Fractional integral inequalities for different functions

Cetin Yildiz, M.Emin Ozdemir and Havva Kavurmacı Onelan
Ataturk University, Faculty of Education of Kazim Karabekir, Department of Mathematics, 25240-Erzurum-Turkey

Received: 22 January 2015, Revised: 27 January 2015, Accepted: 14 February 2015
Published online: 15 February 2015

Abstract

In this paper, we establish several inequalities for different convex mappings that are connected with the Riemann-Liouville fractional integrals. Our results have some relationships with certain integral inequalities in the literature.

Keywords: Hadamard Inequality, Riemann-Liouville Fractional Integration, Minkowski Inequality.

1 Introduction

Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and let $a, b \in I$, with $a<b$. The following inequality;

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

is known in the literature as Hadamard's inequality. Both inequalities hold in reversed direction if f is concave.

In [1], Godunova and Levin introduced the following class of functions.

Definition 1. A function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to belong to the class of $Q(I)$ if it is nonnegative and for all $x, y \in I$ and $\lambda \in(0,1)$ satisfies the inequality;

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \frac{f(x)}{\lambda}+\frac{f(y)}{1-\lambda} . \tag{2}
\end{equation*}
$$

They also noted that all nonnegative monotonic and nonnegative convex functions belong to this class and also proved the following motivating result:

If $f \in Q(I)$ and $x, y, z \in I$, then

$$
\begin{equation*}
f(x)(x-y)(x-z)+f(y)(y-x)(y-z)+f(z)(z-x)(z-y) \geq 0 . \tag{3}
\end{equation*}
$$

In fact (3) is even equivalent to (2). So it can alternatively be used in the definition of the class $Q(I)$.

In [9], Dragomir et.al., defined the following new class of functions.

[^0]Definition 2. A function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is P function or that f belongs to the class of $P(I)$, if it is nonnegative and for all $x, y \in I$ and $\lambda \in[0,1]$, satisfies the following inequality;

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq f(x)+f(y) \tag{4}
\end{equation*}
$$

The power mean $M_{r}(x, y ; \lambda)$ of order r of positive numbers x, y is defined by

$$
M_{r}(x, y ; \lambda)=\left\{\begin{array}{cc}
\left(\lambda x^{r}+(1-\lambda) y^{r}\right)^{\frac{1}{r}}, & r \neq 0 \\
x^{\lambda} y^{1-\lambda}, & r=0
\end{array}\right.
$$

In [14], Pearce et al. generalized this inequality to r-convex positive function f which is defined on an interval $[a, b]$, for all $x, y \in[a, b]$ and $\lambda \in[0,1]$;

$$
f(\lambda x+(1-\lambda) y) \leq M_{r}(f(x), f(y) ; \lambda)=\left\{\begin{array}{cc}
\left(\lambda[f(x)]^{r}+(1-\lambda)[f(y)]^{r}\right)^{\frac{1}{r}}, & \text { if } r \neq 0 \\
{[f(x)]^{\lambda}[f(y)]^{1-\lambda}} & \text { if } r=0
\end{array}\right.
$$

We have that 0 -convex functions are simply log-convex functions and 1 -convex functions are ordinary convex functions.

In [19], Varošanec introduced the following class of functions.

Definition 3. Let $h: J \subset \mathbb{R} \rightarrow \mathbb{R}$ be a positive function. We say that $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is h-convex function or that f belongs to the class $S X(h, I)$, if f is nonnegative and for all $x, y \in I$ and $\lambda \in(0,1)$, we have

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq h(\lambda) f(x)+h(1-\lambda) f(y) . \tag{5}
\end{equation*}
$$

If the inequality in (5) is reversed, then f is said to be h-concave, i.e., $f \in S V(h, I)$.

Obviously, if $h(\lambda)=\lambda$, then all nonnegative convex functions belong to $S X(h, I)$ and all nonnegative concave functions belong to $S V(h, I)$; if $h(\lambda)=\frac{1}{\lambda}$, then $S X(h, I)=Q(I)$; if $h(\lambda)=1$, then $S X(h, I) \supseteq P(I)$ and if $h(\lambda)=\lambda^{s}$, where $s \in(0,1)$, then $S X(h, I) \supseteq K_{s}^{2}$. For some recent results for h-convex functions we refer to the interested reader to the papers [3], [4] and [15].

In [9], Dragomir et.al. proved two inequalities of Hadamard type for class of Godunova-Levin functions and $P-$ functions.

