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Abstract: C. Baikousssis, D.E. Blair[1] made a study of Legendre curves in contact metric manifolds. J. I. Inoguchi, T. Kumamoto,
N. Ohsugi, and Y. Suyama[2] studied fundamental properties of Heisenberg 3-spaces. M. Belkhelfa, I.E. Hirica, R. Rosca, L.
Verstlraelen[6] obtained a complete characterization of surfaces with paralel second fundamental form in 3-dimensional
Bianchi-Cartan-Vranceanu spaces(BCV). In this study, we define the canal surface around Legendre curve with Frenet frame in BCV
spaces. Afterwards we investigate tubular surface around Legendre curve curve with Frenet frame. Finally we give some
characterizations about special curves lying on tubular surface around Legendre curve.
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1 Introduction

Canal surfaces are useful for representing long thin objects, e.g., pipes, poles, ropes, 3D fonts or intestines of body. Canal
surfaces are also frequently used in solid and surface modelling for CAD/CAM(Computer Aided Desing/Computer
Aided Manufacturing). Representative examples are natural quadrics, torus, tubular surfaces and Dupin cyclide[8].

Canal surfaces have wide applications in CAGD(Computer-Aided Geometric Design), such as construction of blending
surfaces, shape reconstruction,transition surfaces between pipes, robotic path planning or robotic path planning etc. Most
of the literature on canal surfaces within the CAGD context has been motivated by the observation that canal surfaces
with rational spine curve and rational radius function is rational, and it is therefore natural to ask for methods which
allow one to construct a rational parametrization of canal surfaces from its spine curve and radius function. In this paper
we shall not be concerned with parametrization but rather with the certain fundamental geometric and algebraic
characteristics of canal surfaces[10].

Doğan and Yaylı[8] introduced canal and tubular surfaces. They given some information concerning the curvatures of
tubular surface with the Frenet and defined tubular surface with respect to the Bishop frame and then they calculated the
curvatures of this new tubular surface and give some characterizations regarding special curves lying on it.

Maekawa et.all. [12] researched necessary and sufficient conditions for the regularity of pipe (tubular) surfaces. More
recently, Xu et.al. [15] studied these conditions for canal surfaces and examined principle geometric properties of these
surfaces like computing the area and Gaussian curvature.

Gross [9] gave the concept of generalized tubes (briefy GT) and classifed them in two types as ZGT and CGT. Here,
ZGT refers to the spine curve (the axis) that has torsion-free and CGT refers to tube that has circular cross sections. He
investigated the properties of GT and showed that parameter curves of a generalized tube are also lines of curvature if
and only if the spine curve has torsion free (planar).
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62 A. Yildirim: Tubular surface around a Legendre curve in BCV spaces

Bishop [5] displayed that there exists orthonormal frames which he called relatively paralled adapted frames other than
the Frenet frame and compared features of them with the Frenet frame.

2 Tubular surface

A canal surface is defined as the envelope of a family of one parameter spheres. Alternatively, a canal surface is the
envelope of a moving sphere with varying radius, defined by the trajectory γ(t) of its center and a radius function r(t).
This moving sphere S(t) touches the canal surface at a characteristic circle K(t). If the radius function r(t) = r is a
constant, then the canal surface is called a tube or pipe surface. Since the canal surface K(t,θ) is the envelope of a family
of one parameter spheres with the center γ(t) and radius function r(t), it is parametrized as follows

K(t,θ) = γ(t)− r(t)r
′
(t)

γ ′
(t)∥∥γ ′
(t)
∥∥ ± r(t)

√∥∥γ ′
(t)
∥∥2 − r′(t)2∥∥γ ′
(t)
∥∥ (cosθN(t)+ sinθB(t)) ,

where N(t) and B(t) are the principal normal and binormal to γ(t), respectively. Alternatively, N(t) and B(t) are the basis
vectors of the plane containing characteristic circle. If the spine curve γ(s) has an arclenght parametrization(∥∥∥γ ′

(s)
∥∥∥= 1

)
, then the canal surface is reparametrized as

K(s,θ) = γ(s)− r(s)r
′
(s)T (s)± r(s)

√
1− r′(s)2 (cosθN(s)+ sinθB(s)) .

