+1

y(t)dt x∈ [0,3],

With y(0) = 0. The exact solution isy(x) = x.

The errors given for variousN in interval [0, 3] using IRC scheme, see table 4 clearly indicates that when we increase the

N, we have less error.

Table 4: Comparison between absolute error obtained by IRC scheme for y(x) Example 5. forN = 4,7 and 10.

X eN=4 eN=7 eN=10

0.3 9.84227e-002 7.99667e-003 3.10157e-003
0.6 5.5861e-003 2.51914e-003 9.65748e-005
0.9 1.57062e-002 2.35197e-004 3.30361 e-004
1.2 5.07752e-003 8.6475e-004 4.2555e-004
1.5 7.13778e-004 1.04015e-003 5.34414e-004
1.8 3.9221e-003 1.20405e-003 6.40535e-004
2.1 9.06935e-003 1.45553e-003 7.47712e-004
2.4 1.02842e-002 1.62365e-003 8.54097e-004
2.7 3.17202e-003 1.82889e-003 9.61814e-004
3.0 150938e-002 2.61861e-003 1.05492e-004
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Example 6.Consider the following linear Fredholm integro –differential equation

y′(x)+ y(x) = sech(x)(1− tanh(x))−2arctan

(

1−e
1+e

)

−
∫ 1

0
y(t)dt,

with y(0) = 1, and the exact solution isy(x) = sech(x).

We obtain the approximate solution by RC collocation methods of the problem forN= 8. In table 5 the numerical results

obtained by RRC and IRC schemes forN=8, are compared with the exact solution of this problem. Also the absolute

errors forN=8 by the two schemes is given. The values of the solutiony(x), x ∈ [0,1] plotted with its error in figure 1.

From figure 1 one can see that the numerical results given by IRC scheme is better than RRC scheme.

Table 5: Comparison between RRC scheme and IRC scheme fory(x) of Example 5.6 forN = 8

xi Exact solution RRC scheme IRC scheme
N = 8 eRRCN=8 N = 8 eIRCN=8

0.1 0.9950207489 0.9950207489 7.29723e-006 0.9949980631 2.26858e-005
0.2 0.9803279976 0.9803279976 7.33906e-005 0.9803094963 1.85014e-005
0.3 0.9566279119 0.9566279119 1.75493e-005 0.9566124111 1.55007e-005
0.4 0.9250074519 0.9250935827 8.61309e-005 0.9249942557 1.31962e-005
0.5 0.8868188839 0.8868188839 1.17001e-003 0.8868188839 1.07932e-005
0.6 0.8435506876 0.8436099949 5.93073e-003 0.8435506876 8.82769e-006
0.7 0.7967054599 0.7966634642 4.19957e-003 0.7967054599 6.90692 e-006
0.8 0.7476999182 0.7475634972 1.36421e-003 0.7476999182 5.25349 e-006
0.9 0.6977946411 0.6976034887 1.91152e-003 0.6977946411 3.85176 e-006
1.0 0.6480542737 0.6478641197 1.90154e-003 0.6480542737 1.73767 e-006

Fig. 1: Error function ofy(x) for Ex. 6 forN = 8

7 Conclusions

The rational Chebyshev (RC) collocation method is proposedto find approximate solution and also, analytical solution

of Fredholm integro-differential equation with variable coefficients under the mixed conditions. The proposed method

converts the integral equation and its conditions to matrixequations, by means of collocation points. Moreover, the method

shows to best advantage when the functionsK(x, t) can be expanded to the RC series which converges rapidly. Illustrative

examples are included to demonstrate the validity and applicability of this technique, and performed on the computer using
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MATHMATICA 7.0. In addition, an interesting feature of thismethod is to find the analytical solution if the equation has

an exact solution of rational form. Suggested approximations make this method very attractive and contributed to the

good agreement between approximate and exact values in the numerical example. As a result, the power of the employed

method is confirmed.
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