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Abstract: This paper considers the problem of nonparametric estimation of the conditional hazard function for functional mixing
data. In particular, given a strictly stationary random variables Zi = (Xi, Yi)i∈N, we investigate a kernel estimate of the conditional
hazard function of univariate response variable Yi given the functional variable Xi. The mean squared convergence rate is given and the
asymptotic normality of the proposed estimator is proven.
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1 Introduction

Statistical problems involved in the modelization of functional data have received an increasing interest in the few past
decade.

The infatuation for this topic is linked with many fields of applications in which the data are collected in the functional
order. Under this hypothesis, the statistical analysis focuses on a framework of infinite dimension for the data under
study. This type of data appears in many fields of applied statistics: environmetrics [7], chemometrics [2], meteorological
sciences [3], etc. This field of modern statistics has received much attention recently, it has been popularized in the book
of Ramsay and Silverman [20].

The nonparametric estimation of the hazard and/or the conditional hazard function is quite important in a variety of fields
such as medicine, reliability, survival analysis or in seismology. The hazard estimate was introduced by Watson and
Leadbetter [27], after that considerable results have been given, see for example, Ahmad [1], Singpurwalla and Wong
[24], and we can also cite Quintela [17] for a survey, Roussas [23] (for previous works), Li and Tran [14] (for recent
advances and references).

When hazard rate estimation is performed with multiple variables, the result is an estimate of the conditional hazard rate
for the first variable, given the levels of the remaining variables. Many references, practical examples and simulations in
the case of non-parametric estimation using local linear approximations can be found in Spierdijk [25].

From a theoretical point of view, a sample of functional data can be involved in many different statistical problems, such
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as for instance: classification and principal components analysis (PCA)[4,?] or longitudinal studies, regression and
prediction [2,6].

The literature is strictly not limited in the case where the data is of functional nature (a curve). The first result in this
context, was given by Ferraty et al . [10], authors established the almost complete convergence of the kernel estimate of
the conditional hazard function in the i.i.d. case and under α-mixing condition, and recently Rabhi et al. [18] studied the
mean quadratic convergence in the i.i.d. case of this estimate. More recently Mahiddine et al. [15] give the uniform
version of the almost complete convergence rate in the i.i.d. case.

The recent monograph by Ferraty and Vieu [11] summarizes many of their contributions to the non-parametric
estimation with functional data; among other properties, consistency of the conditional density, conditional distribution
and regression estimates are established in the i.i.d. case as well as under dependence conditions (strong mixing). Almost
complete rates of convergence are also obtained, and the different techniques are applied to various examples of
functional data samples. Related work can be found in the paper of Masry [16], where the asymptotic normality of the
functional non-parametric regression estimate is proven, considering strong mixing dependence conditions for the
sample data. For automatic smoothing parameter selection in the regression setting, see Rachdi and Vieu [19].

The main aim of this paper, is to study, under general conditions, the asymptotic proprieties of the functional data kernel
estimate of the conditional hazard function introduced by Ferraty et al. [10]. More precisely, we establish the asymptotic
normality of the construct estimator. We point out that our asymptotic results are useful in some statistical problems such
as the choice of the smoothing parameters. The present work extended to dependent case the result of Rabhi et al. [18]
given in i.i.d. case functional. Note that, one of the main difficulties, when dealing with functional variables, relies on the
difficulty for choosing some appropriate measure of reference in infinite dimensional spaces. The fundamental feature of
our approach is to build estimates and to derive their asymptotic properties without any notion of density for the
functional variable X . This approach allows us to avoid the use of a reference measure in such functional spaces. In each
of the above described sections, we will give general asymptotic results without assuming existence of such a density,
and each of these results will be discussed in relation with earlier literature existing in the usual finite dimensional case.

Our paper presents some asymptotic properties related with the non-parametric estimation of the conditional hazard
function. In a functional data setting, the conditioning variable is allowed to take its values in some abstract semi-metric
space. In this case, Ferraty et al. [26] define non-parametric estimators of the conditional density and the conditional
distribution. They give the rates of convergence (in an almost complete sense) to the corresponding functions, in an a
dependence (α-mixing) context. In Rabhi et al. [18], the same properties are shown in an i.i.d. context in the data
sample. We extend their results to dependent case by calculating the bias and variance of these estimates, and
establishing their asymptotic normality, considering a particular type of kernel for the functional part of the estimates.
Because the hazard function estimator is naturally constructed using these two last estimators, the same type of
properties is easily derived for it. Our results are valid in a real (one- and multi-dimensional) context.

The paper is organized as follows: In the next section we present our model. In section 3 we present notations and
hypotheses, Section 4 is dedicated for our main results. Section 5 is devoted to some discuss on the applicability of our
asymptotic result in some statistical problems.
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2 The model

Consider Zi = (Xi,Yi), i ∈ N be a F ×R-valued measurable strictly stationary process, defined on a probability space
(Ω ,A ,P), where (F ,d) is a semi-metric space.

