
NTMSCI 4, No. 2, 227-239 (2016) 227

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2016218259

Adaptive rational block Arnoldi methods for model
reductions in large-scale MIMO dynamical systems

Oussama Abidi1, Mustapha Hached2 and Khalide Jbilou1

1L.M.P.A. Universite du Littoral, 50 rue F. Buisson, BP 699, F-62228 Calais Cedex France
2Laboratoire Painlevé UMR 8524 (ANO-EDP), UFR Mathématiques, Université des Sciences et Technologies de Lille, IUTA
Dpartement Chimie, Rue de la Recherche (lieu-dit Le Recueil), BP 179 - 59653 Villeneuve d’ Ascq Cedex, France

Received: 17 April 2016, Revised: 27 April 2016, Accepted: 28 April 2016
Published online: 28 April 2016.

Abstract: In recent years, a great interest has been shown towards Krylov subspace techniques applied to model order reduction of
large-scale dynamical systems. A special interest has beendevoted to single-input single-output (SISO) systems by using moment
matching techniques based on Arnoldi or Lanczos algorithms. In this paper, we consider multiple-input multiple-output (MIMO)
dynamical systems and introduce the rational block Arnoldiprocess to design low order dynamical systems that are closein some sense
to the original MIMO dynamical system. Rational Krylov subspace methods are based on the choice of suitable shifts that are selected
a priori or adaptively. In this paper, we propose an adaptiveselection of those shifts and show the efficiency of this approach in our
numerical tests. We also give some new block Arnoldi-like relations that are used to propose an upper bound for the norm ofthe error
on the transfer function.
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1 Introduction

Let us consider a linear time-invariant (LTI) multi-input and multi-output (MIMO) system described by the state-space

equations {
ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t),
(1)

wherex(t) ∈ Rn denotes the state vector andu(t), y(t) ∈ Rp are the input and output vectors respectively of the (LTI)

system (1). The matrixA∈ Rn×n is assumed to be large and sparse, andB, CT ∈ Rn×p are tall matrices withp≪ n. For

single-input single-output (SISO) systems, the matricesB andC are vectors (i.ep= 1).

The linear time invariant system (1) arises in simulations of dynamical systems where partial differential equations are

involved and matricesA andB which are generated by the discretization of these equations are often very large. In many

cases, the large state-space dimension (or order)n of the system (1) makes the simulations very difficult. Therefore, it is

necessary to seek for a lower order model whose behaviour is close to the original:

{
ẋm(t) = Amxm(t)+Bmu(t)

ym(t) = Cmxm(t),
(2)

such thatAm ∈ Rm×m, Bm, CT
m ∈ Rm×p, xm(t), ym(t) ∈ Rm, andm≪ n, while maintaining the most relevant properties of

the original system (1).
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Many existing model order reduction methods such as Padé approximation [11,28], balanced truncation [21], optimal

Hankel norm [9,10] and Krylov subspace based methods In particular the Arnoldi algorithm [4,5,18,19] takes advantage

of the sparsity of the large-scale model and has been extensively used for large problems; see [1,18,15]. When using

block Krylov subspaces, one projects the system matrices ofthe original problem onto the subspace

Km(A,B) = Range{B,AB, . . . ,Am−1B} generated by the columns of the matricesB,AB, . . . ,Am−1B and try to get a

sufficiently accurate reduced system with a moderate space dimension.

In this work, we will consider the rational block Krylov subspace which is a subspace ofRn generated by the columns of

the matricesB,(A− s2I)−1B, . . . ,
m

∏
i=2

(A− si I)
−1B, wheres2, . . . ,sm are some selected complex shifts. The original large

problem is projected onto this block Krylov subspace to get anew low order dynamical system that is close in some

sense to initial one. The rational Krylov subspace procedure was originally proposed by Ruhe [26] in the context of

approximating interior eigenvalues and have been used during the last years for model order reduction; see [11]. The

selection of good shifts is a crucial issue for the quality ofthe approximation. The use of rational Krylov spaces is

recognized as a powerful tool within model order reduction techniques for linear dynamical systems, however its success

has been hindered by the lack of a parameter-free procedure,which would effectively generate the sequence of shifts

used to build the space. Major efforts have been devoted to this question in the recent years; see for example [6,7,8,18,

20,22]. In the context ofH2-optimality reduction, an interesting attempt to provide an automatic selection has been

recently proposed in [13]. However, the computational and memory costs of this approach have not been fully assessed.

