
NTMSCI 4, No. 1, 147-158 (2016) 147

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2016217825

Control of an equation by maximum principle
Kenan Yildirim and Orhan Kutlu

Department of Mathematics Education, Mus Alparslan University, Mus, Turkey

Received: 28 September 2015, Revised: 6 November 2015, Accepted: 19 November 2015
Published online: 18 April 2016.

Abstract: In this paper, some results, which are related to well posedness, controllability and optimal control of a beam equation, are
presented. In order to obtain the optimal control function,maximum principle is employed. Performance index functionis defined as
quadratic functional of displacement and velocity and alsoincludes a penalty in terms of control function. The solution of the control
problem is formulated by using Galerkin expansion. Obtained results are given in the table and graphical forms.
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1 Introduction

Control of the undesirable vibrations in the mechanical systems is very active research area due to its wide applications

in science and engineering. Some studies in the literature can be summarized as follows, but not limited to: [1]-[9]. The

difference of the present study than studies existing in literature that in this study control function depends to time and

space variable and it allows to use the smart materials. Also, in the present study is subjected to displacement boundary

conditions. Particulary, in this paper, existence and uniqueness of the solution to a beam equation is presented by using

energy integral method. Later, the controllability of the system is discussed. Also, optimal control function for the beam

equation system in one space dimension is obtained by employing Maximum principle(for more details about maximum

principle[5,6,7,8,9]).Performance index functional of the control problem consists of a weighted quadratic functional of

the dynamic responses of the system to be minimized and a penalty term defined as the control spent in the control

process. By means of the maximum principle, the optimal control problem is transformed to the a coupled system of

partial differential equations in terms of state, adjoint and control variables subject to the boundary, initial and terminal

conditions. The explicit solution of the problem is sought by Galerkin expansion method. By usingMATLAB, numerical

results are given demonstrate the robustness and efficiencyof the proposed control algorithm.

This paper is organized as follows: in the next section, mathematical formulation and wellposedness of the control

problem is given. In section 3, an adjoint equation is introduced and a maximum principle is given as a theorem. In

section 4, the solution of the optimal control problem is formulated by means of Galerkin expansion method. In section

5, some numerical examples are presented. Finally, in the last section the main results of the paper is given.

2 Mathematical formulation of the control problem

The second order linear hyperbolic beam equation in one space dimension can be presented as follows[10]:

utt +αut +βu= uxx+C(x, t) (1)
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wherex∈ [0, ℓ] is the space variable,t ∈ [0, t f ] is the time variable,t f is the pre-determined final time,u is the displacement

function,α > β > 0 are known constants,C(x, t) is the control function to be determined in optimal way. Eq.(1) is subject

to the following boundary conditions, which are named as displacement conditions

u(0, t) = T1(t) (and) u(1, t) = T2(t) (2)

and initial conditions

u(x,0) = u0(x), ut(x,0) = u1(x). (3)

The following assumptions are made on the solution:

C(x, t),T1(t),T2(t) are continious functions inS= (0, ℓ)× (0, t f ), (4a)

u1(x) ∈ L2(0, ℓ), u0(x) ∈ H1(0, ℓ) = {u0(x) ∈ L2(0, ℓ) :
u0(x)

∂x
∈ L2(0, ℓ)} (4b)

u,
∂ ju
∂x j ,

∂ j u
∂ t j ∈ S, j = 0,1,2, (4c)

in whichS⊂ L2(S ) andL2(S ) denote the Hilbert space of real-valued square-integrablefunctions defined in the domain

S in the Lebesgue sense with usual inner product and norm defined by

‖ ζ ‖2=< ζ ,ζ >, < ζ ,η >S=
∫

S

ζηdS .

Under these assumptions, the system Eqs.(1)-(3) has a solution in the class of analytic functions [12]. For the uniqueness

of solution to Eqs.(1)-(3), let us introduce the following lemma.

Lemma 1. Let uε satisfy the system given by Eqs.(1)-(3) corresponding to the control Cε(x, t) and C◦(x, t) is the optimal

control function corresponding to optimal displacement u◦. Consider the following difference functions,

∆C(x, t) =Cε (x, t)−C◦(x, t), ∆u(x, t) = uε(x, t)−u◦(x, t). (5)

Note that∆u(x̄, t̄) satisfies following equation

∆utt +α∆ut +β ∆u−∆uxx= ∆C(x, t) (6)

and following homogeneous boundary conditions

∆u(x, t) = 0 at x= 0, ℓ (7)

also, zero initial conditions

∆u(x, t) = 0, ∆ut(x, t) = 0 at t = 0. (8)

Then
ℓ

∫

0

∆u2(x, t f )dx= o(ε),
ℓ

∫

0

∆u2
t (x, t f )dx= o(ε)
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and
t f
∫

0

ℓ
∫

0

∆u2(x, t)dxdt= o(ε).

o(ε) is a quantity such that

lim
ε→0

(o(ε)/|ε|) = 0.

