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Abstract: In this paper, some results, which are related to well passgjrcontrollability and optimal control of a beam equatame
presented. In order to obtain the optimal control functimaximum principle is employed. Performance index funci®defined as
guadratic functional of displacement and velocity and a@istudes a penalty in terms of control function. The solutad the control
problem is formulated by using Galerkin expansion. Obwirgsults are given in the table and graphical forms.

Keywords: Beam, optimal control, maximum principle.

1 Introduction

Control of the undesirable vibrations in the mechanicatesys is very active research area due to its wide application
in science and engineering. Some studies in the literatumébe summarized as follows, but not limited td}-[9]. The
difference of the present study than studies existing @rdiure that in this study control function depends to time a
space variable and it allows to use the smart materials., Adsthe present study is subjected to displacement boundary
conditions. Particulary, in this paper, existence and ugigss of the solution to a beam equation is presented by usin
energy integral method. Later, the controllability of tlystem is discussed. Also, optimal control function for tieaim
equation system in one space dimension is obtained by empgl&aximum principle(for more details about maximum
principle[s,6,7,8,9]).Performance index functional of the control problemsists of a weighted quadratic functional of
the dynamic responses of the system to be minimized and dtpésian defined as the control spent in the control
process. By means of the maximum principle, the optimal robqroblem is transformed to the a coupled system of
partial differential equations in terms of state, adjointl@ontrol variables subject to the boundary, initial anthiaal
conditions. The explicit solution of the problem is sought@alerkin expansion method. By usitMATLAB, numerical
results are given demonstrate the robustness and efficidiieg proposed control algorithm.

This paper is organized as follows: in the next section, ewatitical formulation and wellposedness of the control
problem is given. In section 3, an adjoint equation is intreed and a maximum principle is given as a theorem. In
section 4, the solution of the optimal control problem isriofated by means of Galerkin expansion method. In section
5, some numerical examples are presented. Finally, in tiadation the main results of the paper is given.

2 Mathematical formulation of the control problem
The second order linear hyperbolic beam equation in oneefiarension can be presented as folld@[

Ut + aU: + Bu = ux+ C(X,t) 1)
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wherex € [0, /] is the space variableg [0,t¢] is the time variable; is the pre-determined final timejs the displacement
function,a > 3 > 0 are known constant§(xt) is the control function to be determined in optimal way. Eyji§ subject
to the following boundary conditions, which are named apldsement conditions

u(0,t) =Ta(t) (and) u(l,t)="Ta(t) (2)
and initial conditions
u(x,0) = up(x), W (x,0) =u1(X). 3)

The following assumptions are made on the solution:

C(x,t),T1(t), T2(t) are continious functions i8= (0,¢) x (0,t;), (4a)

ur(x) € L2(0,0), ug(x) € HY(0,¢) = {up(x) € L%(0,4) : u‘;’?—(xx) eL?(0,0)} (4b)
diu diu .

uamawggv 17051525 (4C)

inwhichS  L?(.#) andL?(.#) denote the Hilbert space of real-valued square-integfabtgions defined in the domain
. in the Lebesgue sense with usual inner product and norm ddfine

1€IP=<. > <&n>s= [nds.
S
Under these assumptions, the system H}%3) has a solution in the class of analytic functiofg][ For the uniqueness
of solution to EqsX)-(3), let us introduce the following lemma.

Lemma 1. Let u satisfy the system given by Ed3-(3) corresponding to the control{x,t) and C(x,t) is the optimal
control function corresponding to optimal displacemeht@onsider the following difference functions,

AC(X,t) =Ce(X,t) —C°(X,1), Au(xt) = ug(X,t) —u’(x,t). (5)
Note thatAu(x,t) satisfies following equation

Augt + aAu; + BAU— Auyx = AC(X,t) (6)

and following homogeneous boundary conditions

Au(x,t)=0 at x=0,¢ (7)
also, zero initial conditions
Au(x,t) =0, Au(xt)=0 at t=0. (8)
Then
¢ I
/Auz(x,tf)dx: o(g), /Autz(x,tf)dx: o(g)
0 0
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and
te

‘
//Auz(x,t)dxdt: o(g).
00
o(€) is a quantity such that
m(o(e)/[¢]) = 0.

li
e—0

Proof. Let (x1,t1), ..., (Xp,tp) be P arbitrary points in the open regid,/) x (0,ts) ande; are the coefficients that the
rectangles; : [xj,xj + /€j] x [tj,tj +,/&j] do not have any intersection for<l j < P. Let us define the following energy
integral like in [7,11],

E(t) =

NI =

YA
/{(Aut)erB(Au)z— 02(Au)? ) dx )
0

Eq.(©) can be written in the following form;