In the following x will be a fixed point in F and Nx will denote a fixed neighborhood of x. We assume that the regular
version of the conditional probability of Y given X exists. Moreover, we suppose that, for all z ∈ Nx the conditional
distribution function of Y given X = z, Fz(·), is 3-times continuously differentiable and we denote by f z its conditional
density with respect to (w.r.t.) Lebesgue’s measure over R. In this paper, we consider the problem of the nonparametric
estimation of the conditional hazard function defined, for all y ∈ R such that Fx(y)< 1, by

hx(y) =
f x(y)

1−Fx(y)
.

In our spatial context, we estimate this function by

ĥx(y) =
f̂ x(y)

1− F̂x(y)

where

F̂x(y) =
∑n

i=1 K(h−1
K d(x,Xi))H(h−1

H (y−Yi))

∑n
i=1 K(h−1

K d(x,Xi))
, ∀y ∈ R

and

f̂ x(y) =
h−1

H ∑n
i=1 K(h−1

K d(x,Xi))H ′(h−1
H (y−Yi))

∑n
i=1 K(h−1

K d(x,Xi))
, ∀y ∈ R

with K is the kernel, H is a given continuously differentiable distribution function, hK = hK,n (resp. hH = hH,n) is a
sequence of positive real numbers and H ′ is the derivative of H. Furthermore, the estimator ĥx(y) can we written as

ĥx(y) =
f̂ x
N(y)

F̂x
D − F̂x

N(y)
(1)

where

F̂x
D :=

1
nE[K1]

n

∑
i=1

K(h−1
K d(x,Xi)), K1 = K(h−1

K d(x,X1))

F̂x
N(y) :=

1
nE[K1]

n

∑
i=1

K(h−1
K d(x,Xi))H(h−1

H (y−Yi))

f̂ x
N(y) :=

1
nhHE[K1]

n

∑
i=1

K(h−1
K d(x,Xi))H ′(h−1

H (y−Yi)).

Our main purpose is to study the L2- consistency and the asymptotic normality of the nonparametric estimate ĥx of hx

when the random filed (Zi, i ∈ N) satisfies the following mixing condition.

3 Notations and hypotheses

All along the paper, when no confusion is possible, we will denote by C and C′ some strictly positive generic constants.
In order to establish our asymptotic results we need the following hypotheses:

(H0) ∀r > 0,P(X ∈ B(x,r)) =: ϕx(r)> 0, where B(x,r) = {x′ ∈ F/d(x,x′)< r}.
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(H1) (Xi,Yi)i∈N is an α-mixing sequence whose the coefficients of mixture verify:

∃a > 0, ∃c > 0 : ∀n ∈ N, α(n)≤ cn−a.

(H2) 0 < sup
i ̸= j

P((Xi,X j) ∈ B(x,h)×B(x,h)) = O

(
(ϕx(h))

(a+1)/a

n1/a

)
.

Note that (H0) can be interpreted as a concentration hypothesis acting on the distribution of the f.r.v. X , whereas (H2)
concerns the behavior of the joint distribution of the pairs (Xi,X j). In fact, this hypothesis is equivalent to suppose that,
for n large enough

sup
i ̸= j

P((Xi,X j) ∈ B(x,h)×B(x,h))
P(X ∈ B(x,h))

≤C
(

ϕx(h)
n

)1/a

.

(H3) For l ∈ {0,2}, the functions Ψl(s) =E
[

∂ lFX (y)
∂yl − ∂ lFx(y)

∂yl

∣∣∣d(x,X) = s
]

and Φl(s) =E
[

∂ l f X (y)
∂yl − ∂ l f x(y)

∂yl

∣∣∣d(x,X) = s
]

are derivable at s = 0.
(H4) The bandwidth hK satisfies:

hK ↓ 0, ∀t ∈ [0,1] lim
hK→0

ϕx(thK)

ϕx(hK)
= βx(t) and nhHϕx(hK)→ ∞ as n → ∞.

(H5) The kernel K from R into R+ is a differentiable function supported on [0,1]. Its derivative K′ exists and is such that
there exist two constants C and C′ with −∞ <C < K′(t)<C′ < 0 for 0 ≤ t ≤ 1.

(H6) H has even bounded derivative function supported on [0,1] that verifies∫
R
|t|b2 H ′(t)dt < ∞.

(H7) There exist sequences of integers (un) and (vn) increasing to infinity such that (un + vn)≤ n, satisfying

(i) vn = o((nhHϕx(hK))
1/2) and

(
n

hH ϕx(hK)

)1/2
α(vn)→ 0 as n → 0,

(ii) qnvn = o((nhHϕx(hK))
1/2) and qn

(
n

hH ϕx(hK)

)1/2
α(vn)→ 0 as n → 0

where qn is the largest integer such that qn(un + vn)≤ n.

