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Abstract: Let C be a nonempty closed convex subset of a real Hilbert space H . Let {Tn } : C → H be a sequence of nearly

nonexpansive mappings such that F :=
⋂∞

i=1
F

(
Ti

)
6= ;. Let V : C → H be a γ-Lipschitzian mapping and F : C → H be a

L-Lipschitzian and η-strongly monotone operator. This paper deals with a modified iterative projection method for

approximating a solution of the hierarchical fixed point problem. It is shown that under certain approximate assumptions on the

operators and parameters, the modified iterative sequence {xn } converges strongly to x∗ ∈ F which is also the unique solution of

the following variational inequality: 〈(
ρV −µF

)
x∗, x −x∗

〉
≤ 0, ∀x ∈F.

As a special case, this projection method can be used to find the minimum norm solution of above variational inequality; namely,

the unique solution x∗ to the quadratic minimization problem: x∗ = ar gmi nx∈F ‖x‖2. The results here improve and extend some

recent corresponding results of other authors.
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1 Introduction

Throughout this paper, we assume that H is a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉

and ‖·‖, respectively, and C is a nonempty closed convex subset of H . The set of fixed points of a mapping T is

denoted by F i x(T ), that is, F i x(T ) = {x ∈ H : T x = x}. Below we gather some basic definitions and results which are

needed in the subsequent sections. Recall that a mapping T : C → H is called L-Lipschitzian if there exits a constant

L > 0 such that
∥∥T x −T y

∥∥ ≤ L
∥∥x − y

∥∥, ∀x, y ∈ C . In particular, if L ∈ [0,1), then T is said to be a contraction; if L = 1,

then T is called a nonexpansive mapping. T is called nearly nonexpansive [1,2] with respect to a fixed sequence {an}

in [0,∞) with an → 0 if
∥∥T n x −T n y

∥∥≤
∥∥x − y

∥∥+an , ∀x, y ∈C and n ≥ 1.

A mapping F : C → H is called η-strongly monotone if there exists a constant η≥ 0 such that

〈
F x −F y, x − y

〉
≥ η

∥∥x − y
∥∥2

, ∀x, y ∈C .

In particular, if η= 0, then F is said to be monotone.

It is well known that for any x ∈ H , there exists a unique point y0 ∈C such that

∥∥x − y0

∥∥= inf
{∥∥x − y

∥∥ : y ∈C
}

,
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where C is a nonempty closed convex subset of H . We denote y0 by PC x, where PC is called the metric projection of

H onto C . It is easy to see PC is a nonexpansive mapping.

Let S : C → H be a nonexpansive mapping. The following problem is called a hierarchical fixed point problem: Find

x∗ ∈ F i x(T ) such that 〈
x∗

−Sx∗, x − x∗
〉
≥ 0, x ∈ F i x(T ). (1)

The problem (1) is equivalent to the following fixed point problem: to find an x∗ ∈C that satisfies x∗ = PF i x(T )Sx∗. We

know that F i x(T ) is closed and convex, so the metric projection PF i x(T ) is well defined.

It is known that the hierarchical fixed point problem (1) links with some monotone variational inequalities and

convex programming problems; see [3,4,5,6,7,8]. Various methods have been proposed to solve the hierarchical

fixed point problem; see Moudafi in [10], Mainge and Moudafi in [11], Yao and Liou in [12], Xu in [13], Marino and Xu

in [14] and Bnouhachem and Noor in [15].

In 2006, Marino and Xu [16] introduced the viscosity iterative method for nonexpansive mappings. They considered

the following general iterative method:

xn+1 =αnγ f (xn)+ (1−αn A)T xn , ∀n ≥ 0, (2)

where f is a contraction, T is a nonexpansive mapping and A is a strongly positive bounded linear operator on H ;

that is, there is a constant γ> 0 such that 〈Ax, x〉 ≥ γ‖x‖ , ∀x ∈ H . They proved that the sequence {xn} generated by (2)

converges strongly to the unique solution of the variational inequality

〈(
γ f − A

)
x∗, x − x∗

〉
≤ 0, ∀x ∈C , (3)

which is the optimality condition for the minimization problem

min
x∈C

1

2
〈Ax, x〉−h(x)

where h is a potential function for γ f , i.e., h′(x) = γ f (x) for all x ∈ H .

