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Abstract: In this paper, the parallel ruled surfaces with Darboux frame are introduced in Euclidean 3-space. Then some characteristic
properties such as developability, striction point and distribution parameter of the parallel ruled surfaces with Darboux frame are given
in Euclidean 3-space. Then we obtain Steiner rotation vector of this kind of surfaces Euclidean 3-space. By using this rotation vector,
we compute pitch length and pitch angle of the parallel ruled surfaces with Darboux frame.
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1 Introduction

A parallel ruled surface is a surface represented by points which are at a constant distance along the normal vector of a
ruled surface. As it is well known, both ruled surfaces and parallel surfaces have some applications in many industrial
processes such as manufacturing for toolpath generation in sculptured surface machining and also in rapid prototyping,
to fabricate additively a solid object or assembly from CAD models by using 3D printing technologies such as laser
sintering, stereolithography, and laminated object manufacturing. Ruled surfaces have been widely applied in designing
cars, ships, manufacturing of products and many other areas such as motion analysis and simulation of rigid body and
model-based object recognition systems. Modern surface modeling systems include ruled surfaces. The geometry of
ruled surfaces is essential for studying kinematical and positional mechanisms in E3 and E3

1 (Aydemir & Kasap, 2005,
Çöken et al., 2008; Karadağ et al., 2014; Ravani & Ku, 1991; Şentürk & Yüce; 2015; Şentürk & Yüce; 2015a; Ünlütürk,
Y. & Ekici, C. 2014 ).

In differential geometry, ruled surface is a special type of surface which can be defined by choosing a curve and a line
along that curve. The ruled surfaces are one of the easiest of all surfaces to parametrize. That surface was found and
investigated by Gaspard Monge who established the partial differential equation that satisfies all ruled surfaces. Hlavaty
(1945) and Hoschek (1973) also investigated ruled surfaces which are formed by one parameter set of lines. In addition,
H.R. Müller (1978) showed that the pitch of closed ruled surfaces are integral invariants.

One of the another most important subjects of the differential geometry is the Darboux frame which is a natural moving
frame constructed on a surface. It is the version of the Frenet frame that applied to surface geometry. A Darboux frame
exists on a surface in a Euclidean or non-Euclidean spaces. It is named after the French mathematician Jean Gaston
Darboux in the four volume collection of studies he published between 1887 and 1896. Since that time, there have been
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many important repercussions of Darboux frame, having been examined for example, (O’Neill, 1996; Darboux, 1896).
Some characterizations and integral invariants of the ruled surfaces with Darboux frame was studied in E3(Şentürk &
Yüce, 2015). The same authors gave some characterizations of the involute-evolute offsets of the ruled surfaces with
geodesic Frenet frame and also studied integral invariants of these kind of surfaces (Şentürk & Yüce, 2015a).

In this study, parallel ruled surfaces are studied according to Darboux frame. Regarding to the invariants of Darboux
frame such as geodesic curvature, normal curvature and geodesic torsion, some properties of parallel ruled surfaces such
as developability, striction point and distribution parameter are given in Euclidean 3-space. Steiner rotation vector of
these kinds of surfaces are obtained in Euclidean 3-space. Using this rotation vector, pitch length and pitch angle of the
parallel ruled surfaces with Darboux frame are computed in terms of magnitudes of the main surface.

2 Preliminaries

Let α be a curve and X be a generator vector. Then the ruled surface ϕ(s,v) has the following parametric representation:

ϕ(s,v) = α(s)+ vX(s),

that is, the ruled surface is a surface generated by the motion of a straight line X along the curve α(Hacısalihoğlu, 1983).

The striction point on the ruled surface is the foot of the common perpendicular line successive rulings on the main
ruling. The set of the striction points of the ruled surface generates its striction curve (Gray et al., 2006). It is given as

c(s) = α(s)− ⟨αs,Xs⟩
⟨Xs,Xs⟩

X(s).

A unit direction vector of straight line X is stretched by the system {T,g}. So it can be written as

X = T cosφ +gsinφ,

where φ is the angle between the vectors T and X( Şentürk & Yüce, 2015). Furthermore, if α is a closed curve, then this
surface is called closed ruled surface. The apex angle λ (x) and the pitch L(x) of the closed ruled surface are defined by

λ (x) = ⟨D,X⟩ , L(x) = ⟨V,X⟩ ,

respectively (Hacısalihoğlu, 1983). Here D and V are Steiner rotation vector and Steiner translation vector, respectively.
Steiner rotation vector Dand Steiner translation vector V are given as follows:

D=(α)w = T(α)τds+b(α)κds,V=(α)dx = T(α)ds,

where w = n∧n
′
= τT +κb is called Darboux vector (Hacısalihoğlu, 1983). If the Frenet vectors are the straight lines of

the closed ruled surface, then we have

λT=(α)τds, λn = 0, λb=(α)κds and LT=(α)ds, ln = 0, lb = 0.