In the event r(s) = r is a constant, the canal surface is called a tube or pipe surface and it turns into the form

L(s,θ) = γ(s)+ r (cosθN(s)+ sinθB(s)) , 0 ≤ θ ≤ 2π.

For a regular curve γ : I −→ M is parametrized such that
∥∥∥γ ′

(s)
∥∥∥= 1. Then we have

T
′
= κN, N

′
=−κT + τB, B

′
=−τN,

where κ and τ are curvature and torsion of the γ (s) , respectively[8].

3 Bcv spaces

{
R3,gλ ,µ

}
is called BCV space which denoted by M3 or M3

λ ,µ where gλ ,µ is Bianchi -Cartan-Vranceanu (BCV) metric

in R3 and denoted by

gλ ,µ =
dx2

1 +dx2
2{

1+µ(x2
1 + x2

2)
}2 +

(
dx3 +

λ
2

x2dx1 − x1dx2

1+µ(x2
1 + x2

2)

)2

for λ ,µ ∈ R such that 1+ µ
(
x2

1 + x2
2
)
̸= 0. The dimension, of this space is dim M3

λ ,µ = 3. If µ = 0, λ = 0, then the
space M3 is called Euclidean space and denoted by E3. In the special case that µ = 0, λ ̸= 0 the space, M3, is called
Heisenberg space. Heisenberg space is denoted by N3 [11]. In 1894, and later in 1928, L. Bianchi classified Riemannian
metrics in the 3−dimensional Euclidean space E3 [3,4]. In the same year E. Cartan, [7] and in 1947 G. Vranceanu, [14],
published some papers related with these spaces.
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According to the metric gλ ,µ , an orthonormal basis ϕ = {e1,e2,e3} of χ(M3) is denoted by

e1 =
{

1+µ(x2
1 + x2

2)
} ∂

∂x1
− 1

2
λx2

∂
∂x3

,

e2 =
{

1+µ(x2
1 + x2

2)
} ∂

∂x2
+

1
2

λx1
∂

∂x3
,

e3 =
∂

∂x3
.

The dual basis, θ of ϕ is given by

θ 1 =
dx1

1+µ(x2
1 + x2

2)
,

θ 2 =
dx2

1+µ(x2
1 + x2

2)
,

θ 3 = dx3 +
λ
2

x2dx1 − x1dx2

1+µ(x2
1 + x2

2)
.

For the orthonormal basis ϕ = {e1,e2,e3} of χ
(
M3
)

if Levi-Civita connection on M3 denoted by ∇, then we have

∇e1e1

∇e1e2

∇e1e3

=


0 2µx2 0

−2µx2 0
λ
2

0 −λ
2

0


 e1

e2

e3

 ,

∇e2e1

∇e2e2

∇e2e3

=


0 −2µx1 −λ

2
2µx1 0 0

λ
2

0 0


 e1

e2

e3

 ,

∇e3e1

∇e3e2

∇e3e3

=


0 −λ

2
0

λ
2

0 0

0 0 0


 e1

e2

e3


and

[e1,e2] =−2µx2e1 +2µx1e2 +λe3, [e3,e2] = [e1,e3] = 0 .

The transformation φ on χ(M3) given by φ(e1) = e2,φ(e2) = −e1,φ(e3) = 0 is a linear endomorfizm and the
corresponding matrix is given by

φ =

0 −1 0
1 0 0
0 0 0


with respect toorthonormal basis ϕ = {e1,e2,e3} of χ

(
M3
)
. On the , space M3, if λ ̸= 0

η = θ 3 = dx3 +
λ
2

x2dx1 − x1dx2

1+µ(x2
1 + x2

2)
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and ξ = e3, then we have the following relations for ∀X ,Y ∈ χ(M3);

φ(ξ ) = 0 ,
η(ξ ) = 1,

dη(X ,Y ) =
λ
2

gλ ,µ (X ,φ(Y )),

(∇X φ)Y =
λ
2

{
gλ ,µ (X ,Y )ξ −η(Y )X

}
,

∇X ξ =−λ
2

φ(X).