On the other hand, in 2010, Tian [4] proposed an implicit and an explicit schemes on combining the iterative

methods of Yamada [9] and Marino and Xu [16]. He also proved the strong convergence of these two schemes to a

fixed point of a nonexpansive mapping T defined on a real Hilbert space under suitable conditions. In the same year,

Ceng et al. [17] investigated the following iterative method:

xn+1 = PC

[
αnρV xn +

(
1−αnµF

)
T xn

]
, ∀n ≥ 0, (4)

where F is a L-Lipschitzian and η-strongly monotone operator with constants L,η > 0 and V is a γ-Lipschitzian

(possibly non-self) mapping with constant γ≥ 0 such that 0 < µ<
2η

L2 and 0 ≤ ργ< 1−
√

1−µ
(
2η−µL2

)
. They proved

that under some approximate assumptions on the operators and parameters, the sequence {xn } generated by (4)

converges strongly to the unique solution of the variational inequality

〈(
ρV −µF

)
x∗, x − x∗

〉
≤ 0, ∀x ∈ F i x(T ). (5)

Fix a sequence {an } in [0,∞) with an → 0 and let {Tn} be a sequence of mappings from C into H . Then, the sequence

{Tn} is called a sequence of nearly nonexpansive mappings [18,19] with respect to a sequence {an} if

∥∥Tn x −Tn y
∥∥≤

∥∥x − y
∥∥+an , ∀x, y ∈C , ∀n ≥ 1. (6)
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It is obvious that the sequence of nearly nonexpansive mappings is a wider class of sequence of nonexpansive

mappings. Recently, in 2012, Sahu et al. [19] introduced the following iterative process for the sequence of nearly

nonexpansive mappings {Tn } defined by (6)

xn+1 = PC

[
αnρV xn +

(
1−αnµF

)
Tn xn

]
, ∀n ≥ 1. (7)

They proved that the sequence {xn } generated by (7) converges strongly to the unique solution of the variational

inequality (5).

Very recently, in 2013, Wang and Xu [20] investigated an iterative method for a hierarchical fixed point problem by

{
yn =βnSxn +

(
1−βn

)
xn ,

xn+1 = PC

[
αnρV xn +

(
I −αnµF

)
T yn

]
, ∀n ≥ 0

(8)

where S : C → C is a nonexpansive mapping. They proved that under some approximate assumptions on the

operators and parameters, the sequence {xn} generated by (8) converges strongly to the unique solution of the

variational inequality (5). In addition to all these methods, similar methods are considered in several papers, see [24,

25,26,27,28].

In this paper, motivated by the work of Wang and Xu [20] and Sahu et al. [19] and by the recent work going in this

direction, we introduce a modified iterative projection method and prove a strong convergence theorem based on

this method for computing an element of the set of common fixed points of a sequence {Tn} of nearly nonexpansive

mappings defined by (6) which is also an unique solution of the variational inequality (5). The presented method

improves and generalizes many known results for solving variational inequality problems and hierarchical fixed

point problems, see, e.g., [4,16,17,19,20] and relevant references cited therein.

2 Preliminaries

Let {xn} be a sequence in a Hilbert space H and x ∈ H . Throughout this paper, xn → x denotes that {xn} strongly

converges to x and xn* x denotes that {xn} weakly converges to x.

Let C be a nonempty subset of a real Hilbert space H and T1,T2 : C → H be two mappings. We denote B (C ), the

collection of all bounded subsets of C . The deviation between T1 and T2 on B ∈ B (C ), denoted by DB (T1,T2) , is

defined by

DB (T1,T2) = sup {‖T1x −T2x‖ : x ∈ B} .

The following lemmas will be used in the next section.

Lemma 1. [18] Let C be a nonempty closed bounded subset of a Banach space X and {Tn } be a sequence of nearly

nonexpansive self-mappings on C with a sequence {an} such that DC (Tn ,Tn+1) < ∞. Then, for each x ∈ C, {Tn x}

converges strongly to some point of C. Moreover, if T is a mapping from C into itself defined by T z = limn→∞ Tn z for all

z ∈C, then T is nonexpansive and limn→∞DC (Tn ,T ) = 0.

Lemma 2. [17] Let V : C → H be a γ-Lipschitzian mapping with a constant γ≥ 0 and let F : C → H be a L-Lipschitzian

and η-strongly monotone operator with constants L,η> 0. Then for 0≤ ργ<µη,

〈(
µF −ρV

)
x −

(
µF −ρV

)
y, x − y

〉
≥

(
µη−ργ

)∥∥x − y
∥∥2

, ∀x, y ∈C .