Theorem 1. (Şentürk & Yüce, 2015) If successive rulings intersect, the ruled surface is called developable. The unit
tangent vector of the striction curve of a developable ruled surface is the unit vector with direction X .
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The distribution of the ruled surface is identified by

PX =
det(αs,X ,Xs)

⟨Xs,Xs⟩
.

Theorem 2. The ruled surface is developable if and only if PX = 0 (Ravani & Ku, 1991).

The ruled surface is said to be a non-cylindrical ruled surface provided that ⟨Xs,Xs⟩ ̸= 0.

Theorem 3. (Gray et al., 2006) Let M be a non-cylindrical ruled surface and defined by its striction curve. The Gaussian
curvature of M is given with respect to its distribution parameter as

K =− P2
X

(P2
X + v2)

2 .

Theorem 4. Let M be a non-cylindrical ruled surface and defined by its striction curve. If PX never vanishes, then K is
continuous and |K| assumes its maximum value 1

P2
X

at v = 0 (Gray et al., 2006).

Let α : I → E3 be a closed space curve and H/H
′

be a closed space motion which is defined by α. The angle of pitch
of the ruled surface with Darboux frame, which is drawn by a fixed line in {T,n,b} during the motion H/H

′
in the fixed

space H is

λX = λT cosφ +λbsinφsinθ , (1)

where λT and λb are the angles of pitch of the ruled surfaces with Darboux frame which are drawn by the vectors T
and b, respectively. If the ruled surface with Darboux frame whose ruling is X in {T,n,b} during the motion H/H

′
is

developable, then the harmonic curvature is constant. Besides, the harmonic curvature of the closed curve α(s) of the
ruled surface with Darboux frame, during the space motion H/H

′
, is calculated as follows:

(κ
τ

)2
=

Pb

Pn
−1 =

(
sin2 φ

sinφcosφsinθ

)2

−1 (2)

where Pb and Pn are the distribution parameters of the ruled surface with Darboux frame which are drawn by b and n
(Şentürk and Yüce, 2015).

Theorem 5. (Şentürk and Yüce, 2015)

(i) The ruled surface with Darboux frame which is drawn by a line X in a normal plane in {T,n,b} during the motion
H/H

′
is developable if and only if α(s) is a plane curve.

(ii) The ruled surface with Darboux frame which is drawn by a line X in an osculator plane in {T,n,b} during the
motion H/H

′
is developable if and only if α(s) is a plane curve or φ = 0

(iii) The ruled surface with Darboux frame which is drawn by a line X in a rectifian plane in {T,n,b} during the motion
H/H

′
is developable if and only if κ

τ = tanφ or φ = 0.

Theorem 6. The ruling of the ruled surface with Darboux frame drawn by a line X in {T,n,b} during the motion H/H
′

in the fixed space is always in the rectifian plane of the striction curve (Hacısalihoğlu, 1983).

Theorem 7. Since the ruled surface with Darboux frame drawn by a line X in {T,n,b} during the motion H/H
′

is
developable, then the surface is tangent developable ruled surface (Şentürk and Yüce, 2015).
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Let M be an oriented surface in E3 and α be a unit speed curve on M. If T is the unit tangent vector of α , N is the unit
normal vector of M and g = N ∧T at the point α(s) of curve α , then {T ,g,N} is called the Darboux frame of α at that
point. Thus the Darboux derivative formulas are:

d
ds

 T
g
N

=

 0 κg κn

−κg 0 τg

−κn −τg 0


 T

g
N

 ,

where κn = κcosθ , κg = κsinθ and τg = τ + dθ
ds are called the normal curvature, geodesic curvature and the geodesic

torsion of α , and also θ is the angle between N and the unit principal normal n of α.respectively (Kühnel, 2002).

Definition 1. Let M and M be two surfaces in Euclidean space. The function

f : M → M
P → f (P) = P+ rNP

(3)

is called the parallelization function between M and M and furthermore M is called parallel surface to M where N is the
unit normal vector field on M and r is a given real number (Hacısalihoğlu, 1983).

Definition 2. (Savcı, 2011) Let M and M be two parallel surfaces. Let α be a unit-speed curve on M and image of α
stands on M which ( f ◦α) = β . If β is non-unit speed curve then ∥β ′∥ = ∥ f∗(T )∥ = v ̸= 1. Darboux frame of the curve
β on M is {

T = f∗(T )
v ,g = T ∧N,N = N

}
(4)

where N is the unit normal vector of M. And also the norm of β ′ is

∥β ′∥=
√
(1− rκn)

2 + r2τ2
g = v (5)

Theorem 8. (Savcı, 2011) Let
{

T ,g,N
}

be Darboux frame of curve β at α(s) = f (P) on M. Then the vectors
{

T ,g,N
}

are
T = 1

v [(1− rκn)T − rτgg] ,
g = 1

v [(1− rκn)g+ rτgT ] ,
N = N.