(1)

The structure (M3,φ,ξ ,η ,gλ ,µ ) together the equations 1 is a Sasakian manifold [2,16]. From now on for λ ̸= 0 we will
call the space as BCV-Sasakian space.

Definition 1. We denote by η = 0 the subbundle defined by the subspaces

Dm = {X ∈ TM3(m) : η(X) = 0}

of TM3. The maximum dimension of integral submanifolds is 1. The 1-dimensional integral submanifold of a contact
manifold is called a Legendre curve.

Theorem 1. Let (M3,η ,ξ ,φ ,g) be BCV-Sasakian manifold. The torsion of its Legendre curve which is not geodesic is

equal to
λ
2

.

Proof. Let γ be an unite speed Legendre curve which is not geodesic

γ : I 7−→ Dm ⊂M3

s 7−→ γ (s) = (γ1(s),γ2(s),γ3(s))

on M3−BCV-Sasakian space. Let us calculate Frenet vector fields of γ (in the case η(
.
γ) = 0). We know

.
γ(s) = T. We

obtain Frenet vector fields of γ as { .
γ = T,φ

.
γ = N,ξ = B

}
.

Hence we have
∇T T = κφT

and
∇T T = κN.

On the other hand, the directional derivative of φV1 with respect to V1 is

∇T N = ∇T φT = φ∇T T +(∇T φ)T = φ (κφT )+
λ
2

ξ =−κT +
λ
2

B

and with1 similarly the derivative of ξ is

∇T ξ =−λ
2

φT =−λ
2

N

Hence

τ =
λ
2
. (2)
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4 Tubular surface around a Legendre curve

Let γ (s) = (γ1(s),γ2(s),γ3(s)) be an unite speed Legendre curve which is not geodesic in M3− Sasakian space. Then the
canal surface aroud Legendre curve is reparametrized as

K(s,θ) = γ(s)− r(s)r
′
(s)T (s)± r(s)

√
1− r′(s)2 (cosθN(s)+ sinθB(s)) .

In the event r(s) = r is a constant, the canal surface is called a tube or pipe surface and it turns into the form

L(s,θ) = γ(s)+ r (cosθN(s)+ sinθB(s)) , 0 ≤ θ ≤ 2π.

For a regular Legendre curve γ : I −→M3 is parametrized such that
∥∥∥γ ′

(s)
∥∥∥= 1. Then we have

T
′
= κN, N

′
=−κT +

λ
2

B, B
′
=−λ

2
N,

where κ and
λ
2

are curvature and torsion of the γ (s) , respectively.

5 The curvatures of tubular surfaces around a Legendre curve

For the tubular surface L(s,θ) around γ Legendre curve in M3, the coefficients of the first and second fundamental form
are given by

U =
Ls ×Lθ
∥Ls ×Lθ∥

=−cosθN − sinθB (3)

Lθ = r (−sinθN + r cosθB) ,

Ls = (1− rκ cosθ)T +Lθ ,

Lθθ =−r cosθN − r sinθB,

Lss =

(
−rκ ′ cosθ + rκ

λ
2

sinθ
)

T +

[
κ − r

(
κ2 +

(
λ
2

)2
)

cosθ

]
N − r sinθB

Lsθ = rκ sinθT − r
λ
2

cosθN − r
λ
2

sinθB,

E = Ls ·Ls = (1− rκ cosθ)2 + r2
(

λ
2

)2

,

F = Ls ·Lθ = r2 λ
2
,

G = Lθ ·Lθ = r2,

e =U ·Lss =−r cosθ (1− rκ cosθ)+ r
(

λ
2

)2

,

f =U ·Lsθ = r
λ
2
,

g =U ·Lθθ = r

and since
∥Ls ×Lθ∥2 = EG−F2 = r2 (1− rκ cosθ)2 . (4)