NI =

t t ¢
E(t):/di—(;)déz //{ZAunAut+2[3AuAut72D2AuAut}dxdt (10)
0 00

With integration by parts and using homogeneous boundanglitions given by Eq4), Eq.(L0) becomes

t ¢

t o
EQ) = | [{Aux+BAu—?(Au)}Audxdt= | [{AC(xt)— adu }Audxds
/1 /1

t ¢
g//AC(x,t)Aut(x,é)dxdé.
00

Applying the Cauchy-Schwartz inequality to the space irgk@ne obtains

brd 121 4 1/2 ! 4 1/2
E(t) < 0/ { O/ (Aut)zdx} { O/ (AC(x, 5)2dx] 45 < 0/ E2(5) { 0/ (AC(x, 5)2] ds. (11)
Taking the sup of both sides of Eql) leads to
SUPE(t) < SupEY/2(t) /t { j (AC(% 6)2dx} T SUpEY/2(t) _iO(ef’/ 4 (12)
J L <

whereQO(r) is a quantity such that

lim (O(r)/r) = constant
r—0+

By means of Eq12), the following inequality is observed for eath [0, t¢]

0 < EY2(t) < O(54).
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Because p4 > 1 [9], the following equality is obtained

E(t) =o(e). (13)
Because the coefficients of Etj) @re bounded away from zero, the conclusion ofltesma 1 is obtained from Eq13).
Corollary 1. It is concluded froni.emma 1 that

lim Au(xt)=0
AC(x1)—0

Namely, Eq$1)-(3) has a unique solution.

3 Maximum principle

The aim of the optimal control problem is to determine anroptn voltage functiorC(x,t) to minimize the dynamic
response of the beamtatwith the minimum expenditure of the control voltage. Theref performance index is defined
by the weighted dynamic response of the beam and the expeadit the control ove(0,t;). The set of admissible
control functions is given by

Cad = {C(x.1)[C(x,t) €LZ(S), [C(x.t)] <co< oo} (14)

and the performance index of the controlled system is defisddllows;

1
F(C(x,1)) :/ulu (X,tf) + H2U2(X, tr) dx+//u3C2xt (15)
0

whereps, p >0, 1+ Uz 20 and ps > 0 are weighting constants. The first integral in B§)(is the modified
dynamic response of the beam and last integral representag¢hsure of the total control energy that accumulates over
(0,tr). The optimal control of a beam is expressed as

S (C(xt)=_min _7(C(xt)) (16)

C(%1)€Cag

subject to the Eqslf-(3). In order to achieve the maximum principle, let us introelan adjoint variable (x,t) satisfying
the following equation

Vit — OVt + BV = Vg (17)
and subjects to the following homogeneous boundary canmditi
v(x,t)=0 at x=0 and v(xt)=0 at x=¢=1 (18)
and terminal conditions
vi(Xts) —av(Xts) = 2uu(xts), v(Xti) = 2w (X t) at tf =1 (29)

A maximum principle in terms of Hamiltonian functional isrded as a necessary condition for the optimal control
function. It is proved inp] that under some convexity assumption, which are satisfyed(15), on performance index
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function, maximum principle is also sufficient conditiom fbe optimal control function. Note thatis unique solution to
the system defined by Eq$){(3). By observing Eqf) in Lemma 1, it can be concluded that wheris unique solution to
the system, the corresponding control funct@rmust be unique. The maximum principle gives an explicit ezpion for
the optimal control function and relates the optimal cortvdhe state variable implicitly. Then, the maximum priplei

can be given as follows:

Theorem 1. (Maximum principle) The maximization problem states that i

A6V .C (0] = max A[tv,Clx)] (20)

in whichv = v(x;t) satisfies the adjoint system given by E§j§-(19) and the Hamiltonian function is defined by
H[t;v,C(x,1)] = vC(x,t) — usC2(x,t), (21)
then
S xY] < ZICx 1], VC(xt) €Cag (22)

where C(x,t) is the optimal control function.