(6)

Theorem 9. Let α be a regular curve on the surface M. Then the geodesic curvature, the normal curvature and the
geodesic torsion of the curve ( f ◦α) = β are

κg =
κg
v3 − r

v3

[
(τ+g r(τgκ ′

n − τκn
g ))

]
,

κn =
1
v2

[
κn − r(κ2

n + τ2
g )
]
,

τg =
τg
v2 .

(7)

at the point α (s) on the parallel surface M (Savcı, 2011).

Theorem 10. (Savcı, 2011) Let
{

T ,n,b
}

be Frenet frame of curve β at f (P) on the surface M andn be principal normal
vector of curve β , N be unit normal of surface M , Φ r be the angle between the vectors n and N and κ be curvature of
curve β at f (P) on M, then

(κ)2 = (κn)
2 +(κg)

2, cosΦ r = κn√
(κn)

2+(κg)
2 . (8)
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3 Parallel ruled surfaces with Darboux frame

A parallel ruled surface can be given as in the following parametrization:

ϕ(s,v) = α(s)+ vX(s), (9)

where α(s) is a curve which is called the base curve of the parallel ruled surface, X is the ruling.

Using (6), Darboux derivative formulae of the parallel ruled surface are computed as

d
ds

 T
g
N

=

 0 κg κn

−κg 0 τg

−κn −τg 0


 T

g
N

 . (10)

Darboux frame is obtained by rotating Frenet frame around T as far as θ = θ(s) while the angle θ is between the unit
vector g and the normal vector field N of α .

Using (8), the relations between Frenet and Darboux frames of parallel ruled surfaces are computed in terms of θ as
follows:

The unit vector g is written as
g = ncosθ +bsinθ .

By using the equations

⟨g,n⟩=cosθ= κg√
κ2

n+κ2
g

= sinΦr,
⟨
g,b

⟩
= sinθ =− κn√

κ2
n+κ2

g

=−cosΦr, (11)

we have
g = nsinΦr −bcosΦ r. (12)

The unit normal vector of the surface is
N =−nsinθ +bcosθ .

By straightforward calculation, we find
N = ncosΦ r +bsinΦ r. (13)

From (12) and (13), the matrix representation of the relation between the frames is obtained as T
g
N

=

1 0 0
0 sinΦ r −cosΦ r

0 cosΦ r sinΦ r


T

n
b

 , (14)

and also transposing (14), we have
n = gsinΦ r +NcosΦ r (15)

and
b =−gcosΦ r +NsinΦ r , (16)
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where Φ ris the angle between the vectors n and N.

Differentiating (15), (16) and using (14), we have Frenet derivative formulae of the parallel ruled surface as

T
′
= κn, n

′
=−κT + τb, b

′
= τn. (17)

Let φ be the angle between direction vector X and tangent vector T at α ∈ ϕ(s,v). If we choose the direction vector X as

X = T cosφ +gsinφ, (18)

then we get ⟨
X ,T

⟩
= cosφ = cosφ,

⟨
X ,g

⟩
= sinφ = sinφ, (19)

where
∥∥X

∥∥= 1, and ϕ is the angle between the vectors T and X on the ruled surface. Thus we can give the following
corollary.

Corollary 1. For the parallel ruled surfaces with Darboux frame, the angle φ is an invariant since

φ = φ. (20)

Since (20), the equation (18) becomes

X = T cosφ +gsinφ. (21)

Differentiating (21) and using (10), we find

X
′
=−(φ ′

+κg)sinφT +(φ ′
+κg)cosφg+(κncosφ + τgsinφ)N. (22)

Holding v =constant, we obtain the curve

β ′ = ( f (α(u)))
′
+ v( f∗(α(u)))

′
= T + vX

′
= T ∗ (23)

on the parallel ruled surface whose vector field

T ∗
= (1− v(φ ′

+κg)sinφ)T + v(φ ′
+κg)cosφg+ v(κncosφ + τgsinφ)N. (24)

Using the equations (7), (21) and (22), the distribution parameter of the parallel ruled surface with Darboux frame is
calculated by

PX=
v4sinφ((κn−r(κ2

n+τ2
g ))cosφ+τgsinφ)

(κgv2+φ ′−rτ2
g

(
(rκn−1)

τg

)′
)
2
+v2(κncosφ+τgsinφ−r(κ2

n+τ2
g )cosφ)2

. (25)