Theorem 1. Let $f \in Q(I), a, b \in I$ with $a<b$ and $f \in L_{1}[a, b]$. Then the following inequality holds:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{4}{b-a} \int_{a}^{b} f(x) d x \tag{6}
\end{equation*}
$$

Theorem 2. Let $f \in P(I), a, b \in I$ with $a<b$ and $f \in L_{1}[a, b]$. Then the following inequality holds:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{2}{b-a} \int_{a}^{b} f(x) d x \leq 2[f(a)+f(b)] . \tag{7}
\end{equation*}
$$

In [11], Ngoc et al., established following theorem for r-convex functions:

Theorem 3. Let $f:[a, b] \rightarrow(0, \infty)$ be r-convex function on $[a, b]$ with $a<b$.Then the following inequality holds for $0<r \leq 1$:

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq\left(\frac{r}{r+1}\right)^{\frac{1}{r}}\left(f^{r}(a)+f^{r}(b)\right)^{\frac{1}{r}} . \tag{8}
\end{equation*}
$$

For related results on r-convexity see the papers [10] and [20].

In [16], Sarıkaya et al. proved the following Hadamard type inequalities for h-convex functions.

Theorem 4. Let $f \in S X(h, I), a, b \in I$ with $a<b$ and $f \in L_{1}[a, b]$. Then

$$
\begin{equation*}
\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq[f(a)+f(b)] \int_{0}^{1} h(\alpha) d \alpha \tag{9}
\end{equation*}
$$

In [17], Sarıkaya et al. proved the following Hadamard type inequalities for fractional integrals as follows.

Theorem 5. Let $f:[a, b] \rightarrow \mathbb{R}$ be positive function with $0 \leq a<b$ and $f \in L_{1}[a, b]$. If f is convex function on $[a, b]$, then the following inequalities for fractional integrals hold:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \leq \frac{f(a)+f(b)}{2} \tag{10}
\end{equation*}
$$

with $\alpha>0$.

Now we give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper.

Definition 4. Let $f \in L_{1}[a, b]$. The Riemann-Liouville integrals $J_{a^{+}}^{\alpha} f$ and $J_{b^{-}}^{\alpha} f$ of order $\alpha>0$ with $a \geq 0$ are defined by

$$
J_{a^{+}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t, x>a
$$

and

$$
J_{b^{-}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(t-x)^{\alpha-1} f(t) d t, x<b
$$

respectively where $\Gamma(\alpha)=\int_{0}^{\infty} e^{-u} u^{\alpha-1} d u$. Here is $J_{a^{+}}^{0} f(x)=J_{b^{-}}^{0} f(x)=f(x)$.
In the case of $\alpha=1$, the fractional integral reduces to the classical integral.

For some recent results connected with fractional integral inequalities see [2], [5]-[8], [12], [13], [17] and [18].

The main purpose of this paper is to present new Hadamard's inequalities for fractional integrals via functions that belongs to the classes of $Q(I), P(I), S X(h, I)$ and r-convex.

2 MAIN RESULTS

Theorem 6. Let $f \in Q(I), a, b \in I$ with $0 \leq a<b$ and $f \in L_{1}[a, b]$. Then the following inequality for fractional integrals hold:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{2 \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \tag{11}
\end{equation*}
$$

with $\alpha>0$.

Proof. Since $f \in Q(I)$, we have

$$
2(f(x)+f(y)) \geq f\left(\frac{x+y}{2}\right)
$$

for all $x, y \in I$ (with $\lambda=\frac{1}{2}$ in (1.2)).

If we choose $x=t a+(1-t) b$ and $y=(1-t) a+t b$ in above inequality, we get

$$
\begin{equation*}
2[f(t a+(1-t) b)+f((1-t) a+t b)] \geq f\left(\frac{a+b}{2}\right) \tag{12}
\end{equation*}
$$

Then multiplying both sides of (12) by $t^{\alpha-1}$ and integrating the resulting inequality with respect to t over $[0,1]$, we obtain

$$
\begin{gathered}
2 \int_{0}^{1} t^{\alpha-1}[f(t a+(1-t) b)+f((1-t) a+t b)] d t \geq f\left(\frac{a+b}{2}\right) \int_{0}^{1} t^{\alpha-1} d t \\
2 \int_{a}^{b}\left(\frac{b-u}{b-a}\right)^{\alpha-1} f(u) \frac{d u}{b-a}+2 \int_{a}^{b}\left(\frac{v-a}{b-a}\right)^{\alpha-1} f(v) \frac{d v}{b-a} \geq \frac{1}{\alpha} f\left(\frac{a+b}{2}\right) \\
\frac{2 \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \geq f\left(\frac{a+b}{2}\right) .
\end{gathered}
$$

The proof is complete.

