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Abstract: In this study, the differential equation characterizations of curves of constant breadth are given in Euclidean 4-space E4.
Furthermore, a criterion for a curve to be the curve of constant breadth in E4 is introduced. As an example, the obtained results are
applied to the case that the curvatures k1, k2, k3 and are discussed.
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1 Introduction

Euler introduced the constant breadth curves in 1778 [7]. He considered these special curves in the plane. Later, many
geometers have shown increased interest in the properties of plane convex curves. Struik published a brief review of the
most important publications on this subject [20]. Also, Ball [1], Barbier [2], Blaschke [3,4] and Mellish [14] investigated
the properties of plane curves of constant breadth. A space curve of constant breadth was obtained by Fujiwara by taking
a closed curve whose normal plane at a point P has only one more point Q in common with the curve, and for which the
distance d(P,Q) is constant [8].

He also defined and studied constant breadth surfaces. Later, Smakal studied the constant breadth space curves [19].
Furthermore, Blaschke considered the notion of curve of constant breadth on the sphere [4]. Moreover, Reuleaux studied
the curves of constant breadth and gave the method related to these curves for the kinematics of machinery [16]. Then,
constant breadth curves had an importance for engineering sciences and Tanaka used the constant breadth curves in the
kinematics design of Com follower systems [21].

Moreover, Köse has presented some concepts for space curves of constant breadth in Euclidean 3-space in [12] and Sezer
has obtained the differential equations characterizing space curves of constant breadth and introduced a criterion for
these curves [18]. Constant breadth curves in Euclidean 4-space were given by Mağden and Köse [13]. Moreover,
constant breath curves have been studied in Minkowski space. Kazaz, Önder and Kocayiğit have studied spacelike curves
of constant breadth in Minkowski 4-space [10]. Önder, Kocayiğit and Candan have obtained and studied the differential
equations characterizing constant breadth curves in Minkowski 3-space [15]. Furthermore, Kocayiğit and Önder have
showed that constant breadth curves are normal curves, helices, and spherical curves in some special cases [11].

In this paper, we study the differential equations characterizing curves of constant breadth in the Euclidean 4-space E4.
Moreover, we give a criterion characterizing these curves in E4.
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2 Differential equations characterizing curves of constant breadth in E4

Let (C) be a unit speed regular curve in E4 with parametrization α(s) : I ⊂ R→ E4. Denote by {T,N,B,E} the moving
Frenet frame along the curve (C) in E4. Then, the following Frenet formulate are given,

T′

N′

B′

E′

=


0 k1 0 0

−k1 0 k2 0
0 −k2 0 k3

0 0 −k2 0




T
N
B
E


where k1, k2 and k3 are the first, second and third curvatures of the curve (C), respectively [9].

Definition 1. Let (C) be a unit speed regular curve in E4 with position vector α(s) . If (C) has parallel tangents T and T∗

in opposite direction at the opposite points and of the curve and if the distance between these points is always constant
then is called a curve of constant breadth in E4. Moreover, a pair of curves (C) and (C∗) for which the tangents at the
corresponding points are parallel and in opposite directions and the distance between these points is always constant is
called a curve pair of constant breadth in E4.

Let now (C) and (C∗) be a pair of unit speed curves in E4 with position vector α(s) and α∗(s∗), where s and s∗ are arc
length parameters of the curves, respectively. Let (C) and (C∗) have parallel tangents in opposite directions at opposite
points. Then the curve (C∗) may be represented by the equation

α∗(s) = α(s)+m1(s)T(s)+m2(s)N(s)+m3(s)B(s)+m4(s)E(s) (1)

where mi(s), 1 ≤ i ≤ 4 are the differentiable functions of s which is the arc length of (C) . Differentiating this equation
with respect to s and using the Frenet formulate we obtain

α∗(s)
ds

= T∗ ds∗

ds
=

(
1+

dm1

ds
−m2k1

)
T+

(
m1k1 +

dm2

ds
−m3k2

)
N+

(
m2k2 +

dm3

ds
−m4k3

)
B+

(
m3k3 +

dm4

ds

)
E.

Since T =−T∗ at the corresponding points of (C) and (C∗), we have

(
1+ dm1

ds −m2k1

)
=− ds∗

ds ,(
m1k1 +

dm2
ds −m3k2

)
= 0,(

m2k2 +
dm3
ds −m4k3

)
= 0,(

m3k3 +
dm4
ds

)
= 0.