Proof. Before starting the proof, let us introduce an operator gnddjoint operator as follows:
Y(U =ur+au+Bu—Uxx, Y (V)=Vi—avi+ BV — V. (23)

The deviations are given lyu=u—u°, Au = u — uf in whichu° is the optimal displacement. The operaYgiu) =
AC(x,t) is subject to the following boundary conditions

Au(x,t)=0 at x=0,1 (24)
and initial conditions
Au(x,t) =Aw(x,t)=0 at t=0. (25)
Consider the following functional

/Ol/otf {vY(Au)—AuY*(v)}dtdx: /Ol/Otf {vAC(x,t)}dtdx (26)

Integrating the left side of EQRE) twice integration by parts with respectt@nd four times integration by parts with
respect t, using Eqs24)-(25), one observes the following relation:

1 s -1
/0./0 {vY(Au)—AuY’*(v)}dtdx:/O (v(x,tf)Aut(x,tf)—Au(x,tf)[vt(x,tf)—av(x,tf)])dx (27)
In view of Eq.(L9), Eq.27) becomes

1 ,tf 1
/0/0 {vY(Au)—AuY*(v)}dtdx:—Z/O (LaU(X, t)AU(X ) + Lot (%t ) Atk (X, £ ) dx (28)
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Consider the difference of the performance index
A JICxY] = ZCxt)] - Z[C°(x1)] (29)
= [} {palecte) —u ]+ el - o o) i

+ /Otf /Olug[cz(x,t) — % (x,t)]dtdx

Let us expand the?(x,tf) andu?(x,ts ) to Taylor series around’z(x,tf) andufz(x,tf), respectively. Then, one observes
the following
W2(x, 1) — U (X, b ) = 2u° (%t )AU(X, tf) + T, (30a)

W (x,t) — U (X, tr) = 208 (X, )AL (X, t) + T (30b)

wherer = 2(Au)? + higher order terms- 0 andr; = 2(Au)? + higher order terms- 0. Substituting Eq30) into Eq.Q9)
gives

1
A _Z[C(xt)| = ./0 {ul[2u°(x,tf)Au(x,tf)+r]

31
F [ 200 (.t ) At (Xt ) + rt]}dx—i— /Otf /01 13[C(x,1)2 — C(x,t)°"]dxdt o
From Eq. £8) and because giir + Lor; > 0, one obtains
A ZICxt)] > /Ol/otf { “VAC(X,t) + paCA(x,t) — u3C°2(X,t)}dt >0 32)
which leads to
A 7ICx1)] = /O ' /O ¥ {[ugcz(x,t) —vC(x,t)] — [sC (X, 1) — vC"(x,t]}dxdtz 0 33)
that is,
At v°,C] > st v,Cl.
Hence, we obtain
JIC> Z[C°], VYCe&Cuq
Therefore, the optimal control function is given by
Cixt) = V;ﬁ”. (34)

The existence and uniqueness of the solution to adjoinesysdefined by Eqsl{)-(19), can be obtained by similar way
to Egs.(Q)-(3). Then, the state system given by Ed(3) is controllable.
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4 Solution method

The solution of the optimal control problem is sought asdieB: Let the adjoint variable(x,t) satisfying Eqs17)-(19)
be expanded in Fourier sine series as

vxt) =Y n(t)dn(¥) (35)
n=1
where the orthonormal eigenfunctions
dn(X) = V2sin(AnX), An=nm (36)

satisfy boundary conditions given by Efg. Substituting Eq35) into Eq.(7), multiplying both sides withpn(x) and
integrating both sides ové®, 1) lead to the following lumped parameter system(LPS) in time

bh—abh+B6—OAZ=0, for n=1,2,.... (37)
The general solution of LPS given by E§7] is given by

6Bn(t) = anKkn(t) + bnin(t), (38)

Kn(t) = exp((a+ /a2 —4(B2—A))t/2), n(t) =exp((a—/a2—4(B2—A2)t/2) (39)

andap andby, are constants to be determined. Next, we solve the equdtithie @ptimal motion. In order to convert the
nonhomogeneous boundary conditions to homogeneous ehes,define following relation

where

w=u—XTp(t)+ (1 —Xx)Ta(t). (40)

Then, the system given by Egb){(3) becomes

3

Eh+am+Bw—@x:C(x,t)—Zy.(x,t) (41)
in which
yi(x,t) =Xy (t) + (L= x)T{ (1), (42)
Y(x,t) = axTy(t) + a(1—Xx)T1 (1), (43)
y3(X,t) = BXTo(t) + B(L—X)Ta(t). (44)

Eq.@1) subject to the new homogeneous boundary conditions
w(x,t)=0 at x=0,1 (45)
and initial conditions
@ (x,0) = Up(X) — T2(0) — (1=x)Ty(0), @ (x,0) = u1(x) — T3(0) — (1—x)T1(0) (46)
Due to Eq.40), one observes the terminal conditions of adjoint equéigrfL9) as follows:

Vi(X,t) — av(X,ts) = 2up[m(X,ts) + XTo(ts) + (1 — X) Ta(ts)], (47a)
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V(X,tr) = —2p2[@ (X tr) +XTa(tr) + (1= x)T1 (). (47b)

Now, let us obtain the solution of the motion of equation bings-ourier sine series