Remark. If we choose $\alpha=1$ in Theorem 6, then the inequalities (11) become the inequalities (6).

Theorem 7. Let $f \in P(I), a, b \in I$ with $a<b$ and $f \in L_{1}[a, b]$. Then one has inequality for fractional integrals:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \leq 2(f(a)+f(b)) \tag{13}
\end{equation*}
$$

with $\alpha>0$.

Proof. According to (4) with $x=t a+(1-t) b, y=(1-t) a+t b$ and $\lambda=\frac{1}{2}$, we find that

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq f(t a+(1-t) b)+f((1-t) a+t b) \tag{14}
\end{equation*}
$$

for all $t \in[0,1]$. Thus multiplying both sides of (14) by $t^{\alpha-1}$ and integrating the resulting inequality with respect to t over $[0,1]$, we have

$$
\begin{gathered}
f\left(\frac{a+b}{2}\right) \int_{0}^{1} t^{\alpha-1} d t \leq \int_{0}^{1} t^{\alpha-1}[f(t a+(1-t) b)+f((1-t) a+t b)] d t \\
\frac{1}{\alpha} f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \\
f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right]
\end{gathered}
$$

and the first inequality is proved.

Since $f \in P(I)$, we have

$$
f(t a+(1-t) b) \leq f(a)+f(b)
$$

and

$$
f((1-t) a+t b) \leq f(a)+f(b)
$$

By adding these inequalities, we get

$$
\begin{equation*}
f(t a+(1-t) b)+f((1-t) a+t b) \leq 2[f(a)+f(b)] \tag{15}
\end{equation*}
$$

Then multiplying both sides of (15) by $t^{\alpha-1}$ and integrating the resulting inequality with respect to t over $[0,1]$, we have

$$
\begin{gathered}
\int_{0}^{1} t^{\alpha-1}[f(t a+(1-t) b)+f((1-t) a+t b)] d t \leq 2[f(a)+f(b)] \int_{0}^{1} t^{\alpha-1} d t \\
\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \leq 2(f(a)+f(b))
\end{gathered}
$$

and thus the second inequality is proved.

Remark. If we choose $\alpha=1$ in Theorem 7, then the inequalities (13) become the inequalities (7).

Theorem 8. Let $f:[a, b] \rightarrow(0, \infty)$ be r-convex function on $[a, b]$ with $a<b$ and $0<r \leq 1$. Then the following inequality for fractional integral inequlities holds:

$$
\begin{gathered}
\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \leq\left[\left(\frac{1}{\alpha+\frac{1}{r}}\right)^{r}[f(a)]^{r}+\left(\beta\left(\alpha, \frac{r+1}{r}\right)\right)^{r}[f(b)]^{r}\right]^{\frac{1}{r}} \\
+\left[\left(\beta\left(\alpha, \frac{r+1}{r}\right)\right)^{r}[f(a)]^{r}+\left(\frac{1}{\alpha+\frac{1}{r}}\right)^{r}[f(b)]^{r}\right]^{\frac{1}{r}}
\end{gathered}
$$

Proof. Since f is r-convex function and $r>0$, we have

$$
f(t a+(1-t) b) \leq\left(t[f(a)]^{r}+(1-t)[f(b)]^{r}\right)^{\frac{1}{r}}
$$

and

$$
f((1-t) a+t b) \leq\left((1-t)[f(a)]^{r}+t[f(b)]^{r}\right)^{\frac{1}{r}}
$$

for all $t \in[0,1]$.

By adding these inequalities we have

$$
f(t a+(1-t) b)+f((1-t) a+t b) \leq\left(t[f(a)]^{r}+(1-t)[f(b)]^{r}\right)^{\frac{1}{r}}+\left((1-t)[f(a)]^{r}+t[f(b)]^{r}\right)^{\frac{1}{r}} .
$$

Then multiplying both sides of above inequality by $t^{\alpha-1}$ and integrating the resulting inequality with respect to t over $[0,1]$, we obtain

$$
\begin{aligned}
& \int_{0}^{1} t^{\alpha-1}[f(t a+(1-t) b)+f((1-t) a+t b)] d t \\
\leq & \int_{0}^{1} t^{\alpha-1}\left(t[f(a)]^{r}+(1-t)[f(b)]^{r}\right)^{\frac{1}{r}} d t+\int_{0}^{1} t^{\alpha-1}\left((1-t)[f(a)]^{r}+t[f(b)]^{r}\right)^{\frac{1}{r}} d t .
\end{aligned}
$$