3.1 Remarks on the assumptions

Remark 1. Assumption (H0) plays an important role in our methodology. It is known as (for small h) the ”concentration
hypothesis acting on the distribution of X” in infinite-dimensional spaces. This assumption is not at all restrictive and
overcomes the problem of the non-existence of the probability density function. In many examples, around zero the
small ball probabilityϕx(h) can be written approximately as the product of two independent functions ψ(z) and φ(h) as
ϕz(h) = ψ(z)φ(h)+ o(φ(h)). This idea was adopted by Masry [16] who reformulated the Gasser et al. [12] one. The
increasing property of ϕx(.) implies that ζ x

h (.) is bounded and then integrable (all the more so ζ x
0 (.) is integrable).

Without the differentiability of ϕx(.), this assumption has been used by many authors where ψ(.) is interpreted as a
probability density, while φ(.) may be interpreted as a volume parameter. In the case of finite-dimensional spaces, that is
S = Rd , it can be seen that ϕx(h) = C(d)hdψ(x)+ ohd), where C(d) is the volume of the unit ball in Rd . Furthermore,
in infinite dimensions, there exist many examples fulfilling the decomposition mentioned above. We quote the following
(which can be found in Ferraty et al. [8]):
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1. ϕx(h)≈ ψ(h)hγ for som γ > 0.
2. ϕx(h)≈ ψ(h)hγ exp{C/hp} for som γ > 0 and p > 0.
3. ϕx(h)≈ ψ(h)/| lnh|.

The function β x
h (.) which intervenes in Assumption (H4) is increasing for all fixed h. Its pointwise limit β x

0 (.) also plays
a determinant role. It intervenes in all asymptotic properties, in particular in the asymptotic variance term. With simple
algebra, it is possible to specify this function (with β0(u) := β x

0 (u) in the above examples by:

1. β0(u) = uγ ,
2. β0(u) = δ1(u) where δ1(.) is Dirac function,
3. β0(u) = 1]0,1](u).

Assumption (H2) is classical and permits to make the variance term negligible.

Remark 2. Assumptions (H3) is a regularity condition which characterize the functional space of our model and is
needed to evaluate the bias.

Remark 3. Assumptions (H5) and (H6) are classical in functional estimation for finite or infinite dimension spaces.

4 Main results

4.1 Mean squared convergence

In this part we establish the L2-consistency of ĥx(y).

Theorem 1. Under assumptions (H0)-(H6), we have

E
[
ĥx(y)−hx(y)

]2
= B2

n(x,y)+
σ2

h (x,y)
nhHϕx(hK)

+o(h4
H)+o(hK)+o

(
1

nhHϕx(hK)

)
,

where

Bn(x,y) =
(B f

H −hx(y)BF
H)h

2
H +(B f

K −hx(y)BF
K)hK

1−Fx(y)

with

B f
H(x,y) =

1
2

∂ 2 f x(y)
∂y2

∫
t2H ′(t)dt

B f
K(x,y) = hKΦ ′

0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
)

BF
H(x,y) =

1
2

∂ 2Fx(y)
∂y2

∫
t2H ′(t)dt

BF
K(x,y) = hKΨ ′

0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
) .

and

σ2
h (x,y) =

β2hx(y)(
β 2

1 (1−Fx(y)
) (with β j = K j(1)−

∫ 1

0
(K j)′(s)βx(s)ds, for, j = 1, 2).
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Proof: By using the same decomposition used in ( Theorem 1 Rabhi et al. [18], P.408), we show that the proof of
Theorem 1 can be deduced from the following intermediate results:

Lemma 1. Under the hypotheses of Theorem 1, we have

E
[

f̂ x
N(y)

]
− f x(y) = B f

H(x,y)h
2
H +B f

K(x,y)hK +o(h2
H)+o(hK)

and
E
[
F̂x

N(y)
]
−Fx(y) = BF

H(x,y)h
2
H +BF

K(x,y)hK +o(h2
H)+o(hK).

Remark 4. Observe that, the result of this lemma permits to write[
EF̂x

N(y)−Fx(y)
]
= O(h2

H)+O(hK)

and [
E f̂ x

N(y)− f x(y)
]
= O(h2

H +hK).

Lemma 2. Under the hypotheses of Theorem 1, we have

Var
[

f̂ x
N(y)

]
=

σ2
f (x,y)

nhHϕx(hK)
+o
(

1
nhHϕx(hK)

)
,

Var
[
F̂x

N(y)
]
= o

(
1

nhHϕx(hK)

)
and

Var
[
F̂x

D

]
= o

(
1

nhHϕx(hK)

)
.

where σ2
f (x,y) := f x(y)

∫
H ′2(t)dt.