Theorem 11. The parallel ruled surface with Darboux frame is a developable surface if and only if

(κn − r(κ2
n + τ2

g ))cosφ + τgsinφ = 0. (26)

c⃝ 2016 BISKA Bilisim Technology



CMMA 1, No. 1, 26-43 (2016) / ntmsci.com/cmma 32

Proof. Substituting (7) into (24) gives the vector field T ∗ as

T ∗
=

(
1− v

v3

(
v3φ ′+κgv2 − rτ2

g

(
(rκn−1)

τg

)′
)

sinφ
)

T

+ v
v3

((
v3φ ′+κgv2 − rτ2

g

(
(rκn−1)

τg

)′
)

cosφ
)

g

+ v
v2

(
(κn − r(κ2

n + τ2
g ))cosφ + τgsinφ

)
N.

(27)

Suppose that the parallel ruled surface with Darboux frame is developable surface, then PX = 0, that is,

v4sinφ((κn − r(κ2
n + τ2

g ))cosφ + τgsinφ) = 0 (28)

In this case, let us study the following subcases related to the equation (28) vanishing:

(i) If v4 = 0, then from (5), we obtain the result that is a contradiction.
(ii) If sinφ = 0, then from (21), we obtain X = T cosφ . So T ∗

= T . It means that tangent plane is constant along the
main ruling.

(iii) If (κn − r(κ2
n + τ2

g ))cosφ + τgsinφ = 0, then from (27), it is seen that the tangent plane and the normal vector of
parallel ruled surface with Darboux frame are orthogonal vectors. Therefore the parallel ruled surface with Darboux
frame is a developable surface.

Conversely, if we put
(κn − r(κ2

n + τ2
g ))cosφ + τgsinφ = 0,

into (25), the distribution parameter becomes as PX = 0.

Using (7), the striction curve of the parallel ruled surface with Darboux frame is calculated as follows:

c̄(s) = ᾱ(s)+
v3sinφ

(
v3φ ′+κgv2−rτ2

g

(
(rκn−1)

τg

)′)
X(

v6φ ′+κgv2−rτ2
g

(
(rκn−1)

τg

)′)2
+v2((κn−r(κ2

n+τ2
g ))cosφ+τgsinφ)2

.
(29)

Thus we can mention the following corollary.

Corollary 2. If the parallel ruled surface with Darboux frame is a developable ruled surface, then striction curve of the
parallel ruled surface with Darboux frame is

c(s) = α(s)+
v3sinφ

(
v3φ ′+κgv2−rτ2

g

(
(rκn−1)

τg

)′)
(

v3φ ′+κgv2−rτ2
g

(
(rκn−1)

τg

)′) X . (30)

Theorem 12. Let M be a parallel ruled surface with Darboux frame, then the shortest distance between the rulings of M
along the orthogonal trajectories is

v=
v3sinφ

(
v3φ ′+κgv2−rτ2

g

(
(rκn−1)

τg

)′)
(

v6φ ′+κgv2−rτ2
g

(
(rκn−1)

τg

)′)2
+v2((κn−r(κ2

n+τ2
g ))cosφ+τgsinφ)2

. (31)

c⃝ 2016 BISKA Bilisim Technology



33 Y. Unluturk, M. Cimdiker and C. Ekici: Characteristic properties of the parallel ruled...

Proof. Supposing that the two rulings pass the points αs1 and αs2 where s1 < s2, the distance between these rulings along
an orthogonal trajectory is given as

J(v) =
s2∫
s1

∥∥T ∗∥∥ds. (32)

Substituting (24) into (32) gives

J(v)=
s2∫
s1

(
1−2v(φ ′+κg)sinφ + v2(φ ′+κg)

2 + v2(κncosφ + τgsinφ)2
) 1

2
ds. (33)

Differentiating (33) to the parameter v which gives the minimal value of J(v), we get

J′(v)=
s2∫
s1

−2v(φ ′+κg)sinφ+2v(φ ′+κg)
2+2v(κncosφ+τgsinφ)2

(1−2v(φ ′+κg)sinφ+v2(φ ′+κg)
2+v2(κncosφ+τgsinφ)2)

1
2

ds=0 (34)

which satisfies
v =

sinφ(φ ′+κg)

(φ ′+κg)
2
+(κncosφ+τgsinφ)2 . (35)

Using (7) in (35), the parameter v turns into

v=
v3sinφ

(
v3φ ′+κgv2−rτ2

g

(
(rκn−1)

τg

)′)
(

v6φ ′+κgv2−rτ2
g

(
(rκn−1)

τg

)′)2
+v2((κn−r(κ2

n+τ2
g ))cosφ+τgsinφ)2

.

Thus we can give the following corollary.