That is, µF −ρV is strongly monotone with coefficient µη−ργ.
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Lemma 3. [9] Let C be a nonempty subset of a real Hilbert space H . Suppose that λ∈ (0,1) and µ> 0. Let F : C → H be a

L-Lipschitzian and η-strongly monotone operator on C. Define the mapping G : C → H by

Gx = x −λµF x, ∀x ∈C .

Then, G is a contraction that provided µ<
2η

L2 . More precisely, for µ ∈

(
0,

2η

L2

)
,

∥∥Gx −G y
∥∥≤ (1−λν)

∥∥x − y
∥∥ , ∀x, y ∈C ,

where ν= 1−
√

1−µ
(
2η−µL2

)
.

Lemma 4. [21] Let C be a nonempty closed convex subset of a real Hilbert space H , and T be a nonexpansive self-

mapping on C . If F i x (T ) 6= ;, then I −T is demiclosed; that is whenever {xn } is a sequence in C weakly converging to

some x ∈C and the sequence {(I −T ) xn } strongly converges to some y, it follows that (I −T ) x = y. Here I is the identity

operator of H .

Lemma 5. [22] Assume that {xn } is a sequence of nonnegative real numbers satisfying the conditions

xn+1 ≤ (1−αn ) xn +αnβn , ∀n ≥ 1

where {αn } and
{
βn

}
are sequences of real numbers such that

(i) {αn } ⊂ [0,1] and
∑

∞
n=1αn =∞

(ii) limsupn→∞βn ≤ 0.

Then limn→∞ xn = 0.

3 Main results

Now, we give the main results in this paper.

Theorem 1. Let C be a nonempty closed convex subset of a real Hilbert space H . Let S : C → H be a nonexpansive

mapping and {Tn} be a sequence of nearly nonexpansive mappings with the sequence {an} such that

F :=
⋂
∞
n=1 F i x (Tn) 6= ;. Suppose that T x = limn→∞ Tn x for all x ∈C and F i x (T ) = F. Let V : C → H be a γ-Lipschitzian

mapping, F : C → H be a L-Lipschitzian and η-strongly monotone operator such that these coefficients satisfy

0 < µ<
2η

L2 , 0 ≤ ργ< ν, where ν= 1−
√

1−µ
(
2η−µL2

)
. For an arbitrarily initial value x1, consider the sequence {xn} in

C generated by {
yn = PC

[
βnSxn +

(
1−βn

)
xn

]
,

xn+1 = PC

[
αnρV xn +

(
I −αnµF

)
Tn yn

]
, n ≥ 1,

(9)

where {αn } and
{
βn

}
are sequences in [0,1] satisfying the conditions:

(C1) lim
n→∞

αn = 0 and
∞∑

n=1

αn =∞;

(C2) lim
n→∞

an

αn
= 0, lim

n→∞

βn

αn
= 0, lim

n→∞

|αn −αn−1|

αn
= 0 and

lim
n→∞

∣∣βn −βn−1

∣∣
αn

= 0;

(C3) lim
n→∞

DB (Tn ,Tn+1) = 0 and lim
n→∞

DB (Tn ,Tn+1)

αn
= 0 for each B ∈B (C ) .

Then, the sequence {xn} converges strongly to x∗ ∈F, where x∗ is the unique solution of the variational inequality

〈(
ρV −µF

)
x∗, x − x∗

〉
≤ 0, ∀x ∈F. (10)
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In particular, the point x∗ is the minimum norm fixed point of T, that is x∗ is the unique solution of the quadratic

minimization problem

x∗
= ar g mi nx∈F ‖x‖2 .

Proof. Since the mapping T is defined by T x = limn→∞ Tn x for all x ∈ C , by Lemma 1, T is a nonexpansive mapping,

and F i x (T ) 6= ;. Moreover, since the operator µF − ρV is
(
µη−ργ

)
-strongly monotone by Lemma 2, we get the

uniqueness of the solution of the variational inequality (10). Let denote this solution by x∗ ∈ F i x (T ) =F.

Now, we divide our proof into six steps.