Lemma 3. Under the hypotheses of Theorem (??), we have

Cov( f̂ x
N(y), F̂

x
D) = o

(
1

nhHϕx(hK)

)
,

Cov( f̂ x
N(y), F̂

x
N(y)) = o

(
1

nhHϕx(hK)

)
and

Cov( f̂ x
D, F̂

x
N(y)) = o

(
1

nhHϕx(hK)

)
.

Remark 5. It is clear that, the results of Lemmas 2 and 3 allows to write

Var
[
F̂x

D − F̂x
N

]
= o

(
1

nhHϕx(hK)

)
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4.2 Asymptotic normality

This section contains results on the asymptotic normality of ĥx(y).

Theorem 2. Assume that (H0)-(H7) hold, and if the following inequalities

∃η > 0, C, C′ > 0 such that C n
3−a
a+1+η ≤ hH ϕx(hK) and ϕx(hK)≤C′n

1
1−a (2)

are verified with a > (5+
√

17)/2, then we have for any x ∈ A ,

(
nhHϕx(hK)

σ2
h (x,y)

)1/2(
ĥx(y)−hx(y)−Bn(x,y)

)
D→ N (0,1) as n → ∞.

where
A = {x ∈ F , f x(y)(1−Fx(y)) ̸= 0}

and D→ means the convergence in distribution.

Evidently, if one imposes some additional assumptions on the function ϕx(·) and the bandwidth parameters (hK and hH )
our asymptotic normality can be improved by removing the bias term Bn(x,y).

Corollary 1. Under the hypotheses of Theorem 2 and if the bandwidth parameters (hK and hH ) and if the function

ϕx(hK) satisfies:
lim
n→∞

(h2
H +hK)

√
nϕx(hK) = 0

we have (
nhHϕx(hK)

σ2
h (x,y)

)1/2(
ĥx(y)−hx(y)

)
D→ N (0,1) as n → ∞.

Proof of Theorem and Corollary: Consider the decomposition

ĥx(y)−hx(y) =
1

F̂x
D − F̂x

N(y)

(
f̂ x
N(y)−E f̂ x

N(y)
)

+
1

F̂x
D − F̂x

N(y)

{
hx(y)

(
EF̂x

N(y)−Fx(y)
)
+
(
E f̂ x

N(y)− f x(y)
)}

+
hx(y)

F̂x
D − F̂x

N(y)

{
1−EF̂x

N(y)−
(

F̂x
D − F̂x

N(y)
)}

(3)

Therefore, Theorem 2 and Corollary 1 are a consequence of Lemma 1, remark 1 and the following results.

Lemma 4. Under the hypotheses of Theorem 2

(
nhHϕx(hK)

σ2
f (x,y)

)1/2(
f̂ x
N(y)−E

[
f̂ x
N(y)

])
→ N(0,1).

Lemma 5. Under the hypotheses of Theorem 2

F̂x
D − F̂x

N(y)→ 1−Fx(y) in probability
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and (
nhHϕx(hK)

σ2
h (x,y)

)1/2(
F̂x

D − F̂x
N(y)−1+E[F̂x

N(y)]
)
= oP(1).

5 Appendix

In the following, we will denote ∀i

Ki = K(h−1
H d(x,Xi)), Hi = H(h−1

H (y−Yi) and H ′
i = H ′(h−1

H (y−Yi).

Proof of Lemma 1: Firstly, for E[ f̂ x
N(y)], we start by writing

E[ f̂ x
N(y)] =

1
E[K1]

E
[
K1E[h−1

H H ′
1|X ]

]
with h−1

H E
[
H ′

1|X
]
=
∫
R

H ′(t) f X (y−hHt)dt.

The latter can be re-written, by using a Taylor expansion under (H3), as follows

h−1
H E[H ′

1|X ] = f X (y)+
h2

H
2

(∫
t2H ′(t)dt

)
∂ 2 f X (y)

∂ 2y
+o(h2

H).

Thus, we get

E
[

f̂ x
N(y)

]
=

1
E[K1]

(
E
[
K1 f X (y)

]
+

(∫
t2H ′(t)dt

)
E
[

K1
∂ 2 f X (y)

∂ 2y

]
+o(h2

H)

)
.

Let ψl(·,y) := ∂ l f ·(y)
∂ ly : for l ∈ {0,2}, since Φl(0) = 0, we have

E [K1ψl(X ,y)] = ψl(x,y)E[K1]+E [K1 (ψl(X ,y)−ψl(x,y))]
= ψl(x,y)E[K1]+E [K1 (Φl(d(x,X))]

= ψl(x,y)E[K1]+Φ ′
l (0)E [d(x,X)K1]+o(E [d(x,X)K1]).