Corollary 3. If the parallel ruled surface with Darboux frame is a developable ruled surface, then the parameter v of an
orthogonal trajectory of parallel ruled surface with Darboux frame is

v = v3sinφ(
v3φ ′+κgv2−rτ2

g

(
(rκn−1)

τg

)′) .

Theorem 13. Let M be a parallel ruled surface with Darboux frame. Moreover, the point ϕ(s,v0), v0 ∈ E, on the main
ruling which passes through the point α(s), is a striction point if and only if X ′ is the unit normal vector field of tangent
plane in the point ϕ(s,v0).

Proof. Suppose that the point ϕ(s,v0) on the main ruling which passes through the point α(s) is a striction point. We have
to show that

⟨
X ,T ∗⟩

=
⟨

X ,X ′
⟩
= 0. We know that

∥∥X
∥∥ = 1. By differentiating this equation, we obtain

⟨
X ,X ′

⟩
= 0.

So we can find ⟨
X ′
,T ∗

⟩
= −sinφ(φ ′+κg)+ v(φ ′+κg)+ v(κncosφ + τgsinφ)2. (36)

Also, if we calculate the value v0 into (36), then we get
⟨

X ′
,T ∗

⟩
= 0. So it means that X ′ is normal to X and T ∗

.

Conversely, suppose that X ′ is a unit normal vector field of the tangent plane at the point ϕ(s,v0). When holding v
constant as v0, the tangent vector field of ϕ(s,v0) is

T ∗
=(1− v0(φ ′+κg)sinφ)T + v0(φ ′+κg)cosφg+ v0(κncosφ + τgsinφ)N.
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Since X ′ is a unit normal to the tangent plane at the point ϕ(s,v0), we can write that
⟨

X ′
,T ∗

⟩
= 0. Thus we get

v0=
v3sinφ

(
v3φ ′+κgv2−rτ2

g

(
(rκn−1)

τg

)′)
(

v6φ ′+κgv2−rτ2
g

(
(rκn−1)

τg

)′)2
+v2((κn−r(κ2

n+τ2
g ))cosφ+τgsinφ)2

Hence the point ϕ(s,v0) is a striction point on the parallel ruled surface with Darboux frame.

Corollary 4. If the parallel ruled surface with Darboux frame is a developable ruled surface, we get v0 as follows.

v0 =
v3sinφ

(
v3φ ′+κgv2−rτ2

g

(
(rκn−1)

τg

)′)
(

v3φ ′+κgv2−rτ2
g

(
(rκn−1)

τg

)′) .

Theorem 14. Let M be a parallel ruled surface with Darboux frame. The absolute value of the Gaussian curvature K of
the parallel ruled surface M along a ruling takes the maximum value at the striction point on that ruling.

Proof. If we calculate the Gauss curvature of the parallel ruled surface with Darboux frame, we get

K(s,v)= (κncosφ+τgsinφ)2 sin2 φ

(1−2v(φ ′+κg)sinφ+v2(φ ′+κg)
2+v2(κncosφ+τgsinφ)2−cos2 φ)

2 . (37)

If we differentiate (37) with respect to v̄, and using ∂K
∂ v̄ = 0, we get

v =
sinφ(φ ′+κg)

(φ ′+κg)
2
+(κncosφ+τgsinφ)2 . (38)

Therefore the absolute value of Gauss curvature K of the parallel ruled surface M along a ruling takes the maximum value
at the striction point on that ruling.

Example 1. Let us establish a parallel ruled surface by using the following tangent developable ruled surface of

α(s) =
(√

3
3 coss,1− sins,−

√
6

3 coss
)
.

The tangent developable parallel ruled surface is as follows:

ϕ(s,v) = ϕ(s,v)+ rN(s,v) .

Firstly, we find the normal vector of the parallel ruled surface with Darboux frame as

N(s,v) =
(√

6
3 ,0,

√
3

3

)
.

We get the parallel tangent developable ruled surface as follows

ϕ(s,v) =
(√

3
3 coss,1− sins,−

√
6

3 coss
)
+ v

(
−

√
3

3 sins,−coss,
√

6
3 sins

)
+ r

(√
6

3 ,0,
√

3
3

)
.

c⃝ 2016 BISKA Bilisim Technology



35 Y. Unluturk, M. Cimdiker and C. Ekici: Characteristic properties of the parallel ruled...

Fig. 1: The main surface.

Fig. 2: The main surface and its parallel surface (red one).

The Darboux frame of the tangent developable parallel ruled surface is

T (s) =
(
−

√
3

3 sins,−coss,
√

6
3 sins

)
g(s) =

(√
3

3 coss,−sins,−
√

6
3 coss

)
N(s) =

(√
6

3 ,0,
√

3
3

)
.