Proof. Let (x1, t1), ...,(xP, tP) be P arbitrary points in the open region(0, ℓ)× (0, t f ) andε j are the coefficients that the

rectanglesRj : [x j ,x j +
√ε j ]× [t j , t j +

√ε j ] do not have any intersection for 1≤ j ≤ P. Let us define the following energy

integral like in [7,11],

E(t) =
1
2

ℓ
∫

0

{

(∆ut)
2+β (∆u)2−∇2(∆u)2}dx. (9)

Eq.(9) can be written in the following form;

E(t) =

t̄
∫

0

dE(δ )
dδ

dδ =
1
2

t
∫

0

ℓ
∫

0

{

2∆utt∆ut +2β ∆u∆ut −2∇2∆u∆ut
}

dxdt. (10)

With integration by parts and using homogeneous boundary conditions given by Eq.(7), Eq.(10) becomes

E(t̄) =

t
∫

0

ℓ
∫

0

{

∆utt +β ∆u−∇2(∆u)
}

∆utdxdt=

t
∫

0

ℓ
∫

0

{

∆C(x, t)−α∆ut
}

∆utdxdδ

≤
t

∫

0

ℓ
∫

0

∆C(x, t)∆ut (x,δ )dxdδ .

Applying the Cauchy-Schwartz inequality to the space integral, one obtains

E(t)≤
t

∫

0

[ ℓ
∫

0

(∆ut)
2dx

]1/2[ ℓ
∫

0

(∆C(x,δ )2dx

]1/2

dδ ≤
t

∫

0

E1/2(δ )
[ ℓ
∫

0

(∆C(x,δ )2
]1/2

dδ . (11)

Taking the sup of both sides of Eq.(11) leads to

supE(t)≤ supE1/2(t)

t
∫

0

[ ℓ
∫

0

(∆C(x,δ )2dx

]1/2

dδ = supE1/2(t)
P

∑
i=1

O(ε5/4
i ) (12)

whereO(r) is a quantity such that

lim
r→0+

(O(r)/r) = constant.

By means of Eq.(12), the following inequality is observed for eacht ∈ [0, t f ]

0≤ E1/2(t)≤ O(ε5/4).
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Because 5/4> 1 [9], the following equality is obtained

E(t) = o(ε). (13)

Because the coefficients of Eq.(1) are bounded away from zero, the conclusion of theLemma 1 is obtained from Eq.(13).

Corollary 1. It is concluded fromLemma 1 that

lim
∆C(x,t)→0

∆u(x, t) = 0

Namely, Eqs.(1)-(3) has a unique solution.

3 Maximum principle

The aim of the optimal control problem is to determine an optimum voltage functionC(x, t) to minimize the dynamic

response of the beam att f with the minimum expenditure of the control voltage. Therefore, performance index is defined

by the weighted dynamic response of the beam and the expenditure of the control over(0, t f ). The set of admissible

control functions is given by

Cad = {C(x, t)|C(x, t) ∈ L2(S), |C(x, t)| ≤ c0 < ∞} (14)

and the performance index of the controlled system is definedas follows;

J (C(x, t)) =

1
∫

0

[µ1u2(x, t f )+ µ2u2
t (x, t f )]dx+

t f
∫

0

ℓ
∫

0

µ3C
2(x, t)dt (15)

whereµ1,µ2 ≥ 0, µ1 + µ2 6= 0 and µ3 > 0 are weighting constants. The first integral in Eq.(15) is the modified

dynamic response of the beam and last integral represents the measure of the total control energy that accumulates over

(0, t f ). The optimal control of a beam is expressed as

J (C◦(x, t)) = min
C(x,t)∈Cad

J (C(x, t)) (16)

subject to the Eqs.(1)-(3). In order to achieve the maximum principle, let us introduce an adjoint variableν(x, t) satisfying

the following equation

νtt −ανt +β ν = νxx (17)

and subjects to the following homogeneous boundary conditions

ν(x, t) = 0 at x= 0 and ν(x, t) = 0 at x= ℓ= 1 (18)

and terminal conditions

νt(x, t f )−αν(x, t f ) = 2µ1u(x, t f ), ν(x, t f ) =−2µ2ut(x, t f ) at t f = 1. (19)