So,

E
[

f̂ x
N(y)

]
= f x(y)+

h2
H
2

∂ 2 f x(y)
∂y2

∫
t2H ′(t)dt +o

(
h2

H
E [d(x,X)K1]

E[K1]

)
+Φ ′

0(0)
E [d(x,X)K1]

E[K1]
+o
(
E [d(x,X)K1]

E[K1]

)
.

Similarly to Ferraty et al. [8] we show that

1
ϕx(hK)

E [d(x,X)K1] = hK

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds+o(1)

)
and

1
ϕx(hK)

E [K1] = K(1)−
∫ 1

0
K′(s)βx(s)ds+o(1).

Hence,

E
[

f̂ x
N(y)

]
= f x(y)+

h2
H
2

∂ 2 f x(y)
∂y2

∫
t2H ′(t)dt +hKΦ ′

0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
) +o(h2

H)+o(hK).
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Secondly, concerning E[F̂x
N(y)], we write by an integration by part

E[F̂x
N(y)] =

1
E[K1]

E [K1E[H1|X ]] with E [H1|X ] =
∫
R

H ′(t)FX (y−hHt)dt.

The same steps used in studying E[ f̂ x
N(y)] can be followed to prove that

E
[
F̂x

N(y)
]
= Fx(y)+

h2
H
2

∂ 2Fx(y)
∂y2

∫
t2H ′(t)dt +hKΨ ′

0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
) +o(h2

H)+o(hK).

Proof of Lemma 2: For the first quantity Var[ f̂ x
N(y)], we have

s2
n = Var[ f̂ x

N(y)] =
1

(nhHE [K1(x)])2 Var

[
∑
i=1

Γi(x)

]

where
Γi(x) = Ki(x)H ′

i (y)−E
[
Ki(x)H ′

i (y)
]
.

Thus

Var[ f̂ x
N(y)] =

1
(nhHE [K1])2 ∑

i ̸= j
Cov(Γi(x),Γj(x))︸ ︷︷ ︸

scov
n

+
n

∑
i=1

Var (Γi(x))︸ ︷︷ ︸
svar
n

=
1

n(hHE [K1])2 Var [Γ1]+
1

(nhHE [K1])2 ∑
i̸= j

Cov(Γi,Γj).

Let us calculate the quantity Var [Γ1(x)]. We have:

Var [Γ1(x)] = E
[
K2

1 (x)H
′2
1 (y)

]
−
(
E
[
K1(x)H ′

1(y)
])2

= E
[
K2

1 (x)
] E[K2

1 (x)H
′2
1 (y)

]
E
[
K2

1 (x)
] − (E [K1(x)])2

(
E [K1(x)H ′

1(y)]
E [K1(x)]

)2

.

So, by using the same arguments as those used in pervious lemma we get

1
ϕx(hK)

E
[
K2

1 (x)
]
= K2(1)−

∫ 1

0
(K2(s))′βx(s)ds+o(1)

E
[
K2

1 (x)H
′2
1 (y)

]
E
[
K2

1 (x)
] = hH f x(y)

∫
H ′2(t)dt +o(hH)

E[K1(x)H ′
1(y)]

E [K1(x)]
= hH f x(y)+o(hH)

which implies that

Var [Γi(x)] = hHϕx(hK) f x(y)
∫

H ′2(t)dt
(

K2(1)−
∫ 1

0
(K2(s))′βx(s))ds

)
+o(hHϕx(hK)) . (4)
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Now, let us focus on the covariance term. To do that, we need to calculate the asymptotic behavior of quantity defined as

∑
i ̸= j

∣∣∣Cov(Γi(x),Γj(x))
∣∣∣= ∑

1≤|i− j|≤cn

∣∣∣Cov(Γi(x),Γj(x))
∣∣∣= J1,n + J2,n.

with cn → ∞, as n → ∞.

For all (i, j) we write
Cov(Γi(x),Γj(x)) = E

[
Ki(x)K j(x)H ′

i (y)H
′
j(y)
]
−
(
E
[
Ki(x)H ′

i (y)
])2

and we use the fact that

E
[
H ′

i (y)H
′
j(y)|(Xi,X j)

]
= O(h2

H); ∀ i ̸= j, E
[
H ′

i (y)|Xi
]
= O(hH); ∀ i.

For J1,n: by means of the integral realized above and under (H2) and (H5), we get

E
[
KiK jH ′

i H
′
j
]
≤Ch2

HP [(Xi,X j) ∈ B(x,hK)×B(x,hK)]

and
E
[
Ki(x)H ′

i (y)
]
≤ChHP(Xi ∈ B(x,hK)) .

It follows that, the hypothesis (H0), (H2) and (H5), imply

Cov(Γi(x),Γj(x))≤Ch2
Hϕx(hK)

(
ϕx(hK)+

(
ϕx(hK)

n

)1/a
)

So

J1,n ≤C

(
ncnh2

H

(
ϕx(hK)

n

)1/a

ϕx(hK)

)
.