(2)

It is well known that the curvature of (C) is lim(∆φ/∆s) = (dφ/ds) = k1(s), where φ =
∫ s

0 k1(s)ds is the angle between
the tangent of the curve (C) and a given fixed direction at the point α(s). Then from (2) we have the following system

m
′
1 =m2 − f (φ), m

′
2 = m3ρk2,

m
′
3 =m4ρk3 −m2ρk2, m

′
4 =−m3ρk3. (3)

Here and after we will use (′) to show the differentiation with respect to φ . In (3), f (φ) = ρ +ρ∗ and, ρ = 1
k1

and ρ∗ = 1
k∗1

denote the radius of curvatures at the points α and α∗, respectively. From (3) eliminating m2, m3 and m4 their derivatives
we have the following differential equation

d
dφ

[
d

dφ

[
1

ρk2

(
d2m1

dφ2 +m1

)]
+

k2

k3

dm1

dφ

]
+

k2

k3

(
d2m1

dφ2 +m1

)
+

d
dφ

[
1

ρk2

d
dφ

(
1

ρk2

d f
dφ

)
+

k2

k3
f
]
+

k2

k3

d f
dφ

= 0. (4)
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Then we can give the following theorem.

Theorem 1. The general differential equation characterizing space curves of constant breadth in E4 is given by (4).

Let now consider the system (3) again. The distance d between the opposite points α and α∗ is the breadth of the curves
and is constant, that is,

d2 = ∥d∥2 = ∥α∗−α∥2 = m2
1 +m2

2 +m2
3 +m2

4 = const. (5)

Then the system (3) may be written as follows:

m2 = f (φ), m
′
2 = m3ρk2, m

′
3 = m4ρk3 −m2ρk2,

m
′
4 =−m3ρk3, m1 = 0. (6)

or

m
′
1 =m2, m

′
2 =−m1 +m3ρk2,

m
′
3 =m4ρk3 −m2ρk2, m

′
4 =−m3ρk3. (7)

which are the systems describing the curve (C).

Let us consider the system (7) with special chosen m1 = const. . Here, eliminating first m1, m2, m3 and their derivatives,
and then m1, m2, m4 and their derivatives, respectively, we obtain the following linear differential equations of second
order {

(ρk3)m
′′
4 − (ρk3)

′
m

′
4 +(ρk3)

3 m4 = 0, ρk2 ̸= 0,

(ρk3)m
′′
3 − (ρk3)

′
m

′
3 +(ρk3)

3 m3 = 0, ρk3 ̸= 0.
(8)

By changing the variable φ of the form ξ =
∫ φ

0 ρ(t)k3(t)dt , these equations can be transformed into the following
differential equations with constant coefficients,

d2m4

dξ 2 +m4 = 0 and
d2m3

dξ 2 +m3 = 0, (9)

respectively [5]. Then, the general solutions of the differential equations (9) are
m3 = Acos

(∫ φ
0 ρk3dt

)
+Bsin

(∫ φ
0 ρk3dt

)
,

m4 =C cos
(∫ φ

0 ρk3dt
)
+Dsin

(∫ φ
0 ρk3dt

)
.

(10)

respectively, where A, B, C and D are real constants. Substituting (10) into (7), we obtain A =−D, B =C, and so, the set
of the solutions of the system (7), in the form

m1 = c = const., m2 = 0,
m3 = Acos

∫ φ
0 ρk3dt +Bsin

∫ φ
0 ρk3dt,

m4 = Bcos
∫ φ

0 ρk3dt −Asin
∫ φ

0 ρk3dt.

 (11)

Thus the equation (1) is described and since d2 = ∥α∗ − α∥2 = const., from (11) the breadth of the curve is
d2 = c2 +A2 +B2.