A maximum principle in terms of Hamiltonian functional is derived as a necessary condition for the optimal control

function. It is proved in [5] that under some convexity assumption, which are satisfied by Eq.(15), on performance index
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function, maximum principle is also sufficient condition for the optimal control function. Note thatu is unique solution to

the system defined by Eqs.(1)-(3). By observing Eq.(6) in Lemma 1, it can be concluded that whenu◦ is unique solution to

the system, the corresponding control functionC◦ must be unique. The maximum principle gives an explicit expression for

the optimal control function and relates the optimal control to the state variable implicitly. Then, the maximum principle

can be given as follows:

Theorem 1. (Maximum principle) The maximization problem states that if

H [t;ν◦,C◦(x, t)] = max
C(x,t)∈Cad

H [t;ν,C(x, t)] (20)

in whichν = ν(x, t) satisfies the adjoint system given by Eqs.(17)-(19) and the Hamiltonian function is defined by

H [t;ν,C(x, t)] = νC(x, t)− µ3C
2(x, t), (21)

then

J [C◦(x, t)]≤ J [C(x, t)], ∀C(x, t) ∈Cad (22)

where C◦(x, t) is the optimal control function.

Proof.Before starting the proof, let us introduce an operator and its adjoint operator as follows:

ϒ (u) = utt +αut +βu−uxx, ϒ ∗(ν) = νtt −ανt +β ν −νxx. (23)

The deviations are given by∆u= u−u◦, ∆ut = ut −u◦t in whichu◦ is the optimal displacement. The operatorϒ (∆u) =

∆C(x, t) is subject to the following boundary conditions

∆u(x, t) = 0 at x= 0,1 (24)

and initial conditions

∆u(x, t) = ∆ut(x, t) = 0 at t = 0. (25)

Consider the following functional

∫ 1

0

∫ t f

0

{

νϒ (∆u)−∆uϒ ∗(ν)
}

dtdx=
∫ 1

0

∫ t f

0

{

ν∆C(x, t)

}

dtdx. (26)

Integrating the left side of Eq.(26) twice integration by parts with respect tot and four times integration by parts with

respect tox, using Eqs.(24)-(25), one observes the following relation:

∫ 1

0

∫ t f

0

{

νϒ (∆u)−∆uϒ ∗(ν)
}

dtdx=
∫ 1

0

(

ν(x, t f )∆ut(x, t f )−∆u(x, t f )
[

νt(x, t f )−αν(x, t f )
]

)

dx. (27)

In view of Eq.(19), Eq.(27) becomes

∫ 1

0

∫ t f

0

{

νϒ (∆u)−∆uϒ ∗(ν)
}

dtdx=−2
∫ 1

0

(

µ1u(x, t f )∆u(x, t f )+ µ2ut(x, t f )∆ut(x, t f )
)

dx. (28)
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Consider the difference of the performance index

∆J [C(x, t)] = J [C(x, t)]−J [C◦(x, t)] (29)

=

∫ 1

0

{

µ1[u
2(x, t f )−u◦

2
(x, t f )]+ µ2[u

2
t (x, t f )−u◦

2

t (x, t f )]

}

dx

+

∫ t f

0

∫ 1

0
µ3[C

2(x, t)−C◦2
(x, t)]dtdx

Let us expand theu2(x, t f ) andu2
t (x, t f ) to Taylor series aroundu◦

2
(x, t f ) andu◦

2

t (x, t f ), respectively. Then, one observes

the following

u2(x, t f )−u◦
2
(x, t f ) = 2u◦(x, t f )∆u(x, t f )+ r, (30a)

u2
t (x, t f )−u◦

2

t (x, t f ) = 2u◦t (x, t f )∆ut(x, t f )+ rt (30b)

wherer = 2(∆u)2 + higher order terms> 0 andrt = 2(∆ut)
2 + higher order terms> 0. Substituting Eq.(30) into Eq.(29)

gives

∆J [C(x, t)] =
∫ 1

0

{

µ1[2u◦(x, t f )∆u(x, t f )+ r]

+ µ2[2u◦t (x, t f )∆ut(x, t f )+ rt ]

}

dx+
∫ t f

0

∫ 1

0
µ3[C(x, t)

2−C(x, t)◦
2
]dxdt.