X1)= S Un(t)dn(x) (48)
=1
in which Qn(t) satisfies the following LPS
3
(n(t) — adn(t) + Bun(t) — Yn(AT = v — ;W(t), forn=12.... (49)

where

/let¢n (x)dx ¥ (t) /VZXt¢n

/ysxt¢n (X% i) /0xt¢n
The general solution of Edl9) is given by

t

1
l,Un(t):CnKn(—t)—l—dnln(t)—i—mO/ A(t—8) — Kn(s—1))( Zy* (50)

in which ¢, andd, are constants to be determined by means of45).Remaining unknown constargsandb, appearing
in Eq.(0) are evaluated by using the terminal conditions given by4g;.

5 Numerical results and discussions

In this section, the theoretical results obtained in theviptes sections are illustrated to show the effectiveness an
capability of the proposed control algorithm for the beamatpn in one space dimension. In the tables and graphics,
following cases are taken into account;

Forthecasea Ti(t)=e™', To(t)=e", up(X ) V2sinmx) and ug(x) = e,
Forthe caseb Ti(t) =0,Ty(t) =€, (x) e, and u(x) = mv2sin7x).

Also, in the numerical calculationgz = 10~* for controlled casepus = 10° for uncontrolled casep; = pp = 1,
a =0.2, B =0.1. Letus define the dynamic response of the system and spenabldontontrol process as follows,
respectively;

1 to1
D(ts) :/ (%,t) + (. t)]dx, € = //02 x,t)dxdt (51)
0

The dynamic response of the system is presented in fafdlethe case a and b. Observing the tablét is concluded

for the case a and b that as the penaityon the expenditure of control decreases, the dynamic respoithe beam
decreases corresponding to an increase in the controidanth the case b, the vibrations in the system are induced by
larger displacement/initial excitations than the caseheeré&fore, it is seemed from tahlehat the value of the dynamic
response of the system corresponding to the case a is lasghthalynamic response of the beam corresponding to
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case b. Also, as a parallel result to this, the differencevben dynamic responses for the case b is larger than the
corresponding difference for the case a. A comparison ottmtrolled and uncontrolled dynamic responses in table
presents substantial decreasing as a result of the propos&dl method. The un/controlled displacements and vtidsc
are plotted at the midpoint of the beanxat 0.5 since their maximum occurs at this point at 0 owing to displacement
and initial conditions. Therefore, the midpoint gives aeddbout the transient behavior of the system. By obserkimg t
Fig.1, it seems that the uncontrolled displacement digdagrowing motion while the controlled displacement gréigua
decreases in case of a. Same observation is valid for thertnetied velocity plotted in Fig.2 and the velocity is effeely
suppressed because of control. For the case b, the dispatamd velocity of the beam is plotted in Fig.3 and Fig.4,
respectively. Let us focus on the band-width in Fig.1-2 aigs$ B-4. Because the displacement/inital conditionsceffe
case b is larger than corresponding to the case a, the bahafthe Figs.3-4 is larger than the band-width of Figs.1-2.
By taking into consideration the all tables and figures, itdscluded that introduced control method for the system is
effective and applicable for the these kind of the systems.

6 Conclusion

In this paper, existence and uniqueness of the solutionetb&fam equation is presented. Also, the controllabilityhef t
system is discussed. Moreover, optimal control functianbigam equation system in one space dimension is obtained
by employing Maximum principle. Performance index funoabof the control problem consists of a weighted quadratic
functional of the dynamic responses of the system to be niweidnand a penalty term defined as the control spent in the
control process. By means of the maximum principle, thenogltcontrol problem is transformed to the a coupled system
of partial differential equations in terms of state, adj@nd control variables subject to the boundary, initial texchinal
conditions. The explicit solution of the problem is sought@®alerkin expansion method. By usiiATLAB, numerical
results are given demonstrate the robustness and efficidiieg proposed control algorithm.
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Fig. 1: Uncontrolled and controlled displacementxat (0.5) for case a.
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Fig. 2: Uncontrolled and controlled velocitiesxat (0.5) for case a.
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Fig. 3: Uncontrolled and controlled displacementsat (0.5) for case b.
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Fig. 4: Uncontrolled and controlled velocitiesxat (0.5) for case b.

Table 1: The values of7(t;) at& = O for different values ofi3 in case a and b.

U3 92 ) U3 gb &P
108 352 66x 10°° 108 945 17x10°8
104 350 65x 10°° 104 942 18x10°*
102 257 0.5 102 692 1.3
10° 1.15 21 10° 3.13 56
102 7.7x10°3 24 102 0.03 67
104 24x10°5 26 104 10x10° 76
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