Now, let us return to the system (6) with m1 = 0. By changing the variable φ of the form u =
∫ φ

0 µ(t)dt, µ = ρk3 and
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eliminating m1, m2, m4 and their derivatives we have the linear differential equation

d2m3

du2 +m3 =− d
du

(
k2

k3
m2). (12)

which has the following solution

m3 = A1 cos
∫ φ

0
ρk3dt +B1 sin

∫ φ

0
ρk3dt −

∫ φ

0
cos[u(φ)−u(t)]ρk2 f (t)dt. (13)

Then, the general solution of the system (6) is
m1 = 0,

m2 = f (φ),

m3 = A1 cos
∫ φ

0 ρk3dt +B1 sin
∫ φ

0 ρk3dt −
∫ φ

0 cos[u(φ)−u(t)]ρk2 f (t)dt,

m4 = B1 cos
∫ φ

0 ρk3dt −A1 sin
∫ φ

0 ρk3dt +
∫ φ

0 sin[u(φ)−u(t)]ρk2 f (t)dt.

(14)

which determines the constant breadth curve in (1) where A1, B1 are real constants.

Furthermore, in this case, i.e., m1 = 0 , from (4) we have the following differential equation

d
dφ

[
1

ρk3

d
dφ

(
1

ρk2

d f
dφ

)
+

k2

k3
f
]
+

k2

k3

d f
dφ

= 0. (15)

By changing the variable φ of the form w =
∫ φ

0 ρk2dφ , (15) becomes

d
dw

[
k2

k3

(
d2 f
dw2 + f

)]
+

k3

k2

d f
dw

= 0. (16)

which also determines the constant breadth curve in (1).

So far we have dealt with a pair of space curves having parallel tangent in opposite directions at corresponding points.
Now let us consider a simple closed unit speed space curve (C) in E4 for which the normal plane of every point P on the
curve meets the curve of a single opposite point Q other than P. Then, we may give the following theorem concerning
the space curves of constant breadth in E4.

Theorem 2. Let (C) be a closed space curve in E4 having parallel tangents in opposite directions at the opposite points of
the curve. If the chord joining the opposite points of (C) is a double-normal, then (C) has constant breadth, and conversely,
if (C) is a curve of constant breadth in E4 then every normal of (C) is a double-normal.

Proof. Let the vector d = α∗−α = m1T+m2N+m3B+m4E be a double-normal of (C) where m1, m2, m3 and m4 are the
functions of s , the arc length parameter of the curve. Then we get ⟨d,T∗⟩=−⟨d,T⟩= m1 = 0 . Thus from (2) we have

m2
dm2

ds
+m3

dm3

ds
+m4

dm4

ds
= 0. (17)

It follows that m2
2 +m2

3 +m2
4 = constant , i.e., the breadth of (C) is constant.

Conversely, if ∥d∥2= m2
1 +m2

2 +m2
3 +m2

4 = constant then as shown, m1 = 0. This means that d is perpendicular to T and
T∗. So, d is the double-normal of (C).

A simple closed curve having parallel tangents in opposite directions at opposite points may be represented by the
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system (14). In this case a pair of opposite points of the curve is (α∗(φ),α(φ)) for φ , where 0 ≤ φ ≤ 2π . Since (C) is a
simple closed curve we get α∗(0) = α∗(2π). Hence from (14) we have

∫ 2π

0
ρk3dt = 2nπ, (n ∈ Z). (18)

Using the equality ds = ρdφ , this formula may be given as
∫

C k3ds = 2nπ ,
(n ∈ Z). This says that the integral third curvature of (C) is zero. So, we can give the following corollary.

Corollary 1. The total third curvature of a simple closed curve (C) of constant breadth is 2nπ, n ∈ Z.

Furthermore, if we take k2
k3

= a = constant, then from (16) we have

d3 f
dw3 +K

d f
dw

= 0. (19)

where K = 1+ 1
a2 . If we assume K ̸=±1 , the general solution of (19) is

f = A2 sin
∫ φ

0
Kρk2dt +B2 cos

∫ φ

0
Kρk2dt +C1. (20)

where A2, B2 and C1 are real constants. Since (C) is a simple closed curve, i.e., α∗(0) = α∗(2π), from (20) it follows,∫ φ

0
Kρk2dt = 2nπ, (n ∈ Z). (21)

Using the equality ds = ρdφ , this formula may be given as
∫

C k2ds = 2 n
K π, (K,n ∈ Z). This says that the integral second

curvature of (C) is 2 n
K π, (K,n ∈ Z). So, we can give the following corollary.

Corollary 2. The total second curvature of a simple closed curve (C) of constant breadth with a = k2/k3 = constant is
2 n

K π , where n ∈ Z and K = 1+ 1
a2 .