We have the distribution parameter of the tangent developable parallel ruled surface with Darboux frame as the equation
(25). Since

sinφ = 0
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in (25), then we get
PX = 0.

The striction curve of the tangent developable parallel ruled surface with Darboux frame is defined in the equation (30).
From here, since sinφ = 0 , we find c(s) = α(s).

Example 2. Let
ϕ(s,v) = (coss− vsins,sins+ vcoss,v)

be a ruled surface. We find the normal vector of this surface as

N(s,v) = 1√
1+2v2

(coss− vsins,sins+ vcoss,−v) .

Using the normal vector, we get the parallel ruled surface with Darboux frame as follows

ϕ(s,v) = (coss,sins,0)

+v
(
−sins

(
1+ r√

1+2v2

)
,coss

(
1+ r√

1+2v2

)
,

(
1− r√

1+2v2

))
+ r√

1+2v2
(coss,sins,0) .

Fig. 3: The main surface.

c⃝ 2016 BISKA Bilisim Technology



37 Y. Unluturk, M. Cimdiker and C. Ekici: Characteristic properties of the parallel ruled...

Fig. 4: The main surface and its parallel surface (red one).

The Darboux frame of the parallel ruled surface is

T (s) = (−sins,coss,0)
g(s) = 1√

1+2v2
(vcoss,vsins,1)

N(s) = 1√
1+2v2

(coss− vsins,sins+ vcoss,−v) .

Since we find PX =−1, this surface is not a developable ruled surface.

4 Integral invariants of parallel ruled surfaces with Darboux frame

Firstly, we calculate the Darboux vector of the parallel ruled surfaces with Darboux frame in E3.Using (17), the Darboux
vector is obtained as

w = τT +κb. (39)

From (39), we get the Steiner rotation vector of the parallel ruled surface with Darboux frame as

D = (τT +κb)ds. (40)

Hence, the angle of pitch of the closed parallel ruled surface with Darboux frame is defined as

D = λ T T +λ bb,

such that ⟨
D,T

⟩
= τds = λ T ,

⟨
D,n

⟩
= λ n = 0,

⟨
D,b

⟩
= κds = λ b.
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Additionally, the pitch length of closed parallel ruled surface is obtained as

LT =
⟨
dα ,T

⟩
=
⟨
T ds,T

⟩
= ds, Ln = 0, Lb = 0.

An orthogonal trajectory of the parallel ruled surface with Darboux frame is defined as

cosφds =−dv.

From (21), we get
LX =−

⟨
X ,dα

⟩
= dv = cosφds. (41)

Substituting (12) into (21), we obtain the ruling of the parallel ruled surface with Darboux frame as

X = T cosφ +nsinφsinΦ r −bsinφcosΦ r,
∥∥X

∥∥= 1, (42)

where Φ r be the angle between the vectors n and N and φ be the angle between the vectors T and X .

Theorem 15. Let α : I → E3 be a closed space curve and H/H
′

be a closed space motion which is defined by α. The
angle of pitch of the parallel ruled surface with Darboux frame, which is drawn by a fixed line in {T ,n,b} during the
motion H/H ′ in the fixed space H is

λ X = λ T cosφ −λ bsinφcosΦ r, (43)

where λ T and λ b are the angles of pitch of the parallel ruled surfaces with Darboux frame which are drawn by the vectors
T and b, respectively.

Proof. From the definition of the angle of the pitch of the ruling, the inner product of the vectors D and X gives us the
result (43).

Remark. From (11) we have cosΦ r =−sinθ , therefore (43) turns into (1). Here the angle θ is between the unit vector g
and the normal vector N of α on the parallel ruled surfaces with Darboux frame.

Theorem 16. The pitch of the parallel ruled surface with Darboux frame, which is drawn by a fixed line in {T ,n,b} during
the motion H/H

′
in the fixed space H is equal to

LX = cosφLT . (44)

Proof. Substituting (42) into (41), we have

LX =−
∮

α

⟨
X ,dα

⟩
= cosφ

∮
α

ds = cosφLT . (45)

As a result, we obtain (44) for the parallel ruled surface which is similar to the one of the ruled surface with Darboux
frame.

Theorem 17. If the parallel ruled surface with Darboux frame whose ruling is X in {T ,n,b} during the motion H/H
′

is
developable, then the harmonic curvature is constant and given as

h = κ
τ =− sin2 φ

sinφcosφcosΦr =
(L2

T−L2
X )λ b

(λ X LT−LX λ T )LX
.
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Let X draw a developable parallel ruled surface with Darboux frame. Then, the distribution parameter of the parallel ruled
surface is zero. Differentiating (42) with respect to the parameter s gives

dX
ds =T (−κsinφsinΦr)+n(κcosφ + τsinφcosΦ r)+b(τsinφsinΦ r).