(31)

From Eq. (28) and because ofµ1r + µ2rt > 0, one obtains

∆J [C(x, t)]≥
∫ 1

0

∫ t f

0

{

−ν∆C(x, t)+ µ3C
2(x, t)− µ3C

◦2
(x, t)

}

dt ≥ 0 (32)

which leads to

∆J [C(x, t)]≥
∫ 1

0

∫ t f

0

{

[µ3C
2(x, t)−νC(x, t)]− [µ3C

◦2
(x, t)−νC◦(x, t]

}

dxdt≥ 0 (33)

that is,

H [t;ν◦,C]≥ H [t;ν,C].

Hence, we obtain

J [C]≥ J [C◦], ∀C∈Cad

Therefore, the optimal control function is given by

C(x, t) =
ν◦(x, t)

2µ3
. (34)

The existence and uniqueness of the solution to adjoint system, defined by Eqs.(17)-(19), can be obtained by similar way

to Eqs.(1)-(3). Then, the state system given by Eqs.(1)-(3) is controllable.

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 1, 147-158 (2016) /www.ntmsci.com 153

4 Solution method

The solution of the optimal control problem is sought as follows: Let the adjoint variableν(x, t) satisfying Eqs.(17)-(19)

be expanded in Fourier sine series as

ν(x, t) =
∞

∑
n=1

θn(t)ϕn(x) (35)

where the orthonormal eigenfunctions

ϕn(x) =
√

2sin(λnx), λn = nπ (36)

satisfy boundary conditions given by Eq.(18). Substituting Eq.(35) into Eq.(17), multiplying both sides withϕn(x) and

integrating both sides over(0,1) lead to the following lumped parameter system(LPS) in time

θ̈n−αθ̇n+β θn−θλ 2
n = 0, for n= 1,2, . . . . (37)

The general solution of LPS given by Eq. (37) is given by

θn(t) = anκn(t)+bnιn(t), (38)

where

κn(t) = exp
(

(α +
√

α2−4(β 2−λ 2
n))t/2

)

, ιn(t) = exp
(

(α −
√

α2−4(β 2−λ 2
n ))t/2

)

(39)

andan andbn are constants to be determined. Next, we solve the equation of the optimal motion. In order to convert the

nonhomogeneous boundary conditions to homogeneous ones, let us define following relation

ϖ = u− xT2(t)+ (1− x)T1(t). (40)

Then, the system given by Eqs.(1)-(3) becomes

ϖtt +αϖt +β ϖ −ϖxx =C(x, t)−
3

∑
i=1

γi(x, t) (41)

in which

γ1(x, t) = xT′′
2 (t)+ (1− x)T′′

1 (t), (42)

γ2(x, t) = αxT′
2(t)+α(1− x)T′

1(t), (43)

γ3(x, t) = βxT2(t)+β (1− x)T1(t). (44)

Eq.(41) subject to the new homogeneous boundary conditions

ϖ(x, t) = 0 at x= 0,1 (45)

and initial conditions

ϖ(x,0) = u0(x)−T2(0)− (1− x)T1(0), ϖt(x,0) = u1(x)−T ′
2(0)− (1− x)T′

1(0) (46)

Due to Eq.(40), one observes the terminal conditions of adjoint equationEq.(19) as follows:

νt (x, t f )−αν(x, t f ) = 2µ1[ϖ(x, t f )+ xT2(t f )+ (1− x)T1(t f )], (47a)
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ν(x, t f ) =−2µ2[ϖt(x, t f )+ xT′
2(t f )+ (1− x)T′

1(t f )]. (47b)

Now, let us obtain the solution of the motion of equation by using Fourier sine series

ϖ(x, t) =
∞

∑
n=1

ψn(t)ϕn(x) (48)

in which Ωn(t) satisfies the following LPS

ψ̈n(t)−αψ̇n(t)+β ψn(t)−ψn(t)λ 2
n = γ∗4 −

3

∑
i=1

γ∗i (t), for n= 1,2, . . . . (49)

where

γ∗1(t) =
∫ 1

0
γ1(x, t)ϕn(x)dx, γ∗2(t) =

∫ 1

0
γ2(x, t)ϕn(x)dx

γ∗3(t) =
∫ 1

0
γ3(x, t)ϕn(x)dx, γ∗4(t) =

∫ 1

0
C(x, t)ϕn(x)dx

The general solution of Eq.(49) is given by

ψn(t) = cnκn(−t)+dnιn(t)+
1

2
√

(β 2−λ 2
n)

t
∫

0

(ιn(t − s)−κn(s− t))(γ∗4(s)−
3

∑
i=1

γ∗i (s))ds (50)

in whichcn anddn are constants to be determined by means of Eq.(46). Remaining unknown constantsan andbn appearing

in Eq.(50) are evaluated by using the terminal conditions given by Eq.(47).