3 A criterion for curves of constant breadth in E4

Let us assume that (C) is a curve of constant breadth in E4 and α(s) denotes the position vector of a generic point of the
curve. If (C) is a closed curve, the position vector α(s) must be a periodic function of period ω = 2π , where ω is the
total length of (C). Then the curvatures k1(s), k2(s) and k3(s) are also periodic of the same period. However, periodicity
of the curvatures and closeness of the curve are not sufficient to guarantee that a space curve is a constant breadth curve
in E4. That is, if a curve is closed curve (periodic), it may be the curve of constant breadth or not. Therefore, to guarantee
that a curve is a constant breadth curve, we may use the system (7) characterizing a curve of constant breadth and follow
the similar way given in [6].

For this purpose, first let us consider the following Frenet formulas at a generic point on the curve (C),

dT
ds

= k1N,
dN
ds

=−k1T+ k2B,
dB
ds

=−k2N+ k3E,
dE
ds

=−k3B. (22)

Writing the formulas (22) in terms of φ and allowing for dφ
ds = k1 =

1
ρ we have

dT
dφ

= N,
dN
dφ

=−T+ρk2B,
dB
dφ

=−ρk2N+ρk3E,
dE
dφ

=−ρk3B. (23)
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Furthermore we can write the Frenet vectors T, N, B, E in the coordinate forms as follows

T =
4

∑
i=1

tiei,N =
4

∑
i=1

niei,B =
4

∑
i=1

biei,E =
4

∑
i=1

εiei. (24)

Since {T,N,B,E} is the orthonormal base in E4
1 , putting (24) and their derivatives into (23), we have the systems of

linear differential equations


dt1
dφ = n1,

dt2
dφ = n2,

dt3
dφ = n3,

dt4
dφ = n4

dn1
dφ =−t1 +ρk2b1,

dn2
dφ =−t2 +ρk2b2,

dn3
dφ =−t3 +ρk2b3,

dn4
dφ =−t4 +ρk2b4

db1
dφ = ρk3ε1 −ρk2n1,

db2
dφ = ρk3ε2 −ρk2n2,

db3
dφ = ρk3ε3 −ρk2n3,

db4
dφ = ρk3ε4 −ρk2n4

dε1
dφ =−ρk3b1,

dε2
dφ =−ρk3b2,

dε3
dφ =−ρk3b3,

dε4
dφ =−ρk3b4.

 (25)

From (25), we find that {t1,n1,b1,ε1}, {t2,n2,b2,ε2}, {t3,n3,b3,ε3} and
{t4,n4,b4,ε4} are four independent solutions of the following system of differential equations:

dψ1

dφ
= ψ2,

dψ2

dφ
=−ψ1 +ρk2ψ3,

dψ3

dφ
= ρk3ψ4 −ρk2ψ2,

dψ4

dφ
=−ρk3ψ3. (26)

If the curve (C) is the curve of constant breadth, then the systems (7) and (26) must be the same system. So, we observe
that ψ1 = m1, ψ2 = m2, ψ3 = m3, ψ4 = m4. For brevity, we can write (7) or (26) in the form

dψ
dφ

= A(φ)ψ. (27)

where

ψ =


m1

m2

m3

m4

,A(φ) =


0 1 0 0
−1 0 ρk2 0
0 −ρk2 0 ρk3

0 0 −ρk3 0

.
Obviously, (27) is a special case of the general linear differential equations abbreviated to the form

dψ
dt = A(t)ψ,

φ =


m1

m2
...

mN

, A(t) =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

, (4 ≤ n).
(28)

where ai j(t) are assumed to be continuous and periodic of period ω (See [6,17]). Let the initial conditions be ψi(0) = xi,

(i = 1,2, ...,n). Let us take x =
[

x1, x2, ..., xn
]T

and

ψ(t,x) =
[

m1(t,x) m2(t,x) ... mn(t,x)
]T

.