Hence

J1,n = O

(
ncnh2

H

(
ϕx(hK)

n

)1/a

ϕx(hK)

)
.

On the other hand, these covariances can be controlled by mean of the usual Davydov-Rios’s covariance inequality for
mixing processes (see Rio 2000, formula 1.12a). Together with (H1), this inequality leads to:

∀i ̸= j,
∣∣Cov(Di(x),D j(x))

∣∣ ≤ C |i− j|−a.

By the fact,

∑
k≥cn+1

k−a ≤
∫ ∞

cn

t−adt =
c−a+1

n

a−1
,

we get by applying (H1),

J2,n ≤ ∑
|i− j|≥cn+1

|i− j|−a ≤ nc−a+1
n

a−1

Thus, by using the following classical technique (see Bosq, 1998 [5]), we can write

scov
n = ∑

0<|i− j|≤un

∣∣Cov(Γi(x),Γj(x))
∣∣+ ∑

|i− j|>un

∣∣Cov(Γi(x),Γj(x))
∣∣ .
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Thus

scov
n ≤ Cn

(
cnh2

H

(
ϕx(hK)

n

)1/a

ϕx(hK)+
c−a+1

n

a−1

)

Choosing cn = h−2
H

(
ϕx(hK)

n

)−1/a
, and owing to the right inequality in (2), we can deduce

scov
n = o(nhHϕx(hK)) . (5)

Finally,

s2
n = o(nhHϕx(hK))+O (nhHϕx(hK))

= O (nhHϕx(hK))

In conclusion, we have

Var[ f̂ x
N(y)] =

f x(y)
nhHϕx(hK)

(∫
H ′2(t)dt

)
(

K2(1)−
∫ 1

0 (K
2(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
)2

+o
(

1
nhHϕx(hK)

)
(6)

Now, for F̂x
N(y), (resp. F̂x

D) we replace H ′
i (y) by Hi(y) (resp. by 1) and we follow the same ideas, under the fact that H ≤ 1

Var[F̂x
N(y)] =

Fx(y)
nϕx(hK)

(∫
H ′2(t)dt

)
(

K2(1)−
∫ 1

0 (K
2(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
)2

+o
(

1
nϕx(hK)

)
.

and

Var[F̂x
D] =

1
nϕx(hK)


(

K2(1)−
∫ 1

0 (K
2(s))′βx(s)ds

)
(

K(1)−
∫ 1

0 K′(s)βx(s)ds
)2

+o
(

1
nϕx(hK)

)
.

This yields the proof.

Proof of Lemma 3: The proof of this lemma follows the same steps as the previous Lemma. For this, we keep the same

notation and we write

Cov( f̂ x
N(y), F̂

x
N(y)) =

1
nhH(E [K1(x)])2 Cov(Γ1(x),∆1(x))+

1
n2hH(E [K1(x)])2 ∑

i ̸= j
Cov(Γi(x),∆ j(x))

where
∆i(x) = Ki(x)Hi(y)−E [Ki(x)Hi(y)] .

For the first term, we have under (H4)

Cov(Γ1(x),∆1(x)) = E[K2
1 (x)H1(y)H ′

1(y)]−E[K1(x)H1(y)]E[K1(x)H ′
1(y)]

= O(hHϕx(hK))+O(hHϕ 2
x (hK))

= O(hHϕx(hK)).
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Therefore,

1
nhH(E [K1(x)])2 Cov(Γ1(x),∆1(x)) = O

(
1

nϕx(hK)

)
= o

(
1

nhHϕx(hK)

)
. (7)

So, by using similar arguments as those invoked in the proof of Lemma 2, and we use once again the boundedness of K
and H, and the fact that (H1) and (H6) imply that

E
(
H ′

i (y)|Xi
)
= O(hH).

Moreover, the right part of (H7b) implies that

Cov(Γi(x),∆ j(x)) = O

(
hHϕx(hK)

(
ϕx(hK)

n

)1/a

+ϕx(hK)

)
,

Meanwhile, using the Davydov-Rio’s inequality in Rio (2000) for mixing processes leads to

∣∣Cov(Γi(x),∆ j(x))
∣∣≤Cα (|i− j|)≤C|i− j|−a,

we deduce easily that for any cn > 0 :

∑
i ̸= j

Cov(Γi(x),∆ j(x)) = O

(
ncn hHϕx(hK)

(
ϕx(hK)

n

)1/a

+ϕx(hK)

)
+ O

(
nhH c−a

n
)
.