Also the following determinant is calculated as

det(T ,X ,X ′
) = τ sin2 φ +κsinφcosφcosΦ r = 0 (46)

From (46), we have the harmonic curvature as

κ
τ
=− sin2 φ

sinφcosφcosΦ r . (47)

From (44), we get

cosφ =
LX

LT
, (48)

and also if we put (44) into (43), we have

sinφcosΦ r =− (λ X LT −LX λ T )

LT λ b

, (49)

and finally using (49) in (47), we find

h =
κ
τ
=

(L2
T −L2

X )λ b

(λ X LT −LX λ T )LX

.

Remark. We get the following ratio of curvature functions in terms of the angles which belong to parallel ruled surfaces
with Darboux frame as

κ
τ
=

sin2 φ
sinφcosφsinθ

. (50)

The equation (50) means that the harmonic curvature of the closed space curve α on the parallel ruled surface with
Darboux frame is equal to the one of the curve on the original surface.

Theorem 18. The harmonic curvature of the closed curve α(s) on the parallel ruled surface with Darboux frame, during
the space motion H/H

′
, is calculated as follows:

Pb

Pn
−1 =

(
κ
τ

)2

=

(
sin2 φ

sinφcosφcosΦ r

)2

−1 (51)

where Pb and Pn are the distribution parameters of the parallel ruled surface with Darboux frame with respect to the
vectors b and n, respectively.

Proof. The distribution parameter of the closed parallel ruled surface which is drawn by tangent line T is calculated as

PT =
det(T ,T ,κn)
⟨κn,κn⟩

= 0.

In similar way, we get

Pn =
det(T ,n,(−κT + τb))⟨

(−κT + τb),(−κT + τb)
⟩ =

τ
κ2 + τ2 (52)
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and

Pb =
det(T ,b,−τn)
⟨−τn,−τn⟩

=
1
τ
. (53)

(52) can also be written as

Pn =
1
τ(

κ
τ

)2
+1

. (54)

Using (53) and (54), we obtain (51).

Remark. From (11) we have cosΦ r =−sinθ , therefore (51) becomes (2).

Theorem 19. (i) The parallel ruled surface with Darboux frame which is drawn by X is a line in a normal plane in
{T ,n,b} during the motion H/H

′
is developable if and only if α(s) is a plane curve.

(ii) The parallel ruled surface with Darboux frame which is drawn by X is a line in an osculator plane in {T ,n,b}
during the motion H/H

′
is developable if and only if α(s) is a plane curve or the parallel ruled surface with

Darboux frame is tangent developable surface since φ = 0.
(iii) The parallel ruled surface with Darboux frame which is drawn by X is a line in a rectifian plane in {T ,n,b} during

the motion H/H
′
is developable if and only if κ

τ = tanφ or the parallel ruled surface with Darboux frame is tangent
developable surface since φ = 0.

Proof. (i) X is a line in a normal plane, therefore from (42), we have

cosφ = 0. (55)

If the parallel ruled surface with Darboux frame is developable, since (46) we find

τ sin2 φ = 0. (56)

From (55) and (56), α(s) is a plane curve.

Conversely, if α(s) is a plane curve, thus from (55) and vanishing of torsion in (46), we obtain that the parallel
ruled surface with Darboux frame is developable.

(ii) X is a line in an osculator plane, hence from (42), we obtain

sinφcosΦ r = 0. (57)

If the parallel ruled surface with Darboux frame is developable, then the subcases of sinφcosΦr = 0 can be
examined as follows:

Case 1. If cosΦ r = 0, then from (57), the parallel ruled surface with Darboux frame is tangent developable
surface since φ = 0 or α(s) is a plane curve.

Case 2. If sinφ = 0, then from (57), the parallel ruled surface with Darboux frame is tangent developable surface
since φ = 0 or α(s) is a plane curve.

Conversely, if α(s) is a plane curve or φ = 0, then from (56) and (46), it is shown that the parallel ruled surface
with Darboux frame is developable.
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(iii) X is a line in a rectifian plane, so from (42), we have

sinφsinΦ r = 0. (58)

If the parallel ruled surface with Darboux frame is developable, then the subcases of (58) are examined according
to (46) as follows:

Case 1. If sinφ = 0 and sinΦ r ̸= 0,we get φ = 0.Hence the parallel ruled surface with Darboux frame is tangent
developable surface.

Case 2. If sinΦr = 0 and sinφ ̸= 0, then κ
τ = tanφ. Conversely, if κ

τ = tanφ or φ = 0, then from (46), it is
shown that the parallel ruled surface with Darboux frame is developable surface.