Definition 2.[8] Let Q is any surface. If EG−F2 ̸= 0, Q is called a regular surface.
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According to definetion and by Eq 4 L(s,θ) is a regular tube if and only if 1− rκ cosθ ̸= 0. Namely

cosθ ̸= 1
rκ

(5)

The Gaussian and mean curvature for L(s,θ) are computed as

K =
eg− f 2

EG−F2 =
−κ cosθ

r (1− rκ cosθ)
,

H =
eG−2 f F +gE

2(EG−F2)
=

1
2

[
1
r
+ rK

]
.

 (6)

Theorem 2. [10] A curve δ lying on a surface is an asymptotic curve if and only if the acceleration vector δ ′′
is tangent

to the surface that is U ·δ ′′
= 0.

Theorem 3. Let L(s,θ) be a regular tube around a Legendre curve. Then the following holds:
(1) The s-parameter curves of L(s,θ) are asymptotic curves if and only if γ (s) Legendre curve is circular helix.
(2) The θ−parameter curves of L(s,θ) cannot be asymptotic curves.

Proof. (1) For the s−parameter curves we have

e =U ·Lss =−κ cosθ (1− rκ cosθ)+ r
(

λ
2

)2

= 0.

From this, we get

κ =
1

2r cosθ

[
1±
√

1− (λ r)2
]

where 0 < r ≤ 1√
λ

for s−parameter curves. Since κ depends s−parameter, κ is constant and before we obtained τ =
λ
2
.

According to this
τ
κ
= constant. Namely γ Legendre curve is circular helix.

(2) For the θ−parameter curves we have
g =U ·Lθθ = r ̸= 0,

θ−parameter curves cannot be asymptotic.

Theorem 4. [13] A curve δ lying on a surface is a geodesic curve if and only if the acceleration vector δ ′′
is normal to

the surface. This means that δ ′′
and the surface normal U are linearly dependent, namely U ×δ ′′

= 0.

Theorem 5. Let L(s,θ) be a regular tube around a Legendre curve. Then the following holds:

(1) The θ−parameter curves of L(s,θ) are geodesic curves.

(2) The s−parameter curves of L(s,θ) are geodesic curves if and only if the curvatures of γ(s)

κ = constant,

(3) The s-parameter curves of L(s,θ) are geodesic curves if and only if α(s) is a circular helix.
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Proof. For the s− and θ− parameter curves we conclude

U ×Lθθ = (−cosθN − sinθB)× (−r cosθN − r sinθB) ,

U ×Lss = [κ sinθ (1− rκ cosθ)]T +

[
rκ ′ sinθ cosθ − rκ

λ
2

sin2 θ
]

N +

[
−rκ ′ cos2 θ + rκ

λ
2

sinθ cosθ
]

B,

(1) As immediately seen above, θ−parameter curves of L(s,θ) are geodesics.
(2) Since {T,N,B} is an orthonormal basis, U ×Lss = 0 if and only if

κ sinθ (1− rκ cosθ) = 0, (7)

r sinθ
(

κ ′ cosθ −κ
λ
2

sinθ
)
= 0,

r cosθ
(

κ ′ cosθ −κ
λ
2

sinθ
)
= 0.

By the first two equations we have

κ ′ cosθ = κ
λ
2

sinθ

and

κ = ce
λ tanθ

2
s

(8)

where c is constant. If the equation 8 is solved with the equation 7 it concludes that θ = 0 thus

κ = ce = constant.

(3) Because κ and τ =
λ
2

are constant, the case is obvious.