We also mention the early contribution due to Grimme [11] for determining a sequence of shifts. Another approach has

been recently developed in [6] to generate these parameters. In this paper, we propose an adaptive computation of the

shifts for building the rational space by minimizing, at each iteration of the process, some matrix norms. We will derive

some theoretical results such as upper bounds for the norm ofthe error on the transfer function. Some numerical tests

will be provided in order to compare our approach with other existing methods.

The paper is organized as follow: In Section 2, we introduce the rational block Arnoldi and give some new algebraic

relations. Section 3 is devoted to the selection of the shifts that are used in the construction of rational Krylov subspaces

and we give an error bound for the norm of the error on the transfer function. A new modified rational block Arnoldi is

proposed in Section 4 and some new Arnoldi-like relations are proposed. The last section is devoted to some numerical

tests and comparisons to some well known model order reduction methods.

We will use the following notations: the 2-norm of a vector orof a matrix will be denoted by‖ .‖ andIp is the identity

matrix of dimensionp× p.

2 The rational block Arnoldi method

In this section we will describe the rational block Arnoldi algorithm for computing an orthonormal basis of the rational

block Krylov subspace defined for a given matrixB∈ Rn×p as

Km(A,B) = Range({B,(A− s2I)−1B, . . . ,
m

∏
i=2

(A− siI)
−1B}). (3)

The rational block Arnoldi algorithm generates a sequence of n× p blocks {V1, . . . ,Vm} whose columns form an

orthonormal basis of the rational block Krylov subspaceKm(A,B). The algorithm is described as follows

c© 2016 BISKA Bilisim Technology
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Algorithm 1 The Rational Block Arnoldi Algorithm

–Input: A∈ Rn×n, B∈ Rn×p and a fixed integerm.
–ComputeV1 = QR(B), V1 = [V1].
–For j = 1, . . . ,m−1

1.Ṽj+1 = (A− sj+1I)−1Vj .
2.Orthogonalization step:

For i = 1,2, . . . , j
Hi, j =V⊤

i Ṽj+1;
Ṽj+1 = Ṽj+1− ViHi, j ;

End For
3.QR

(
Ṽj+1

)
=Vj+1H j+1, j .

4.V j+1 = [V j , Vj+1].
–End For.

The shiftss2, . . . ,sm will be chosen a priori or a posteriori during the process andthis will be explained later. Afterm

steps, the rational block Arnoldi algorithm generates a block matrixVm = [V1, . . . ,Vm] ∈ Rn×mp whose columns form an

orthonormal basis of the rational block Krylov subspaceKm(A,B) and an upper(m+1)p×mpblock Hessenberg matrix

H m whose blocksHi, j are defined by Algorithm1. Themp×mpupper block Hessenberg matrixHm is obtained from

H m by deleting its lastp-rows. In the sequel we will also use the restriction matrixTm defined byTm := V ∗
mAVm. We

first give some new algebraic relations generalising the well known Arnoldi like relation given for the classical case.

Proposition 1.LetVm, H m andHm be the matrices generated by the rational block Arnoldi algorithm and letSm be the

block-diagonal matrix blkdiag(s2Ip, . . . ,sm+1Ip) where{s2, ...,sm+1} denotes the set of shifts used in the algorithm. Then

we have the following relation

Tm := V
∗

mAVm = (Imp+HmSm−V
∗

mAVm+1Hm+1,mE∗
m)H

−1
m ,

where E∗m = [0p, . . . ,0p, Ip] = (e∗m⊗ Ip).

Proof.After msteps of the rational block Arnoldi algorithm, we have

(A− sj+1In)
−1Vj =

j+1

∑
i=1

ViHi, j f or j = 1, . . . ,m

then

Vj = A(
j+1

∑
i=1

ViHi, j)− sj+1(
j+1

∑
i=1

ViHi, j) f or j = 1, . . . ,m.