It is easy to observe that

$$
\int_{0}^{1} t^{\alpha-1}[f(t a+(1-t) b)+f((1-t) a+t b)] d t=\frac{\Gamma(\alpha)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right]
$$

Using Minkowski inequality, we have

$$
\begin{aligned}
\int_{0}^{1} t^{\alpha-1}\left(t[f(a)]^{r}+(1-t)[f(b)]^{r}\right)^{\frac{1}{r}} d t & \leq\left[\left(\int_{0}^{1} t^{\alpha+\frac{1}{r}-1} f(a) d t\right)^{r}+\left(\int_{0}^{1} t^{\alpha-1}(1-t)^{\frac{1}{r}} f(b) d t\right)^{r}\right]^{\frac{1}{r}} \\
& =\left[\left(\frac{1}{\alpha+\frac{1}{r}}\right)^{r}[f(a)]^{r}+\left(\beta\left(\alpha, \frac{r+1}{r}\right)\right)^{r}[f(b)]^{r}\right]^{\frac{1}{r}}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\int_{0}^{1} t^{\alpha-1}\left((1-t)[f(a)]^{r}+t[f(b)]^{r}\right)^{\frac{1}{r}} & \leq\left[\left(\int_{0}^{1} t^{\alpha-1}(1-t)^{\frac{1}{r}} f(a) d t\right)^{r}+\left(\int_{0}^{1} t^{\alpha+\frac{1}{r}-1} f(b) d t\right)^{r}\right]^{\frac{1}{r}} \\
& =\left[\left(\beta\left(\alpha, \frac{r+1}{r}\right)\right)^{r}[f(a)]^{r}+\left(\frac{1}{\alpha+\frac{1}{r}}\right)^{r}[f(b)]^{r}\right]^{\frac{1}{r}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \leq & {\left[\left(\frac{1}{\alpha+\frac{1}{r}}\right)^{r}[f(a)]^{r}+\left(\beta\left(\alpha, \frac{r+1}{r}\right)\right)^{r}[f(b)]^{r}\right]^{\frac{1}{r}} } \\
& +\left[\left(\beta\left(\alpha, \frac{r+1}{r}\right)\right)^{r}[f(a)]^{r}+\left(\frac{1}{\alpha+\frac{1}{r}}\right)^{r}[f(b)]^{r}\right]^{\frac{1}{r}} .
\end{aligned}
$$

This proof is complete.

Remark. In Theorem 8, if we choose $\alpha=1$, then we obtain the inequalities (8).

Theorem 9. Let $f \in S X(h, I), a, b \in I$ with $a<b$ and $f \in L_{1}[a, b]$. Then one has inequality for $h-$ convex functions via fractional integrals

$$
\begin{align*}
\frac{1}{\alpha h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) & \leq \frac{\Gamma(\alpha)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \tag{16}\\
& \leq[f(a)+f(b)] \int_{0}^{1} t^{\alpha-1}[h(t)+h(1-t)] d t
\end{align*}
$$

Proof. According to (5) with $x=t a+(1-t) b, y=(1-t) a+t b$ and $\alpha=\frac{1}{2}$ we find that

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq h\left(\frac{1}{2}\right) f(t a+(1-t) b)+h\left(\frac{1}{2}\right) f((1-t) a+t b) \tag{17}\\
& \leq h\left(\frac{1}{2}\right)[f(t a+(1-t) b)+f((1-t) a+t b)]
\end{align*}
$$

Then multiplying the firts inequalitiy in (17) by $t^{\alpha-1}$ and integrating the resulting inequality with respect to t over $[0,1]$, we obtain

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) \int_{0}^{1} t^{\alpha-1} d t \leq h\left(\frac{1}{2}\right) \int_{0}^{1} t^{\alpha-1}[f(t a+(1-t) b)+f((1-t) a+t b)] d t \\
& \frac{1}{\alpha h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \tag{18}
\end{align*}
$$

and the first inequality in (16) is proved.