Then the equation (28) may be written in the form dψ
dt = A(t)ψ , ψ(0) = x as is well known from [6], the solution ψ(t,x)

of this equation is periodic of period ω , if ∫ ω

0
A(ξ )ψ(ξ ,x)dξ = 0
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and 
ψ(t,x) = {E +M(t)}x, (E = unit matrix),

M(t) = IA(t)+ I(2)A(t)+ ...+ I(n)A(t)+ ...,

(IA)(t) = I(I)A(t) =
∫ t

0 A(ξ )dξ ,

(I(n)A)(t) =
∫ t

0 A(ξ )(I(n−1)A)(ξ )dξ , n > 1.

(29)

Furthermore, the following theorem is given in [6]:

Theorem 3. The equations dψ
dt =A(t)ψ possess a non-vanishing periodic solution of period ω , if and only if det(M(ω))=

0 . In particular, in order that the equations dψ
dt = A(t)ψ possess linearly independent periodic solutions of period ω , the

necessary and sufficient condition is that M(ω) be a zero matrix.

Now, let us apply this theorem to the system (27). If M(ω) = 0, there exist the unit vector functions T, N, B, E of period
ω , such that each set of functions {ti,ni,bi,εi}, (i = 1,2,3,4) form a solution of the equation (27) corresponding to the
initial conditions (Ai,Bi,Ci,Di). The curve (C) can be described as follows

α(s) =
∫ s

0
T(s)ds or α(φ) =

∫ φ

0
ρ(φ)T(φ)d(φ).

Here, to find T , we can make use of the equation
ti
ni

bi

εi

= {E +M(φ)}


Ai

Bi

Ci

Di

 , (i = 1,2,3,4). (30)

which is established by (29). If we take the initial conditions as ti(0) = Ai, ni(0) = Bi, bi(0) =Ci, εi(0) =Di, (i= 1,2,3,4)
such that (A1,A2,A3,A4), (B1,B2,B3,B4), (C1,C2,C3,C4), (D1,D2,D3,D4) form an orthonormal frame, then from (30)
we obtain

ti = (1+m11)Ai +m12Bi +m13Ci +m14Di; (i = 1,2,3,4). (31)

When the curve (C) is a curve of constant breadth, which is also periodic of period ω , it is clear that∫ ω

0
ρtidφ = 0. (32)

Hence, form (31) and (32), we have

Ai

∫ ω

0
ρ(1+m11)dφ +Bi

∫ ω

0
ρm12dφ +Ci

∫ ω

0
ρm13dφ +Di

∫ ω

0
ρm14dφ = 0; (i = 1,2,3,4)

Since the coefficient determinant ∆ ̸= 0 in this system, we obtain the equalities∫ ω

0
ρ(1+m11)dφ = 0 =

∫ ω

0
ρm12dφ =

∫ ω

0
ρm13dφ =

∫ ω

0
ρm14dφ. (33)

which are the conditions for a curve to be constant breadth curve in E4. Here, we can take the period ω = 2π because of
0 ≤ φ ≤ 2π . Thus we establish the following corollary.

Corollary 3. Let (C) be a regular curve in E4 such that ρ(φ) > 0, k2(φ) and k3(φ) are continuous periodic functions of
period ω . Then (C) is a curve of constant breadth, and also periodic of period ω , if and only if

M(ω) = 0,
∫ ω

0
ρ(1+m11)dφ = 0 =

∫ ω

0
ρm12dφ =

∫ ω

0
ρm13dφ =

∫ ω

0
ρm14dφ . (34)
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holds, where 

M(t) = IA(t)+ I(2)A(t)+ ...+ I(n)A(t)+ ...,

A(t) =


0 1 0 0

−1 0 ρk2 0

0 −ρk2 0 ρk3

0 0 −ρk3 0

 .
(35)

and mi j(t) are the entries of the matrix M(t).

By means of (29) and (35), the matrix M(t) can be constructed and each mi j involves infinitely many integrations. Hence,
we can write the conditions (34) in the following forms:

∫ ω
0 ρ(φ)dφ −

∫ ω
0

∫ r
0
∫ s

0 ρ(φ)dsdtdφ +
∫ ω

0
∫ ϕ

0
∫ p

0
∫ r

0
∫ s

0 ρ(φ)[1+λ (p)λ (s)]dtdsdrd pdφ − ...= 0∫ ω
0

∫ s
0 ρ(φ)dtdφ −

∫ ω
0

∫ p
0
∫ r

0
∫ s

0 ρ(φ)[1+λ (t)λ (s)]dtdsdrdφ + ...= 0∫ ω
0

∫ r
0
∫ s

0 ρ(φ)λ (t)dtdsdφ −
∫ ω

0
∫ ϕ

0
∫ p

0
∫ r

0
∫ s

0 ρ(φ)[λ (t)+λ (p){λ (t)λ (s)+µ(t)µ(s)}]dtdsdrd pdφ + ...= 0∫ ω
0

∫ p
0
∫ r

0
∫ s

0 ρ(φ)λ (s)µ(t)dtdsdrdφ −
∫ ω

0
∫ q

0
∫ ϕ

0
∫ p

0
∫ r

0
∫ s

0 ρ(φ)λ (p)µ(t)[1+λ (t)λ (s)+µ(t)µ(s)]dtdsd pdϕdφ + ...= 0.