This gives the following relation

Vm = A(Vm+1H m)− (Vm+1H m)Sm,

which can also be written as

Vm = A(VmHm+Vm+1Hm+1,mE∗
m)− (VmHm+Vm+1Hm+1,mE∗

m)Sm.

Multiplying the last equality on the left byV ∗
m and using the fact that the blocksV1, . . . ,Vm+1 are orthonormal, we get the

identity

Imp= TmHm+V
∗

mAVm+1Hm+1,mE∗
m−HmSm.
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Finally, we can deduce the relation

Tm = (Imp+HmSm−V
∗

mAVm+1Hm+1,mE∗
m)H

−1
m ,

which ends the proof.

We can also state the following result

Proposition 2.Under the same assumptions as in Proposition1, we have

AVm = VmTm− (In−VmV
∗

m)AVm+1Hm+1,mE∗
mH

−1
m +Vm+1Hm+1,mE∗

mSmH
−1

m .

Proof.As stated in the previous proposition, we have

Vm = A(VmHm+Vm+1Hm+1,mE∗
m)− (VmHm+Vm+1Hm+1,mE∗

m)Sm.

Hence, we can write

AVmHm = Vm−AVm+1Hm+1,mE∗
m+VmHmSm+Vm+1Hm+1,mE∗

mSm

= Vm(Imp+HmSm)−AVm+1Hm+1,mE∗
m+Vm+1Hm+1,mE∗

mSm.

Using Proposition1, we obtain the following relation

AVmHm = Vm(TmHm+V
∗

mAVm+1Hm+1,mE∗
m)−AVm+1Hm+1,mE∗

m+Vm+1Hm+1,mE∗
mSm

= VmTmHm− (In−VmV
∗

m)AVm+1Hm+1,mE∗
m+Vm+1Hm+1,mE∗

mSm.

Therefore

AVm = VmTm− (In−VmV
∗

m)AVm+1Hm+1,mE∗
mH

−1
m +Vm+1Hm+1,mE∗

mSmH
−1

m .

3 An adaptive computation of the shifts

In this section, we will see somea posteriorianda priori procedures for selecting good shifts used during the construction

of the rational block Arnoldi bases. This is a crucial problem when using rational Krylov subspace methods.

3.1 An a priori selection of the shifts

We briefly describe ana priori way for selecting the complex shifts. This technique was introduced by Penzl [25] and

implemented in the routinelp para of the library LYAPACK [23]. The parameters are selected by solving the following

min-max problem; see [25,30,31] for more details.

{s1,s2, . . . ,sl}= arg min
{µ1,µ2,...,µl}∈C−

( max
λ∈σ(A)

| (λ − µ1) . . . (λ − µl ) |

| (λ + µ1) . . . (λ + µl ) |
), (4)

whereσ(A) denotes the spectrum of the matrixA.

As we generally are unable to compute the spectrum of matrixA, the classical approach is to cover it by a domain
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Ω ⊂ C− and then to solve the minimax problem with respect toΩ . In [24,25], a heuristic procedure was proposed to

find ”sub-optimal” parameters. This technique first generates a discrete set which approximates the spectrumσ(A) using

a pair of Arnoldi processes. The first one acts on the matrixA and generatesk+ Ritz values which tend to approximate

the eigenvalues far from the origin. The second process, acting on the matrixA−1, generatesk− Ritz values whose

inverses are close to the origin. The set of shift parametersis then chosen as a subset of these Ritz values. This procedure

is widely used in the ADI-type methods for solving large scale matrix equations such as Lyapunov or Sylvester matrix

equations; see for example [3,16]

3.2 A new adaptive selection of the shifts

In this subsection we propose an adaptive technique for computing the shifts that are used to build the rational Krylov

subspace. This procedure automatically generates the sequence of shifts during the construction of the rational Arnoldi

subspaces.