It suffices now to take cn = h−1
H

(
ϕx(hK)

n

)−1/a

to get the following expression for the sum of the covariances:

∑
i ̸= j

Cov(Γi(x),∆ j(x)) = o(nϕx(hK)) . (8)

From (7) and (8) we deduce that

Cov( f̂ x
N(y), F̂

x
N(y)) = o

(
1

nhHϕx(hK)

)
.

The same arguments can be used to shows that

Cov( f̂ x
N(y), F̂

x
D) = o

(
1

nhHϕx(hK)

)
and Cov(F̂x

N(y), F̂
x
D) = o

(
1

nhHϕx(hK)

)
.

Proof of Lemma 4: Let

Sn =
n

∑
i=1

Λi(x)

where

Λi(x) :=

√
hHϕx(hK)

hHE[K1(x)]
Γi(x). (9)

Obviously, we have √
nhHϕx(hK)

[
σ f (x,y)

]−1
(

f̂ x
N(y)−E f̂ x

N(y)
)
=
(
n(σ f (x,y))2)−1/2

Sn.
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Thus, the asymptotic normality of
(
n(σ f (x,y))2

)−1/2 Sn, is sufficient to show the proof of this Lemma. This last is shown
by the blocking method, where the random variables Λi are grouped into blocks of different sizes defined.

We consider the classical big- and small-block decomposition. We split the set {1,2, . . . ,n} into 2kn + 1 subsets with
large blocks of size un and small blocks of size vn and put

kn :=
[ n

un + vn

]
.

Assumption (H7)(ii) allows us to define the large block size by

un =:
[(nhHϕx(hK)

qn

)1/2 ]
.

Using Assumption (H7) and simple algebra allows us to prove that

vn

un
→ 0,

un

n
→ 0,

un√
nhHϕx(hK)

→ 0, and
n
un

α(vn)→ 0 (10)

Now, let ϒj, ϒ ′
j and ϒ ′′

j be defined as follows:

ϒj =
j(u+v)+u

∑
i= j(u+v)+1

Λi(x), 0 ≤ j ≤ k+1,

ϒ ′
j =

( j+1)(u+v)+u

∑
i= j(u+v)+u+1

Λi(x), 0 ≤ j ≤ k+1,

ϒ
′′
j =

n

∑
i=k(u+v)+1

Λi(x), 0 ≤ j ≤ k+1.

Clearly, we can write

Sn =
k−1

∑
j=0

ϒj +
k−1

∑
j=0

ϒ ′
j +ϒ

′′
k r =: S′n +S′′n +S

′′′
n .

We prove that

(i)
1
n
E(S′′n)2 −→ 0, (ii)

1
n
E(S

′′′
n )

2 −→ 0, (11)

∣∣∣E{exp
(

itn−1/2S′n
)}

−
k−1

∏
j=0

E
{

exp
(

itn−1/2ϒj

)}∣∣∣−→ 0, (12)

1
n

k−1

∑
j=0

E
(
ϒ 2

j
)
−→ σ2

f (x,y), (13)

1
n

k−1

∑
j=0

E
(

ϒ 2
j 1

{|ϒj |>ε
√

nσ2
f (x,y)}

)
−→ 0 (14)

for every ε > 0.

Expression (11) show that the terms S′′n and S
′′′
n are negligible, while Equations (12) and (13) show that the ϒj are

asymptotically independent, verifying that the sum of their variances tends to σ2
f (x,y). Expression (14) is the
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Lindeberg-Feller’s condition for a sum of independent terms. Asymptotic normality of Sn is a consequence of Equations
(11)-(14).

• Proof of (11) Because E(Λ j) = 0, ∀ j, we have that

E(S′′n)2 =Var

(
k−1

∑
j=0

ϒ ′
j

)
=

k−1

∑
j=0

Var
(
ϒ ′

j
)
+ ∑

0≤i< j≤k−1
Cov

(
ϒ ′

i ,ϒ ′
j
)

:= Π1 +Π2.

By the second-order stationarity we get

Var
(
ϒ ′

j
)
= Var

(
( j+1)(un+vn)

∑
i= j(un+vn)+un+1

Λi(x)

)

= vnVar(Λ1(x))+
vn

∑
i ̸= j

Cov(Λi(x),Λ j(x)) .

Then

Π1

n
=

kvn

n
Var(Λ1(x))+

1
n

k−1

∑
j=0

vn

∑
i ̸= j

Cov(Λi(x),Λ j(x))

≤ kvn

n

{
ϕx(hK)

hHE2K1(x)
Var (Γ1(x))

}
+

1
n

n

∑
i ̸= j

∣∣∣Cov(Λi(x),Λ j(x))
∣∣∣

≤ kvn

n

{
1

hHϕx(hK)
Var (Λ1(x))

}
+

1
n

n

∑
i ̸= j

∣∣∣Cov(Λi(x),Λ j(x))
∣∣∣.