Step 1. First we show that the sequences {xn } is bounded. From hypothesis (C2), without loss of generality, we may

assume that βn ≤αn , for n ≥ 1. Hence, we get limn→∞βn = 0. Let p ∈ F and tn =αnρV xn +
(
I −αnµF

)
Tn yn . Then we

have

∥∥yn −p
∥∥=

∥∥PC

[
βn Sxn +

(
1−βn

)
xn

]
−PC p

∥∥

≤
∥∥βnSxn +

(
1−βn

)
xn −p

∥∥

≤
(
1−βn

)∥∥xn −p
∥∥+βn

∥∥Sxn −p
∥∥

≤
(
1−βn

)∥∥xn −p
∥∥+βn

∥∥Sxn −Sp
∥∥+βn

∥∥Sp −p
∥∥

≤
∥∥xn −p

∥∥+βn

∥∥Sp −p
∥∥ , (11)

and

∥∥xn+1 −p
∥∥=

∥∥PC tn −PC p
∥∥

≤
∥∥tn −p

∥∥

=
∥∥αnρV xn +

(
I −αnµF

)
Tn yn −p

∥∥

≤αn

∥∥ρV xn −µF p
∥∥+

∥∥(
I −αnµF

)
Tn yn −

(
I −αnµF

)
Tn p

∥∥

≤αnργ
∥∥xn −p

∥∥+αn

∥∥ρV p −µF p
∥∥

+ (1−αnν)
(∥∥yn −p

∥∥+an

)
. (12)

From (11) and (12), we get

∥∥xn+1 −p
∥∥≤αnργ

∥∥xn −p
∥∥+αn

∥∥ρV p −µF p
∥∥

+ (1−αnν)
(∥∥xn −p

∥∥+βn

∥∥Sp −p
∥∥+an

)

≤
(
1−αn

(
ν−ργ

))∥∥xn −p
∥∥+αn

(∥∥ρV p −µF p
∥∥+

∥∥Sp −p
∥∥+an

)

≤
(
1−αn

(
ν−ργ

))∥∥xn −p
∥∥

+αn

(
ν−ργ

)[ 1(
ν−ργ

)
(∥∥ρV p −µF p

∥∥+
∥∥Sp −p

∥∥+ an

αn

)]
. (13)

Note that
an

αn
→ 0 as n →∞, so there exists a constant M > 0 such that

∥∥ρV p −µF p
∥∥+

∥∥Sp −p
∥∥+ an

αn
≤ M , ∀n ≥ 1.

Thus, from (13) we have

∥∥xn+1 −p
∥∥≤

(
1−αn

(
ν−ργ

))∥∥xn −p
∥∥+αn

(
ν−ργ

) M(
ν−ργ

) .
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By induction, we get
∥∥xn+1 −p

∥∥≤ max

{∥∥x1 −p
∥∥ ,

M(
ν−ργ

)
}

.

Hence, we obtain that {xn } is bounded. So, the sequences
{

yn

}
,{T xn },{Sxn},{V xn } and

{
F T yn

}
are bounded.

Step 2. Now, we show that limn→∞ ‖xn+1 − xn‖= 0. By using the iteration (9), we have

∥∥yn − yn−1

∥∥=
∥∥PC

[
βnSxn +

(
1−βn

)
xn

]
−PC

[
βn−1Sxn−1 −

(
1−βn−1

)
xn−1

]∥∥

≤βn ‖Sxn −Sxn−1‖+
(
1−βn

)
‖xn − xn−1‖

+
∣∣βn −βn−1

∣∣ (‖Sxn−1‖+‖xn−1‖)

≤ ‖xn − xn−1‖+
∣∣βn −βn−1

∣∣M1, (14)

where M1 is a constant such that supn≥1 {‖Sxn‖+‖xn‖} ≤ M1. Also, by using the inequality (14), we get