A classical way of relating the input to output is to use the transfer function (or impulse response in the time domain) of

the LTI system (1). Indeed, applying the Laplace transform

L ( f )(s) :=
∫ ∞

0
e−st f (t)dt,

to the dynamical system (1), we obtain {
sX(s) = AX(s)+BU(s)

Y(s) = CX(s)
,

whereX(s), Y(s) andU(s) are the Laplace transforms ofx(t), y(t) andu(t), respectively. EliminatingX(s) in the previous

two equations, we get

Y(s) = H(s)U(s),

where

H(s) =C(sIn−A)−1B. (5)

The rational functionH(s) is called the transfer function of the system (1). We recall that most model order reduction

techniques, for example the moment-matching approaches, are based on the approximation of this transfer function; see

[2,12,18]. If the number of state variables is very large, it would be very difficult to use the full system for simulation or

run-on-time control. So it is reasonable to look for lower order models that approximate the behavior of the original

models. This will be done by approximating the transfer function (5).

Let us writeH(s) =CX whereX ∈ Rn×p is the solution of the matrix linear system

(sIn−A)X = B. (6)

In order to approximate the transfer functionH, we will look for approximations of the solutionX of the multiple second

member linear system (6). Let Xm denotes the approximate solution obtained by the Galerkin projection method onto the

rational Krylov subspaceKm(A,B). This approximate solution is given by

Xm = Vm(sImp−Tm)
−1

V
∗

mB,
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whereTm = V ∗
mAVm, hence the transfer functionH is approximated by the low order transfer function corresponding to

the projected low order dynamical system and given by

Hm(s) =CVm(sImp−Tm)
−1

V
∗

mB,

which can be written as

Hm(s) =Cm(sImp−Tm)
−1Bm, (7)

whereCm =CVm andBm = V ∗
mB.

In the sequel, we will give an expression for the norm of the error H(s)−Hm(s), which will be used for the selection of

our shift parameters. First, we recall the normH∞ for a matrix-valued function

‖H‖∞ = sup
y∈R

σmax(H(iy)).

Indeed we have:

H(s)−Hm(s) =CX−CXm

=C(sIn−A)−1B−CXm

=C(sIn−A)−1[B− (sIn−A)Xm].

By applying the norm described above, we obtain

‖H(s)−Hm(s)‖ ≤ ‖C(sIn−A)−1‖‖Γm‖∞

whereΓm = B− (sIn −A)Xm. So, one way for selecting a new shift, is to choose those thatallows us to reach‖Γm‖∞.

Hence, our new shiftsm+1 will be chosen as

sm+1 = {s∈ R : σmax(Γm(is)) = ‖Γm‖∞}. (8)

As we will see in the numerical tests, this simple procedure gives good results.

3.3 An error expression for the transfer function

In the following proposition we give an upper bound for the 2-norm of the errorH(s)−Hm(s).

Proposition 3.Let H be the transfer function defined in (5) and let Hm be its approximation. Then, under the conditions

‖A‖< |s| , we have the follwing upper bound:

H(s)−Hm(s) =C(sIn−A)−1[− (In−VmV
∗

m)AVm+1Hm+1,mE∗
mH

−1
m +Vm+1Hm+1,mE∗

mSmH
−1

m

]
(sImp−Tm)

−1
V

∗
mB.

And

‖H(s)−Hm(s)‖≤
‖C‖‖Hm+1,m‖(‖A‖+‖Sm‖)‖H

−1
m ‖

(|s|−‖A‖)
‖(sImp−Tm)

−1
V

∗
mB‖.
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Proof.We have:

H(s)−Hm(s) =C(sIn−A)−1B−Cm(sImp−Tm)
−1Bm

=C(sIn−A)−1B−CVm(sImp−Tm)
−1

V
∗

mB

=C(sIn−A)−1[B− (sIn−A)Vm(sImp−Tm)
−1

V
∗

mB
]

=C(sIn−A)−1[B− (sVm−AVm)(sImp−Tm)
−1

V
∗

mB
]
.