Simple algebra gives us

kvn

n
∼=
(

n
un + vn

)
vn

n
∼=

vn

un + vn
∼=

vn

un
−→ 0 as n → ∞.

Using Equation (5) we have

lim
n→∞

Π1

n
= 0. (15)

Now, let us turn to Π2/n. We have

Π2

n
=

1
n

k−1

∑
i=0i ̸= j

k−1

∑
j=0

Cov(ϒi(x),ϒj(x))

=
1
n

k−1

∑
i=0i ̸= j

k−1

∑
j=0

vn

∑
l1=1

vn

∑
l2

Cov
(

Λm j+l1 ,Λm j+l2

)
,

with mi = i(un + vn)+ vn. As i ̸= j, we have |mi −m j + l1 − l2| ≥ un. It follows that

Π2

n
≤ 1

n

n

∑
i=1|i− j|≥un

n

∑
j=1

Cov(Λi(x),Λ j(x)) ,

then
lim
n→∞

Π2

n
= 0. (16)

By Equations (15) and (16) we get Part(i) of the Equation(11).
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We turn to (ii), we have

1
n
E
(

S
′′′
n

)2
=

1
n

Var
(
ϒ ′′

k
)

=
ϑn

n
Var (Λ1(x))+

1
n

ϑn

∑
i=1i ̸= j

ϑn

∑
j=1

Cov(Λi(x),Λ j(x)) ,

where ϑn = n− kn(un + vn); by the definition of kn, we have ϑn ≤ un + vn.
Then

1
n
E
(

S
′′′
n

)2
≤ un + vn

n
Var (Λ1(x))+

1
n

ϑn

∑
i=1i ̸= j

ϑn

∑
j=1

Cov(Λi(x),Λ j(x))

and by the definition of un and vn we achieve the proof of (ii) of Equation (11).

• Proof of (12) We make use of Volkonskii and Rozanov’s lemma (see the appendix in Masry, 2005) and the fact that
the process (Xi,X j)is strong mixing.

Note that ϒa is F ja
ia -mesurable with ia = a(un + vn)+ 1 and ja = a(un + vn)+ un; hence, with Vj = exp

(
itn−1/2ϒj

)
we have ∣∣∣E{exp

(
itn−1/2S′n

)}
−

k−1

∏
j=0

E
{

exp
(

itn−1/2ϒj

)}∣∣∣≤ 16knα(vn +1) ∼=
n
vn

α(vn +1)

which goes to zero by the last part of Equation (10). Now we establish Equation (13).

• Proof of (13) Note that Var(S′n) −→ σ2
f (x,y) by Equation (11) and since Var(S′n) −→ σ2

f (x,y) (by the definition of
the Λi and Equation (6)). Then because

E
(
S′n
)2

=Var
(
S′n
)
=

k−1

∑
j=0

Var (ϒj)+
k−1

∑
i=0 i ̸= j

k−1

∑
j=0

Cov(ϒi,ϒj) ,

all we have to prove is that the double sum of covariances in the last equation tends to zero. Using the same arguments
as those previously used for Π2 in the proof of first term of Equation (11)we obtain by replacing vn by un we get

1
n

k−1

∑
j=0

E
(
ϒ 2

j 5
)
=

kun

n
Var (Λ1)+o(1).

As Var (Λ1)−→ σ2
f (x,y) and kun/n −→ 1, we get the result.

Finally, we prove Equation (14).

• Proof of (14) Recall that

ϒj =
j(un+vn)+un

∑
i= j(un+vn)+1

Λi.

Making use Assumptions (H5) and (H6), we have∣∣∣Λi

∣∣∣≤C (hHϕx(hK))
−1/2
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thus ∣∣∣ϒj

∣∣∣≤Cun (hHϕx(hK))
−1/2 ,

which goes to zero as n goes to infinity by Equation (10). Then for n large enough, the set
{
|ϒj|> ε

(
nσ2

f (x,y)
)−1/2

}
becomes empty, this completes the proof and therefore that of the asymptotic normality of

(
n(σ f (x,y))2

)−1/2 Sn,

Proof of Lemma 5: It is clear that, the result of Lemma 1 and Lemma 2 permits us

E
(

F̂x
D − F̂x

N −1+Fx(y)
)
−→ 0

and
Var

(
F̂x

D − F̂x
N −1+Fx(y)

)
−→ 0

then
F̂x

D − F̂x
N −1+Fx(y) P−→0.

Moreover, the asymptotic variance of F̂x
D − F̂x

N given in remark 1 allows to obtain

nhHϕx(hK)

σh(x,y)2 Var
(

F̂x
D − F̂x

N −1+E
(

F̂x
N(y)

))
−→ 0.

By combining result with the fact that
E
(

F̂x
D − F̂x

N −1+E
(

F̂x
N(y)

))
= 0

we obtain the claimed result.
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