‖xn+1 − xn‖ ≤ ‖PC tn −PC tn−1‖

≤
∥∥αnρV xn +

(
I −αnµF

)
Tn yn

−αn−1ρV xn−1 +
(
I −αn−1µF

)
Tn−1yn−1

∥∥

≤
∥∥αnρV (xn − xn−1)+ (αn −αn−1)ρV xn−1 +

(
I −αnµF

)
Tn yn

−
(
I −αnµF

)
Tn yn−1 +Tn yn−1 −Tn−1 yn−1

+αn−1µF Tn−1yn−1 −αnµF Tn yn−1

∥∥

≤αnργ‖xn − xn−1‖+γ |αn −αn−1|‖V xn−1‖

+ (1−αnν)
∥∥Tn yn −Tn yn−1

∥∥+
∥∥Tn yn−1 −Tn−1 yn−1

∥∥

+µ
∥∥αn−1F Tn−1yn−1 −αn F Tn yn−1

∥∥

≤αnργ‖xn − xn−1‖+γ |αn −αn−1|‖V xn−1‖

+ (1−αnν)
[∥∥yn − yn−1

∥∥+an

]
+

∥∥Tn yn−1 −Tn−1 yn−1

∥∥

+µ
∥∥αn−1

(
F Tn−1 yn−1 −F Tn yn−1

)
− (αn −αn−1)F Tn yn−1

∥∥

≤αnργ‖xn − xn−1‖+γ‖V xn−1‖+ (1−αn v)‖xn − xn−1‖

+ (1−αn v)
∣∣βn −βn−1

∣∣M1 + (1−αn v) an +DB (Tn ,Tn−1)

+µαn−1LDB (Tn ,Tn−1)+|αn −αn−1|
∥∥F Tn yn−1

∥∥

≤
(
1−αn

(
v −ργ

))
‖xn − xn−1‖

+|αn −αn−1|
(
γ‖V xn−1‖+

∥∥F Tn yn−1

∥∥)

+
(
1+µαn−1L

)
DB (Tn ,Tn−1)+

∣∣βn −βn−1

∣∣M1 +an

≤
(
1−αn

(
v −ργ

))
‖xn − xn−1‖+αn

(
v −ργ

)
δn ,

where

δn =
1(

ν−ργ
)
[ (

1+µαn−1L
) DB (Tn ,Tn−1)

αn

+

(∣∣∣αn−αn−1

αn

∣∣∣+
∣∣∣βn−βn−1

αn

∣∣∣
)

M2 +
an

αn

]
,

and

sup
n≥1

{
γ‖V xn−1‖+

∥∥F Tn yn−1

∥∥ , M1

}
≤ M2.

Since limsupn→∞δn ≤ 0, it follows from Lemma 5, conditions (C2) and (C3) that

‖xn+1 − xn‖→ 0 as n →∞. (15)
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Step 3. Next, we show that limn→∞ ‖xn −T xn‖ = 0 as n →∞. Note that

‖xn −Tn xn‖ ≤ ‖xn − xn+1‖+‖xn+1 −Tn xn‖

≤ ‖xn − xn+1‖+‖PC tn −PC Tn xn‖

≤ ‖xn − xn+1‖+
∥∥αnρV xn +

(
I −αnµF

)
Tn yn −Tn xn

∥∥

≤ ‖xn − xn+1‖+
∥∥αn

(
ρV xn −µF Tn yn

)
+Tn yn −Tn xn

∥∥

≤ ‖xn − xn+1‖+αn

∥∥ρV xn −µF Tn yn

∥∥+
∥∥yn − xn

∥∥+an

≤ ‖xn − xn+1‖+αn

∥∥ρV xn −µF Tn yn

∥∥+βn ‖Sxn − xn‖+an .

Since an → 0, by using (15) and condition (C1), we obtain

lim
n→∞

‖xn −Tn xn‖= 0.

Hence, we have

‖xn −T xn‖≤ ‖xn −Tn xn‖+‖Tn xn −T xn‖

≤ ‖xn −Tn xn‖+DB (Tn ,T ) → 0 as n →∞.

Step 4. Next, we show that limsupn→∞

〈(
ρV −µF

)
x∗, xn − x∗

〉
≤ 0, where x∗ is the unique solution of variational

inequality (10). Since the sequence {xn } is bounded, it has a weak convergent subsequence
{

xnk

}
such that

limsup
n→∞

〈(
ρV −µF

)
x∗, xn − x∗

〉
= limsup

k→∞

〈(
ρV −µF

)
x∗, xnk

− x∗
〉

.

Let xnk
* x̃, as k →∞. It follows from Lemma 4 that x̃ ∈ F i x (T ) =F. Hence

limsup
n→∞

〈(
ρV −µF

)
x∗, xn − x∗

〉
=

〈(
ρV −µF

)
x∗, x̃ − x∗

〉
≤ 0.