Using Proposition2, we obtain

H(s)−Hm(s) =C(sIn−A)−1[B−
(
sVm−VmTm+(In−VmV

∗
m)AVm+1Hm+1,mE∗

mH
−1

m

−Vm+1Hm+1,mE∗
mSmH

−1
m

)
(sImp−Tm)

−1
V

∗
mB

]

=C(sIn−A)−1[B− (sVm−VmTm)(sImp−Tm)
−1

V
∗

mB−
(
(In−VmV

∗
m)

×AVm+1Hm+1,mE∗
mH

−1
m −Vm+1Hm+1,mE∗

mSmH
−1

m

)
(sImp−Tm)

−1
V

∗
mB

]

=C(sIn−A)−1[B−VmV
∗

mB−
(
(In−VmV

∗
m)AVm+1Hm+1,mE∗

mH
−1

m

−Vm+1Hm+1,mE∗
mSmH

−1
m

)
(sImp−Tm)

−1
V

∗
mB

]
.

As B is in the rational Krylov subspace (3), then we haveVmV ∗
mB= B. This gives the following expression

H(s)−Hm(s) =C(sIn−A)−1[− (In−VmV
∗

m)AVm+1Hm+1,mE∗
mH

−1
m

+Vm+1Hm+1,mE∗
mSmH

−1
m

]
(sImp−Tm)

−1
V

∗
mB.

By applying the 2-norm we obtain

‖H(s)−Hm(s)‖ ≤ ‖C(sIn−A)−1‖
[
‖(In−VmV

∗
m)AVm+1Hm+1,mE∗

mH
−1

m ‖

+ ‖Vm+1Hm+1,mE∗
mSmH

−1
m ‖

]
×‖(sImp−Tm)

−1
V

∗
mB‖.

Therefore , as‖A‖< |s| we obtain

‖H(s)−Hm(s)‖ ≤
‖C‖

(|s|−‖A‖)

[
‖(In−VmV

∗
m)AVm+1Hm+1,mE∗

mH
−1

m ‖

+ ‖Vm+1Hm+1,mE∗
mSmH

−1
m ‖

]
‖(sImp−Tm)

−1
V

∗
mB‖

furthermore asIn−VmV ∗
m is an orthogonal projection and‖Vm+1‖= 1, we get

‖H(s)−Hm(s)‖≤
‖C‖‖Hm+1,m‖(‖A‖+‖Sm‖)‖H

−1
m ‖

(|s|−‖A‖)
‖(sImp−Tm)

−1
V

∗
mB‖.

4 A modified rational block Arnoldi algorithm

In this section, we describe a generalization of the rational Krylov subspace, allowing some shifts to be equal to infinity.

At each stepj+1, the algorithm computes a new blockṼj+1 = (A−sj+1I)−1Vj if sj+1 is finite andṼj+1 =AVj if sj+1 =∞.

The modified rational Arnoldi algorithm is summarized as follows

c© 2016 BISKA Bilisim Technology
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Algorithm 2 Modified Rational Arnoldi Algorithm

–Input: A∈ Rn×n, B∈Rn×p, m.
–ComputeV1 = QR(B), V1 = [V1].
–For j = 1, . . . ,m−1

1.SetṼj+1 =

{
(A− sj+1I)−1Vj , i f s j+1 6= ∞; sj+1 byusing(8).
AVj , i f s j+1 = ∞

2.Orthogonalization step:
For i = 1,2, . . . , j

Hi, j =V⊤
i Ṽj+1;

Ṽj+1 = Ṽj+1− ViHi, j ;
End For

3.QR
(
Ṽj+1

)
=Vj+1H j+1, j .

4.V j+1 = [V j , Vj+1].
–End For.

The idea of including infinity as a possible interpolation point could be considered as a generalization of the extended block

Arnoldi algorithm [14,29]. This new version also allows one to obtain new simple Arnoldi-like relations that could be

used when deriving for example error bounds or residual error expressions and perturbation analysis. Using the modified

rational Arnoldi algorithm, we can state the following simple Arnoldi-like relations

Proposition 4.LetS = {s2, . . . ,sm} ⊂ C andVm = [V1, . . . ,Vm+1] ∈ R
n×(m+1)p as generated by running Algorithm2 for

one extra interpolation point at sm+1 = ∞. Then the following Arnoldi-like equations are satisfied

AVm = Vm+1T m

= VmTm+Vm+1Nm,

whereT m = V ∗
m+1AVm, Tm = V ∗

mAVm and Nm =V∗
m+1AVm.