Let
γ : I 7−→ M3

s 7−→ γ (s) = (γ1 (s) ,γ2 (s) ,γ3 (s))

γ (s) = (γ1(s),γ2(s),γ3(s)) be an unite speed Legendre curve in M3 and its velocity vector is

.
γ(s) =

( .
γ1 (s) ,

.
γ2 (s) ,

.
γ3 (s)

)
=

(
.
γ1 (s)

∂
∂x

+
.
γ2 (s)

∂
∂y

+
.
γ3 (s)

∂
∂ z

)
γ(s)

According to the orthonormal basis (e1,e2,e3) its form is

.
γ(s) =

.
γ1 (s)

1+µ(x2
1 + x2

2)
e1 +

.
γ2 (s)

1+µ(x2
1 + x2

2)
e2 +(

.
γ3 (s)+

λ
2

x2
.
γ1 (s)− x1

.
γ2 (s)

1+µ(x2
1 + x2

2)
)e3

If γ is an Legendre curve in M3, η
( .
γ(s)

)
= 0 and

.
γ3 (s) =−λ

2
γ2 (s)

.
γ1 (s)− γ1 (s)

.
γ2 (s)

1+µ((γ1 (s))
2 +(γ2 (s))

2)
(9)

Solution of γ3 is integral of the right side of equation 9.
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Example 1. Let
γ : I 7−→ R3

s 7−→ γ (s) =
(

2sins,2coss,
λ

2(1+4µ)
s
)

be an Legendre curve in M3 for λ = 4 and µ =
1
4

as shown Figure 1.

Fig. 1: γ Legendre curve.

Its velocity vector is
.
γ(s) =−sinse1 + cosse2

See that η
( .
γ(s)

)
= 0. Now then, if the Frenet vector of γ curve is {T,N,B}

T =
.
γ(s) =−sinse1 + cosse2, N = φ

.
γ(s) = cosse1 + sinse2, B = ξ = e3.

Now than for r =
1
2
, equation of tubular surface around γ Legendre curve in M3 is

L(s,θ) = γ(s)+
1
2
(cosθN(s)+ sinθB(s)) , 0 ≤ θ ≤ 2π. (10)

Let L(s,θ) =
(

x(s,θ)
∂
∂x

+ y(s,θ)
∂
∂y

+ z(s,θ)
∂
∂ z

)
now than

x(s,θ) = 2sins+ cosθ coss, y(s,θ) = 2coss+ cosθ sins, z(s,θ) = s−2cosθ cos2s+
1
2

sinθ .

Tubular surface around γ Legendre curve is shown in following Figure 2 where 0 ≤ θ ,s ≤ 2π
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Fig. 2: Tubular surface around γ Legendre curve.

Example 2. Let an other Legendre curve be α (s) =
(

s2,
1
s
,−λ

2
3s2

s2 +µ (s6 +1)

)
in M3 for λ = 4 and µ = 1 as shown

Figure 3.

Fig. 3: α Legendre curve.
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Its velocity vector is
.

α(s) =
2s3

s6 + s2 +1
e1 −

1
s6 + s2 +1

e2

See that η
( .
α(s)

)
= 0. Now then, if the Frenet vector of α curve is {T,N,B}

T =

.
α(s)∥∥ .
α(s)

∥∥ =
2s3

√
4s6 +1

e1 −
1√

4s6 +1
e2, B = ξ = e3, N = B∧T =

1√
4s6 +1

e1 +
2s3

√
4s6 +1

e2.

Now than for r = 1, equation of tubular surface around α Legendre curve is

L(s,θ) = α(s)+(cosθN(s)+ sinθB(s)) , 0 ≤ θ ≤ 2π. (11)

Let L(s,θ) =
(

x(s,θ)
∂
∂x

+ y(s,θ)
∂
∂y

+ z(s,θ)
∂
∂ z

)
now than

x(s,θ) = s2 +
s6 + s2 +1
s2
√

4s6 +1
cosθ , y(s,θ) =

1
s
+2

s7 + s3 + s√
4s6 +1

cosθ , z(s,θ) =
4s6 −2

s
√

4s6 +1
cosθ + sinθ .

Tubular surface around α Legendre curve is shown in following Figure 4 where (0 ≤ θ ≤ 2π) and (1 ≤ s ≤ 3,16) .

Fig. 4: Tubular surface around α Legendre curve.
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