Step 5. Now, we show that the sequence {xn } converges strongly to x∗ as n →∞. By using the iteration (9), we have

∥∥xn+1 − x∗
∥∥2

=
〈

PC tn − x∗, xn+1 − x∗
〉

=
〈

PC tn − tn , xn+1 − x∗
〉
+

〈
tn − x∗, xn+1 − x∗

〉
. (16)

Since the metric projection PC satisfies the inequality

〈
x −PC x, y −PC x

〉
≤ 0, ∀x ∈ H , y ∈C ,

and from (16), we get

∥∥xn+1 − x∗
∥∥2

≤
〈

tn − x∗, xn+1 − x∗
〉

=
〈
αnρV xn +

(
I −αnµF

)
Tn yn − x∗, xn+1 − x∗

〉

=
〈
αn

(
ρV xn −µF x∗

)
+

(
I −αnµF

)
Tn yn

−
(
I −αnµF

)
Tn x∗, xn+1 − x∗

〉

=αnρ
〈
V xn −V x∗, xn+1 − x∗

〉
+αn

〈
ρV x∗

−µF x∗, xn+1 − x∗
〉

+
〈(

I −αnµF
)

Tn yn −
(
I −αnµF

)
Tn x∗, xn+1 − x∗

〉
.
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Hence, from (11) and Lemma 3, we obtain

∥∥xn+1 − x∗
∥∥2

≤αnργ
∥∥xn − x∗

∥∥∥∥xn+1 − x∗
∥∥+αn

〈
ρV x∗

−µF x∗, xn+1 − x∗
〉

+ (1−αnν)
(∥∥yn − x∗

∥∥+an

)∥∥xn+1 − x∗
∥∥

≤αnργ
∥∥xn − x∗

∥∥∥∥xn+1 − x∗
∥∥+αn

〈
ρV x∗

−µF x∗, xn+1 − x∗
〉

+ (1−αnν)
(∥∥xn − x∗

∥∥+βn

∥∥Sx∗
− x∗

∥∥+an

)∥∥xn+1 − x∗
∥∥

=
(
1−αn

(
v −ργ

))∥∥xn − x∗
∥∥∥∥xn+1 − x∗

∥∥

+αn

〈
ρV x∗

−µF x∗, xn+1 − x∗
〉

+ (1−αn v)βn

∥∥Sx∗
− x∗

∥∥∥∥xn+1 − x∗
∥∥

+ (1−αn v) an

∥∥xn+1 − x∗
∥∥

≤

(
1−αn

(
v −ργ

))

2

(∥∥xn − x∗
∥∥2

+
∥∥xn+1 − x∗

∥∥2
)

+αn

〈
ρV x∗

−µF x∗, xn+1 − x∗
〉
+βn

∥∥Sx∗
− x∗

∥∥∥∥xn+1 − x∗
∥∥

+an

∥∥xn+1 − x∗
∥∥ ,

which implies that

∥∥xn+1 − x∗
∥∥2

≤

(
1−αn

(
ν−ργ

))
(
1+αn

(
ν−ργ

))
∥∥xn − x∗

∥∥2

+
2αn(

1+αn

(
ν−ργ

))
〈
ρV x∗

−µF x∗, xn+1 − x∗
〉

+
2βn(

1+αn

(
ν−ργ

))
∥∥Sx∗

− x∗
∥∥∥∥xn+1 − x∗

∥∥

+
2an(

1+αn

(
ν−ργ

))
∥∥xn+1 − x∗

∥∥

≤
(
1−αn

(
ν−ργ

))∥∥xn − x∗
∥∥2

+αn

(
ν−ργ

)
θn ,

where

θn =
2αn(

1+αn

(
ν−ργ

))(
ν−ργ

)
[〈

ρV x∗−µF x∗, xn+1 − x∗
〉
+

βn

αn
M3

+
an

αn
‖xn+1 − x∗‖

]
,

and

sup
n≥1

{∥∥Sx∗
− x∗

∥∥∥∥xn+1 − x∗
∥∥}

≤ M3.

Since
βn

αn
→ 0 and

an

αn
→ 0, we get

limsup
n→∞

θn ≤ 0.

So, it follows from Lemma 5 that the sequence {xn} generated by (9) converges strongly to x∗ ∈ F which is the unique

solution of variational inequality (10).

Step 6. Finally, since the point x∗ is the unique solution of variational inequality (10), in particular if we take V = 0

and F = I in the variational inequality (10), then we get

〈
−µx∗, x − x∗

〉
≤ 0, ∀x ∈F.