Proof.From Algorithm2, it easy to see that the following relations are satisfied

Range([Vm AVm]) = Range(Vm+1), and V
∗

m+1Vm+1 = I(m+1)p.

Let us now prove that

Range(AVm)⊂ Range(Vm+1).

Indeed, afterm−1 iterations of the rational Arnoldi algorithm, the proof ofProposition1 gives us

Vm−1 = A(Vm−1Hm−1+VmHm,m−1E∗
m−1)− (Vm−1Hm−1+VmHm,m−1E∗

m−1)Sm−1,

then

AVm−1 = Vm−1H
−1

m−1−AVmHm,m−1E∗
m−1H

−1
m−1+(Vm−1Hm−1+VmHm,m−1E∗

m−1)Sm−1H
−1

m−1.

Using the fact thatRange(AVm) ⊂ Range(Vm+1), it is clear thatRange(AVm−1) ⊂ Range(Vm+1), andRange(AVm) ⊂

Range(Vm+1). Therefore we have

AVm = Vm+1T m, (9)
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for some matrixT m. SinceVm+1 is orthonormal, multiplying (9) on the left byV ∗
m+1, we getT m = V ∗

m+1AVm. We can

also see that

AVm = VmLm+Vm+1Nm (10)

for some matricesLm andNm. Therefore, multiplying (10) on the left byV ∗
m gives

Lm = Tm = V
∗

mAVm,

and multiplying (10) by V∗
m+1 we get

Nm =V∗
m+1AVm.

This completes the proof.

In the next proposition, we give a new expression of the errorH(s)−Hm(s) which could be used to compute a new upper

bound for the norm of the error on the transfer function.

Proposition 5.Under the hypothesis of Proposition4 , we have the following relation

H(s)−Hm(s) =C(sIn−A)−1Vm+1Nm(sImp−Tm)
−1

V
∗

mB, (11)

and we also have the upper bounds for the norm of the error given by

‖H(s)−Hm(s)‖ ≤
‖C‖

|s|−‖A‖
‖Nm‖‖(sImp−Tm)

−1
V

∗
mB‖ (12)

≤
‖C‖‖B‖‖A‖
|s|−‖A‖

‖(sImp−Tm)
−1‖ (13)

Proof.

H(s)−Hm(s) =C(sIn−A)−1B−Cm(sImp−Tm)
−1Bm

=C(sIn−A)−1B−CVm(sImp−Tm)
−1

V
∗

mB

=C(sIn−A)−1[B− (sIn−A)Vm(sImp−Tm)
−1

V
∗

mB
]

=C(sIn−A)−1[B− (sVm−AVm)(sImp−Tm)
−1

V
∗

mB
]
.

We use the result of Proposition4 and we obtain

H(s)−Hm(s) =C(sIn−A)−1[B− (sVm−VmTm−Vm+1Nm)(sImp−Tm)
−1

V
∗

mB
]

=C(sIn−A)−1[B−VmV
∗

mB+Vm+1Nm(sImp−Tm)
−1

V
∗

mB
]
.

Using the fact thatB is in the rational block Krylov subspaceKm(A,B), it follows that

H(s)−Hm(s) =C(sIn−A)−1Vm+1Nm(sImp−Tm)
−1

V
∗

mB.

The relations (12) are easily derived from the preceding relation.
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5 Numerical experiments

In this section, we give some numerical examples to show the effectiveness of our adaptive rational block Arnoldi method

denoted byARAM when compared to the rational block Arnoldi methodRAM with a priori choice of shifts using the Matlab

functionlp para [23], the iterative rational Krylov algorithmIRKA method proposed in [13] and with the methodRKSM

introduced in [6]. All the experiments were performed on a 1.3GHz Intel Core i5 laptop with 8Gb of RAM. The algorithms

were coded in Matlab R2010a. For all the tests, we setB = C⊤ = rand(n, p). We used various benchmark matrices as

reported in Table1. We first compared our proposedARAM method , with the Rational Arnoldi MethodRAM for wich we

Table 1: Information for the test problems.

