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Abstract: In this paper we recall some results of matrix functions with eal cofficients. The aim of this paper is to provide some 

properties and results of continued fractions with matrix arguments. Then we give continued fractions expansions of some inverse of 

hyperbolic and circular functions                               and          where   is a positive definite matrix. 
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1. Introduction and mativation  

Over the last two hundred years, the theory of continued fractions has been a topic of extensive study. The basic idea 

of this theory over real numbers is to give an approximation of various real numbers by the rational ones. One of the 

main reasons why continued fractions are so useful in computation is that they often provide representation for 

transcendental functions that are much more generally valid than the classical representation by, say, the power series. 

Further; in the convergent case, the continued fractions expansions have the advantage that they converge more rapidly 

than other numerical algorithms. 

Recently, the extension of continued fractions theory from real numbers to the matrix case has seen several 

developments and interesting applications (see [5],[7], [11]). The real case is relatively well studied in the literature. 

However, in contrast to the theoretical importance, one can find in mathematical literature only a few results on the 

continued fractions with matrices arguments. The main difficulty arises from the fact that the algebra of square matrices 

is not commutative. 

For simplicity and clearness, we restrict ourselves to positive definite matrices, but our results can be, without special 

difficulties, projected to the case of positive definite operators from an infinite dimensional Hilbert space into itself. 

2. Preleminary and notations 

Matrix functions play a widespreased role in science and engineering, with applications areas ranging from nuclear 

magnetic resonance [2]. So for any scalar polynomial          
  

    gives rise to a matrix polynomial with scalar 

coefficients by simply substituting    ve   : 

         
 

 

   

 

 

 

More generally, for function   with a series representation on an open disk containing the eigenvalues of  , we are 

able to define the matrix function      via the Taylor series for   [4]. 

Alternatively, given a function      that is analytic inside on a closed contour   which encircles the eigenvalues of 

       can be defined, by analogy with Cauchy's integral theorem, by 
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The definition is known as the matrix version of Cauchy's integral theorem. We now mention an important result of 

matrix functions. 

Lemma 2.1 (i) If two matrices      and      are similar, with 

        

 

Then the matrices      and      are also similar, with 

               

(ii) If      is a block diagonal matrix 

                                

Proof. For         we have          . Hence for every polynomial   it follow that 

               

Therefore if either one of      or      equals zero then so does the other, implying that A and B share the same 

minimal polynomial. From definition there exists an interpolating polynomial      such that 

                        

and since for every polynomial we have                 the result follows. 

(ii) We deduce it from (i). 

Let        is said to be positive semidefinite (resp. positive definite) if A is symmetric and 

                                           

where <.,.> denotes the standard scalar product of    . 

We observe that positive semidefiniteness induces a partial ordering on the space of symmetric matrices: if A and B 

are two symmetric matrices, we write            is positive semidefinite. 

Henceforth, whenever we say that       is positive semidefinite (or positive definite), it will be assumed that A is 

symmetric. 

For any matrices        with B invertible, we write 
 

 
        It is easy to verify that for any invertible matrix 

X we have 

 

 
 

  

  
 

  

  
 

Definition 2.2 Let          and          be two sequences of matrices in   . We define the sequences        

    and           by 

 
           

          
                 

                
                

            (2.1) 

The matrix       is called the     convergent of         , the fraction 
  

  
 is called its     partial quotient. The 

proof of the next proposition is elementary and we left it to the reader. 
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Propotion 2.3. For any two matrices C and D with C invertible, we have 

     
  

  

 
   

 

                  
   

   
  

 
   

  

  

 
  

  

 
   

 

 

Definition 2.4. Let                          be four sequences of matrices. We say that the continued fractions 

         and          are equivalent if we have       for all      where    and    are the     convergents of 

         and          respectively. 

In order to simplify the statements on some partial quotients of continued fractions with matrices arguments, we need 

the following proposition which is an example of equivalent continued fractions. 

Proposition 2.5. (see [10]) Let     
  

  
 
   

  

 be a given continued fraction. 