So we have 〈
x∗, x∗

− x
〉
=

〈
x∗, x∗

〉
−

〈
x∗, x

〉
≤ 0 =⇒

∥∥x∗
∥∥2

≤
∥∥x∗

∥∥‖x‖ .
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Hence, x∗ is the unique solution to the quadratic minimization problem x∗ = ar g mi nx∈F ‖x‖2. This completes the

proof.

From Theorem 1, we can deduce the following interesting corollaries.

Corollary 1. Let C be a nonempty closed convex subset of a real Hilbert space H . Let S : C → H be a nonexpansive

mapping and {Tn} be a sequence of nonexpansive mappings such that F 6= ;. Suppose that T x = limn→∞ Tn x for all

x ∈ C. Let V : C → H be a γ-Lipschitzian mapping, F : C → H be a L-Lipschitzian and η-strongly monotone operator

such that these coefficients satisfy 0 < µ <
2η

L2 , 0 ≤ ργ < ν, where ν = 1−

√
1−µ

(
2η−µL2

)
. For an arbitrarily initial

value x1 ∈C , consider the sequence {xn } in C generated by (9) where {αn} and
{
βn

}
are sequences in [0,1] satisfying the

conditions (C1)-(C3) of Theorem 1 except the condition limn→∞
an

αn
= 0. Then, the sequence {xn} converges strongly to

x∗ ∈F, where x∗ is the unique solution of variational inequality (10).

Let λi > 0 (i = 1,2,3, . . . N ) such that
∑N

i=1 λi = 1 and T1,T2, . . . TN be nonexpansive self mappings on C such that⋂N
i=1

F i x (Ti ) 6= ;. Then,
∑N

i=1 λi Ti is nonexpansive self mapping on C (see [23, Proposition 6.1]).

Corollary 2. Let C be a nonempty closed convex subset of a real Hilbert space H . Let λi > 0 (i = 1,2,3, . . . N ) such that∑N
i=1 λi = 1 and S,T1,T2, . . . TN be nonexpansive self mappings on C such that

⋂N
i=1

F i x (Ti ) 6= ;. Let V : C → H be a

γ-Lipschitzian mapping, F : C → H be a L-Lipschitzian and η-strongly monotone operator such that these coefficients

satisfy 0 < µ <
2η

L2 , 0 ≤ ργ < ν, where ν = 1−

√
1−µ

(
2η−µL2

)
. For an arbitrarily initial value x1 ∈ C , consider the

sequence {xn} in C generated by

{
yn =βnSxn +

(
1−βn

)
xn ,

xn+1 = PC

[
αnρV xn +

(
I −αnµF

)∑N
i=1 λi Ti yn

]
, ∀n ≥ 1

(17)

where {αn} and
{
βn

}
are sequences in [0,1] satisfying the conditions (C1) and (C2) of Theorem 1 except the condition

limn→∞
an

αn
= 0. Then, the sequence {xn } in C generated by (17) converges strongly to x∗ ∈

⋂N
i=1

F i x (Ti ), where x∗ is the

unique solution of variational inequality

〈(
ρV −µF

)
x∗, x − x∗

〉
≤ 0, ∀x ∈

N⋂

i=1

F i x (Ti ) .

Remark. Our results can be reduced to some corresponding results in the following ways:

(1) In our iterative process (9), if we take S = I (I is the identity operator of C ), then we derive the iterative process (7)

which is studied by Sahu et. al. [19]. Therefore, Theorem 1 generalizes the main result of Sahu et. al. [19, Theorem

3.1]. Also, Corollary 1 and Corollary 2 extends the Corollary 3.4 and Theorem 4.1 of Sahu et. al. [19], respectively.

So, our results extends the corresponding results of Ceng et. al. [17] and of many other authors.

(2) If we take S as a nonexpansive self mapping on C and Tn = T for all n ≥ 1 such that T is a nonexpansive mapping

in (9), then we get the iterative process (8) of Wang and Xu. [20]. Hence, Theorem 1 generalizes the main result of

Wang and Xu [20, Theorem 3.1]. So, our results extend and improve the corresponding results of [4,?].

(3) The problem of finding the solution of variational inequality (10), is equivalent to finding the solutions of

hierarchical fixed point problem 〈
(I −S) x∗, x∗

− x
〉
≤ 0,∀x ∈F,

where S = I −
(
ρV −µF

)
.
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