Matrix A Size n ‖A‖F cond(A)
fdm 2500 2.9996e+005 1.0235e+003
fom 1006 1.8283e+04 1000
beam 348 5.6430e+003 3.7420e+007
CDplayer 120 2.3095e+05 1.8149e+04

usedan priori choice of shifts calculated by the routinelp para from [23]. In the first experiment, we considered thefom

model and we comparedARAM and the rational block Arnoldi when using the shifts computed via lp para with m= 8

and 16.

Fig. 1: Thefom model: Comparison ofARAM andRAM with lp para. The errorσmax(H(iω)−Hm(iω)) for ω ∈ [1,106]
with m= 8 (left) andm= 16 (right) (p=3).

In the second experiment, we compared the performances ofARAM andIRKA for thefdm model. In Figure2, we plotted

the curve corresponding to the errors for the norm of the transfer functions for the methodIRKA andARAM. For this

experiment, we considered thefdm model from Table1 where the matrixA is of dimensionn= 2500. The algorithmIRKA

starts with a set of parameters chosen randomly as suggestedin [13].

We also compared the performance ofARAM to the recent rational Krylov subspace methodRKSM developed in [6] for

SISO systems (p = 1). In this example we consider theCDplayer model. The methodRKSM starts with the two input

shifts:s(0)0 = 10−1 ands(1)0 = 800+ i5.104 as suggested in [6] and the obtained results are shown in Figure3.

For our last experiment, we considered the adaptive rational Arnoldi algorithm with the modified version as described

Algorithm 2. This algorithm will be named Modified Adaptive Rational Block Arnoldi MethodMARAM. As a test model,
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Fig. 2: Thefdm model: Comparison of ARAM and IRKA. The errorσmax(H(iω)−Hm(iω)) for ω ∈ [1,106] with m= 8
(left) andm= 16 (right).

Fig. 3: TheCDplayer model . Comparison ofARAM andRKSM. The errorσmax(H(iω)−Hm(iω)) for ω ∈ [1,106] with
m= 8 (left) andm= 16 (right).

we used thebeam model from Table1 and we setm= 5 and p = 3. The plots in Figure4 show the original system

σmax(H(iω)) and its approximationσmax(Hm(iω)) (left plot), and the associated exact errorσmax(H(iω)−Hm(iω)) for

ω ∈ [1,106].

6 Conclusion

In the present paper, we considered new projection methods for model reduction in large scale linear dynamical systems.

The proposed methods are Krylov subspace type methods basedon the rational block Arnoldi algorithm. We proposed

a new procedure for selecting good parameter shifts needed in the proposed rational algorithm and we also give some

new algebraic relations. A modified version of the rational block Arnoldi algorithm was also proposed and new simple

Arnoldi-like relations were developed. The numerical results show that the method is very attractive for sparse problems.
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Fig. 4: Thebeam model: Left:‖H(iω)‖2 and it’s approximation‖Hm(iω)‖2. Right: the exact error‖H(iω)−Hm(iω)‖2
for ω ∈ [1,106] with m= 5 andp= 3.
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[28] Y. Shamash,Stable reduced-order models using Padé type approximations, IEEE. Trans. Automatic Control. AC-19 (1974) 615-

616.

[29] V. Simoncini,A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comp., 29(3):1268–1288,

2007.

[30] E.L. Wachspress,Iterative solution of elliptic systems, and applications to the neutron diffusion equations of reactor physics,

Prentice-Hall, Inc., Englewood Cliffs, N.J. (1966) xiv+299.

[31] E.L. Wachspress,The ADI minimax problem for complex spectra, Academic Press, Boston, MA in Iterative Methods for Large

Linear Systems, (1990) 251-271.

c© 2016 BISKA Bilisim Technology

www.ntmsci.com

	Introduction
	The rational block Arnoldi method
	An adaptive computation of the shifts
	A modified rational block Arnoldi algorithm
	Numerical experiments
	Conclusion