Then  

  
  

     
  

  

 
   

 

     
        

  

        
   

   

 

  

where                             are arbitrary invertible matrices. 

We also recall the following proposition in real cace. 

Proposition 2.6. Let      be   non-zero sequence of real numbers. The following continued fractions 

    
  
  

 
  
  

 
  
  

               
    
    

 
      
    

 
      
    

           

are equivalent. 

We end this section by introducing some topological notions of continued fractions with matrix arguments. We 

provide    with the topology induced by the following classical norm: 

                 
    

   
               

Definition 2.7. Let      be a sequence of matrices in   . We say that      converges in    if there exists a matrix 

     such that        tends to 0 when n tens to   . In this case we write ,          . 

The continued fraction     
  

  
 
   

  

 is said to be convergent in    if the sequence             
       converges in 

   in the sense that there exists a matrix      such that                 

3. Man Result 

Let      be a positive definite matrix. Our aim in this section is to give a continued fraction expansion of arcsin, 

arcsh(A), arccos(A) and arcch(A). For simplicity, we start with the real case and we begin by recalling Laguerre's 

continued fraction in the following lemma. 

Lemma 3.11 (see [3]) Let x be a real number such that      . Then there holds 

          

         
    

 

 
 
             

       
 

             

       
 
   

  

 (3.1) 

 

Now we establish a main theorem which, is a matrix version of the previous lemma. 

Theorem 3.2. Let      be a positive definite matrix such that      . Then a continued fraction expansion of 

arcsin(A) is 
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 (3.2) 

 

Since                       by vertu of proposition 2.6 and the previous theorem, we have the next result. 

Corollary 3.3. A continued fraction expansion of arcsh(A) is given by 

             
          

 
 
            

        
 

            

        
 
   

  

 (3.3) 

 

Proof. Let      be a positive definite matrix Then there exists an invertible matrix X such that        , where 

                               

As the function              is analytic in the open halfplane              , then 

                                                                       . 

Let us define the sequences      and      by: 

 
               
               

   

and for      

 
                                   

                                   
   

 
                                   

                                   
   

 

We see that    and    are diagonal matrices, by setting           
    

      
   and           

    
      

    we 

obtain for each         

 
   
      

      
     

   
      

      
   

   

and for      

 
   
              

              
      

 

   
              

              
      

 
   

 
     
            

              
      

 

     
            

              
      

 
   

 

By lemma 3.1, the convergent   
    

  converges to      
                It follows that       converges to    

 2) 1/2arcsin , so that 

          

         
    

 

 
 
   

   
 
   

   
 
             

        
 
             

        
 
   

  

 

 

Then, we multiply the continued fraction  
          

         
  by           in the left to obtain 
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by proposition 2.3, we get 

                   
    

            
 
               

   
 
   

   
 
            

        
 
             

        
 
   

  

 

Let us define the sequence          by 

 
        

                      
   

Then 

 
 
 

 
 

     
      

  

         
 
       

  
 

          

 

     
       

 
       

  

         
   

   

   

  

For      we have 

                  
  

             
   

            

        
  

By applying the result of proposition 2.5 to the sequence           we finish the proof of theorem 3.2. 

Before giving continued fraction expansions of arccos(A) and arcch(A), we begin with the real case in the following 

lemma 

Lemma 3.4. (see [7]) Let x be a real number such that 0 < x < 1, Then there holds 

          

         
    

 

 
 
            

       
 
            

       
 
   

  

 (3.4) 

                                         

Now we establish a main theorem which, is a matrix version of the lemma 4. 

Theorem 3.5. Let      be a positive definite matrix such that      . Then a continued fraction expansion of 

arcsin(A) is 

              
          

 
 
            

        
 
            

        
 
   

  

 (3.5) 

                                         

since                    , by vertu of proposition 2.6 and theorem 3.5, we have: 

Corollary 3.6. A continued fraction expansion of arcch(A) is given by  

             
          

 
 
            

       
 
            

       
 
   

  

 (3.6) 

 

                                         

With a similar method as in theorem 3.2, we prove the result of this theorem. 
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