Theorem 20. The parallel ruled surface with Darboux frame which is drawn by X is a line in a rectifian plane in {T ,n,b}
during the motion H/H

′
is developable, then the relation between Pb and Pn is calculated as follows:

Pb
Pn

=
(L2

T−L2
X )

2
λ 2

b

(LT λ X−LX λ T )
2
L2

X

+1 =
(

sinφcosΦr

cosφ

)2
+1.

Proof. Since X is a line in a rectifian plane from (42), we have the equation (58). Hence sinφ = 0 or sinΦ r = 0. If the
parallel ruled surface with Darboux frame is developable, then substituting (49) into (51) gives

(
κ
τ

)2
=

(
(L2

T−L2
X )λ b

(λ X LT−LX λ T )LX

)2

=
Pb
Pn

−1.

By (48) and (49), we get

sinφ =

√
L2

T−L2
X

LT
. (59)

Using (48), (49) and (59), we find
κ
τ =− sinφcosΦr

cosφ =
LT λ X−LX λ T

LX λ b
.

Therefore, we have
Pb
Pn

=
(L2

T−L2
X )

2
λ 2

b

(LT λ X−LX λ T )
2
L2

X

+1 =
(

sinφcosΦr

cosφ

)2
+1. (60)

Now, by studying special cases of (58), let us interpret (60):
Case 1. If sinφsinΦ r = 0 while sinΦr ̸= 0 and sinφ = 0, then we get Pb

Pn
= 1.

Case 2. If sinφsinΦ r = 0 while sinΦr = 0 and sinφ ̸= 0, then we find Pb
Pn

= sec2 φ .

Case 3. If sinφsinΦ r = 0 while sinΦr = 0 and sinφ = 0, then we have Pb
Pn

= 1.

Theorem 21. The parallel ruled surface with Darboux frame which is drawn by X is a line in a rectifian plane in {T ,n,b}
during the motion H/H

′
in the fixed space is always in the rectifian plane of the striction curve.

Proof. In order that the base curve of the parallel ruled surface is the striction curve, we have⟨
X ′
,T

⟩
= κsinφsinΦr = 0
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Since κ ̸= 0, we have sinφsinΦ r = 0. Therefore, we obtain

X = T cosφ −bsinφcosΦ r. (61)

(61) means that the fixed space is always in the rectifian plane of the striction curve.

Theorem 22. The parallel ruled surface with Darboux frame which is drawn by X is a line in a rectifian plane in {T ,n,b}
during the motion H/H

′
is developable, then the surface is tangent developable ruled surface.

Proof. We calculate the distribution parameter according to X as

PX =
det(T ,T cosφ −bsinφcosΦ r,n(κcosφ + τsinφcosΦ r))

∥n(κcosφ + τsinφcosΦ r)∥2 .

Since X is a line in a rectifian plane, from (58), we get

PX = sinφcosΦr

(κcosφ+τsinφcosΦr) .

If the parallel ruled surface with Darboux frame is developable, that is, PX = 0, then using sinφsinΦ r = 0 and
sinφcosΦr = 0 , we obtain sinφ = 0 . Hence (42) turns into X = T cosφ , it means that the parallel ruled surface is a
tangent developable surface.

Theorem 23. The parallel ruled surface with Darboux frame whose striction curve is a closed spherical one is developable
if and only if the angles of the pitch are zero.

Proof. Assume that the parallel ruled surface with Darboux frame whose striction curve is a closed spherical one is
developable. Since the total curvature of the closed spherical curve is zero, we find

λ X = λ T = τds = 0.

Conversely, given the angles of the pitch are zero, and also the striction curve of the parallel ruled surface is a closed
spherical curve, we can write

λ X = 0. (62)

Hence, using (62) into (43), we have
−sinφcosΦ rκds = 0. (63)

Based on (63), we have either sinφcosΦ r = 0 or κds = 0. We can examine these cases as follows:

(i) cosφ = 1 and X = T from sinφcosΦr = 0 and Theorem 2.2.
(ii) κds = 0 while κ > 0, ds ≥ 0, also since κ ̸= 0, ds must vanish, it means that s is a constant. For this case, the

parallel ruled surface with Darboux frame is a cone because of the striction curve turns into a point.

5 Conclusion

In this paper, parallel ruled surfaces have been studied according to Darboux frame in Euclidean 3-space. Regarding to
the invariants of Darboux frame such as geodesic curvature, normal curvature and geodesic torsion, some properties of
parallel ruled surfaces such as developability, striction point and distribution parameter have been given in Euclidean
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3-space. Steiner rotation vector of these kinds of surfaces have been also obtained in Euclidean 3-space. Using this
rotation vector, pitch length and pitch angle of the parallel ruled surfaces with Darboux frame have been computed in
terms of magnitudes of the main surface. Reserschers can try to see correspondings of these results obtained in this work
at ambient space of Euclidean 3-space such as Galilean 3-space.
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