5 Numerical results and discussions

In this section, the theoretical results obtained in the previous sections are illustrated to show the effectiveness and

capability of the proposed control algorithm for the beam equation in one space dimension. In the tables and graphics,

following cases are taken into account;

For the case a, T1(t) = e−t , T2(t) = e−t , u0(x) =
√

2sin(πx) and u1(x) = e−x,

For the case b, T1(t) = 0,T2(t) = et , u0(x) = e−x, and u1(x) = π
√

2sin(πx).

Also, in the numerical calculationsµ3 = 10−4 for controlled case,µ3 = 106 for uncontrolled case,µ1 = µ2 = 1,

α = 0.2, β = 0.1. Let us define the dynamic response of the system and spend control in control process as follows,

respectively;

D(t f ) =

1
∫

0

[u2(x, t f )+u2
t (x, t f )]dx, C =

t f
∫

0

1
∫

0

C2(x, t)dxdt. (51)

The dynamic response of the system is presented in table1 for the case a and b. Observing the table1, it is concluded

for the case a and b that as the penaltyµ3 on the expenditure of control decreases, the dynamic response of the beam

decreases corresponding to an increase in the control function. In the case b, the vibrations in the system are induced by

larger displacement/initial excitations than the case a. Therefore, it is seemed from table1 that the value of the dynamic

response of the system corresponding to the case a is less than the dynamic response of the beam corresponding to
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case b. Also, as a parallel result to this, the difference between dynamic responses for the case b is larger than the

corresponding difference for the case a. A comparison of thecontrolled and uncontrolled dynamic responses in table1

presents substantial decreasing as a result of the proposedcontrol method. The un/controlled displacements and velocities

are plotted at the midpoint of the beam atx= 0.5 since their maximum occurs at this point att = 0 owing to displacement

and initial conditions. Therefore, the midpoint gives an idea about the transient behavior of the system. By observing the

Fig.1, it seems that the uncontrolled displacement displays a growing motion while the controlled displacement gradually

decreases in case of a. Same observation is valid for the uncontrolled velocity plotted in Fig.2 and the velocity is effectively

suppressed because of control. For the case b, the displacement and velocity of the beam is plotted in Fig.3 and Fig.4,

respectively. Let us focus on the band-width in Fig.1-2 and Figs.3-4. Because the displacement/inital conditions effect in

case b is larger than corresponding to the case a, the band-with of the Figs.3-4 is larger than the band-width of Figs.1-2.

By taking into consideration the all tables and figures, it isconcluded that introduced control method for the system is

effective and applicable for the these kind of the systems.

6 Conclusion

In this paper, existence and uniqueness of the solution to the beam equation is presented. Also, the controllability of the

system is discussed. Moreover, optimal control function for beam equation system in one space dimension is obtained

by employing Maximum principle. Performance index functional of the control problem consists of a weighted quadratic

functional of the dynamic responses of the system to be minimized and a penalty term defined as the control spent in the

control process. By means of the maximum principle, the optimal control problem is transformed to the a coupled system

of partial differential equations in terms of state, adjoint and control variables subject to the boundary, initial andterminal

conditions. The explicit solution of the problem is sought by Galerkin expansion method. By usingMATLAB, numerical

results are given demonstrate the robustness and efficiencyof the proposed control algorithm.
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Fig. 1: Uncontrolled and controlled displacements atx= (0.5) for case a.
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Fig. 2: Uncontrolled and controlled velocities atx= (0.5) for case a.
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Fig. 3: Uncontrolled and controlled displacements atx= (0.5) for case b.
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Fig. 4: Uncontrolled and controlled velocities atx= (0.5) for case b.

Table 1: The values ofD(t f ) atξ = 0 for different values ofµ3 in case a and b.

µ3 Da C a

106 352 6.6×10−9

104 350 6.5×10−5

102 257 0.5
100 1.15 21

10−2 7.7×10−3 24
10−4 2.4×10−5 26

µ3 Db C b

106 945 1.7×10−8

104 942 1.8×10−4

102 692 1.3
100 3.13 56

10−2 0.03 67
10−4 1.0×10−5 76
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