(36)

where λ (ξ ) = p(ξ )k2(ξ ), µ(ξ ) = p(ξ )k3(ξ ).

Example 1. Let us consider the special case ρ = const., k2 = const. and k3 = const. In this case, from (33), we have
ω − ω3

3! +(1+ρ2k2
2)

ω5

5! − ε(1+ρ2k2
2)

2 ω7

7! ...= 0
ω2

2! − (1+ρ2k2
2)

ω4

4! +(1+ρ2k2
2)

2 ω6

6! − ...= 0

k2[
ω3

3! − (1+ρ2k2
2 +ρ2k2

3)
ω5

5! +(1+ρ2k2
2 +ρ2k2

3)
2 ω7

7! − ...] = 0

k2k3[
ω4

4! − (1+ρ2k2
2 +ρ2k2

3)
ω6

6! + ...] = 0

(37)

or 
ρ2k2

2(1+ρ2k2
2)

1
2 ω + sin[(1+ρ2k2

2)
1
2 ω] = 0,

cos[(1+ρ2k2
2)

1
2 ω] = 1 or (1+ρ2k2

2)
1
2 ω = 2kπ, k ∈ Z

k2[(1+ρ2k2
2 +ρ2k2

3)
1
2 ω − sin[(1+ρ2k2

2 +ρ2k2
3)

1
2 ω]] = 0,

k2k3[−1+(1+ρ2k2
2 +ρ2k2

3)
ω2

2 + cos[(1+ρ2k2
2 +ρ2k2

3)
1
2 ω]] = 0.

(38)

where ω = 2kπ . It is seen that all of the equalities (37) or (38) are satisfied simultaneously, if and only if ρk2 = 0,
ρk3 = 0 that is, ρ = const. > 0 and k2,k3 = 0. Therefore, only ones with ρ = const. > 0 and k2,k3 = 0 of the curves with
and are curves of constant breadth, which are circles in E4.

Now let us construct the relation characterizing these circles. Since ρk2,ρk3 = 0 system (7) becomes

m
′
1 = m2, m

′
2 =−m1, m

′
3 = 0, m

′
4 = 0. (39)

From (39), the equations with the unknowns m1, m2 and m3 can be written as follows

m
′′
1 +m1 = 0, m

′′
2 +m2 = 0, m

′
3 = 0, m

′
4 = 0. (40)

The general solution of (40) is 
m1 = A3 cos(φ)+B3 sin(φ),
m2 =C2 cos(φ)+D1 sin(φ),
m3 = L1,

m4 = L2.

(41)
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where A3, B3, C2, D1, L1 and L2 are arbitrary constants. Replacing (41) into (39), we have A3 =−D1, B3 =C2 and thus
we get

{m1 = A3 cos(φ)+B3 sin(φ), m2 = B3 cos(φ)−A3 sin(φ),m3 = L1, m4 = L2}. (42)

which is the solution set of the system (40). Consequently, replacing (42) into (1), we obtain the equation

α∗(φ) = α(φ)+(A3 cos(φ)+B3 sin(φ))T+(B3 cos(φ)−A3 sin(φ))N+L1B+L2E.

which represents the circles with the diameter d = ∥α∗−α∥= (A2
3+B2

3+L2
1+L2

2)
1
2 . In this case, a pair of opposite points

of the curve is (α∗(φ),α(φ)) for φ in 0 ≤ φ ≤ 2π .

4 Conclusion

In the characterizations and determinations of the special curves and curve pair, the differential equations have an
important role. A differential equation or a system of differential equations with respect to the curvatures can determinate
the special curves or curve pairs. In this paper, the differential equations characterizing the curves of constant breadth in
E4 are studied. Furthermore, a criterion for a space curve to be the curve of constant breadth in E4 is given.
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