Since $f \in S X(h, I)$, we have

$$
f(t x+(1-t) y) \leq h(t) f(x)+h(1-t) f(y)
$$

and

$$
f((1-t) x+t y) \leq h(1-t) f(x)+h(t) f(y) .
$$

By adding these inequalities we get

$$
\begin{equation*}
f(t x+(1-t) y)+f((1-t) x+t y) \leq[h(t)+h(1-t)][f(x)+f(y)] . \tag{19}
\end{equation*}
$$

By using (19) with $x=a$ and $y=b$ we have

$$
\begin{equation*}
f(t a+(1-t) b)+f((1-t) a+t b) \leq[h(t)+h(1-t)][f(a)+f(b)] \tag{20}
\end{equation*}
$$

Then multiplying both sides of (20) by $t^{\alpha-1}$ and integrating the resulting inequality with respect to t over $[0,1]$, we get

$$
\begin{gather*}
\int_{0}^{1} t^{\alpha-1}[f(t a+(1-t) b)+f((1-t) a+t b)] d t \leq \int_{0}^{1} t^{\alpha-1}[h(t)+h(1-t)][f(a)+f(b)] d t \\
\frac{\Gamma(\alpha)}{(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}(b)+J_{b^{-}}^{\alpha}(a)\right] \leq[f(a)+f(b)] \int_{0}^{1} t^{\alpha-1}[h(t)+h(1-t)] d t \tag{21}
\end{gather*}
$$

and thus the second inequality is proved. We obtain inequalities (16) from (18) and (21).The proof is complete.
Remark. In Theorem 9;
-if we choose $h(t)=t$, then the inequalities (16) become the inequalities (10) of Theorem 5.
-if we take $\alpha=1$, then we obtain the inequalities (9).
-Let $\alpha=1$. If we choose $h(t)=t$ and $h(t)=1$, then (16) reduce to (1) and (7), respectively.

References

[1] E.K. Godunova and V.I. Levin, Neravenstra dlja funccii sirokogo klassa soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkaii, Vycislitel Mat. i Mt. Fiz., Mezvuzov Sb. Nauc. Trudov. MPGI, Moscow, 1985, 138-142.
[2] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure and Appl. Math., 10(3) (2009), Art. 86.
[3] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Computers and Mathematics with Applications, 58 (2009), 1869-1877.
[4] P. Burai and A. Házy, On approximately h-convex functions, Journal of Convex Analysis, 18 (2) (2011).
[5] Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear Science, 9(4) (2010), 493-497.
[6] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1(1) (2010), 51-58.
[7] Z. Dahmani and L. Tabharit, S. Taf, Some fractional integral inequalities, Nonl. Sci. Lett. A., 1(2) (2010), 155-160.
[8] Z. Dahmani, L. Tabharit and S. Taf, New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3) (2010), 93-99.
[9] S.S. Dragomir, J. Pečarić and L.E. Persson, Some inequalities of Hadamard Type, Soochow Journal of Mathematics, Vol.21, No:3, pp. 335-341, July 1995.
[10] P.M. Gill, C.E.M. Pearce and J. Pečarić, Hadamard's inequality for r-convex functions, Journal of Math. Analysis and Appl., 215 (1997), 461-470.
[11] N.P.G. Ngoc, N.V. Vinh and P.T.T. Hien, Integral inequalities of Hadamard-type for r-convex functions, International Mathematical Forum, 4 (2009), 1723-1728.
[12] M.E. Özdemir, H. Kavurmacı and M. Avcı, New inequalities of Ostrowski type for mappings whose derivatives are (α, m)-convex via fractional integrals, RGMIA Research Report Collection, 15(2012), Article 10, 8 pp .
[13] M.E. Özdemir, H. Kavurmacı and Ç. Yıldız, Fractional integral inequalities via s-convex functions, arXiv:1201.4915v1 [math.CA] 24 Jan 2012.
[14] C.E.M. Pearce, J. Pečarić and V. Simic, Stolarsky Means and Hadamard's Inequality, Journal Math. Analysis Appl., 220 (1998), 99-109.
[15] M.Z. Sarıkaya, E. Set and M.E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenianae, Vol. LXXIX, 2 (2010), pp. 265-272.
[16] M. Z. Sarıkaya, A. Sağlam and H. Yıldırım, On some Hadamard-type inequalities for h-convex functions, Journal of Mathematical Inequalities, 2 (3) (2008), 335-341.
[17] M. Z. Sarıkaya, E. Set, H. Yaldiz and N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57, 9-10 (2013), 2403-2407.
[18] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63, 7 (2012), 1147-1154.
[19] S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311.
[20] G.S. Yang, D.Y. Hwang, Refinements of Hadamard's inequality for r-convex functions, Indian Journal Pure Appl. Math., 32 (10), 2001, 1571-1579.

[^0]: * Corresponding author e-mail: cetin@atauni.edu.tr

