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Abstract: In this study, a collocation method based on the generalized Bernstein polynomials is presented and analized for the solution
of linear Fredholm-Volterra integral equations (FVIEs). Error bounds and convergence of this method are demonstrated. Some examples
are also given to illustrate the accuracy, efficiency and applicability of the method.
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1 Introduction

Integral equations have been first produced in connection with the famous tautochrone problem by Abel (Italian
mathematician) in 1825. These equations are defined as equations in which the unknown function appears under the
integral sign. Besides, the most frequently used integral equations are collected two major classes, namely Volterra and
Fredholm integral equations. Integral equations are closely related both in pure and applied mathematics. These
equations play an important role in various fields of science and numerous applications such as elasticity, plasticity, heat
and mass transfer, oscillation theory, fluid dynamics, filtration theory, electrostatics, electrodynamics, biomechanics,
game theory, control, queuing theory, electrical engineering, economics, medicine, etc. Many problems included
ordinary or partial differential equations can be converted to problems of the integral equations. Therefore, many
researchers are interested in numerical methods to get the solution of integral equations.

Bernstein polynomials and their basis polynomials [5,6] defined on the interval [0,1], can be easily generalized to the
interval [a,b] by using transformation t = x−a

b−a as follows.

Definition 1. Generalized Bernstein basis polynomials can be defined on the interval [a,b]; by

pi,n (x) =
1

(b−a)n

(
n
i

)
(x−a)i (b− x)n−i ; i = 0,1, ...,n.

Definition 2. Let y be continuous function on the interval [a,b]. Generalized Bernstein polynomials of nth-degree are

defined by

Bn (y;x) =
n

∑
i=0

y
(

a+
(b−a) i

n

)
pi,n (x)

such that pi,n (x) are the generalized Bernstein basis polynomials.
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The generalized Bernstein polynomials and their basis forms have many useful properties, such as the positivity,
continuity, recursion’s relation, symmetry, unity partition of the basis set over the interval [a,b], uniform approximation,
differentiability and integrability. For this reason, these polynomials can be useful mathematical tools for numerical
analysis and approximation theory. In recent years, these polynomials are ecountered in research works of numerical
solution of Volterra [2,7,12] and Fredholm [8,11] integral equations.

Theorem 1. If y(x) is continuous function on the interval [a,b], then

lim
n→∞

Bn (y;x) = y(x)

converges uniformly.

Proof. Proof of the above theorem can be easily seen from the proof of theorem given on the interval [0,1] by Phillips [9].

Definition 3. Linear Fredholm -Volterra integral equation of the third kind is given by:

a(x)y(x) = g(x)+λ1

b∫
a

f (x, t)y(t)dt +λ2

x∫
a

v(x, t)y(t)dt (1)

such that a(x) ̸= 0 and a(x) ̸= 1. Here a(x), g(x) ∈ [a,b], f (x, t) : [a,b]× [a,b] → R and v(x, t) : [a,b]× [a,b] → R
are continuous functions, λ1 and λ2 are constants, y(x) is unknown function. Privately the equation (1) is called linear

Fredholm-Volterra integral equations of the first and second kind respectively for a(x)≡ 0 and a(x)≡ 1.

The reminder of this paper consists four sections: In Section 2, a collocation method is developed directly to get the
numerical solution of the integral equations by means of the generalized Bernstein polynomials. In Section 3, error bounds
and convergence analysis are given for the proposed method. Section 4 demonstrates the applicability of the presented
method. In this part, some linear examples are solved and compared with different methods. Finally, Section 5 is ended
with conclusions contained general inferences of the study.

2 Method of solution

The aim of the proposed method is to derive a collocation method for approximate solution of the linear FVIE (1) by
means of the generalized Bernstein polynomials:

y(x)∼= Bn (y;x) =
n

∑
i=0

y
(

a+
(b−a)i

n

)
pi,n (x) . (2)

Now, we give a theorem that represents a main matrix relation for the linear integral equation (1).

Theorem 2. Let xs be collocation points and y(x) be continuous function on the interval [a,b]. The linear FVIE (1) has

the following matrix form:

[AP−λ1F−λ2V]Y = G. (3)

Here A = diag [a(xs)] , F =[Fs,i] , V =[Vs,i], P = [pi,n (xs)] are (n + 1)×(n + 1) matrices, and Y =
[
y
(

a+ (b−a)i
n

)]
,

G =[g(xs)] are (n+1)×1 matrices for i,s = 0,1, ...,n.
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Proof. Since solution of the equation (1) is continuous function on the interval [a,b], it has the Bernstein polynomial
approach given with the expression (2) from the Theorem 1. So the solution function can be written as the matrix form:

y(x)≃ P(x)Y (4)

such that
P(x) =

[
p0,n(x) p1,n (x) . . . pn,n(x)

]
, Y=

[
y(a) y(a+ b−a

n ) . . . y(b)
]T

.

Substituting the collocation points and the relation (4) into the equation (1), we obtain a linear algebraic equation system

a(xs)P(xs)Y = g(xs)+λ1

b∫
a

f (xs, t)P(t)dtY+λ2

xs∫
a

v(xs, t)P(t)dtY. (5)

Here y(xs) = Bn (y;xs) (s = 0,1, ...,n) because of the collocation method. If the integrals at the sides of λ1 and λ2 are
called respectively F(xs) and V(xs), then for i = 0,1, ...,n, the elements of these matrices can be written as

F(xs) =
[

Fs,0 Fs,1 . . . Fs,n

]
; Fs,i =

b∫
a

f (xs, t) pi,n (t)dt,

V (xs) =
[

Vs,0 Vs,1 . . . Vs,n

]
; Vs,i =

xs∫
a

v(xs, t) pi,n (t)dt.

Therefore the equation (5) becomes

[a(xs)P(xs)−λ1F(xs)−λ2V(xs)]Y = g(xs) .

For s = 0,1, ...,n, this system is written by the matrix equation (3), and this is completed the proof.

Corollary 1. The matrix equation (3) can be reduced the following matrix forms respectively for linear FVIEs of the first

and second kind:

[−λ1F−λ2V]Y = G and [P−λ1F−λ2V]Y = G.

Now we follow the some steps to solve the linear FVIE (1).

(i) Let the equation (3) be written in the compact form

WY= G or [W;G]

so that W = AP−λ1F−λ2V. The equation corresponds a linear algebric equation system with n unkowns.

(ii) If rank(W) = rank [W;G] = n+1, then solution of this system is uniquely determined. This kind of systems can be
solved by the Gauss elimination, generalized inverse, LU and QR factorization methods.
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3 Convergence and error analysis

Definition 4. Error is denoted by en(x) = y(x)− yn (x) such that y(x) is an exact solution and yn (x) = Bn (y;x) is a

generalized Bernstein approximate solution. Then maximum error can be defined as

∥en∥∞ = max
a≤x≤b

|en(x)| .

Let y(xs) ̸= 0 and Bn (y;xs) be scalars. Then maximum, mean, root of the mean square and absolute relative errors at the
collocation points can be numerically computed respectively by

Emax = max
xs∈[a,b]

|en (xs)| , Emean =
1

n+1

n

∑
s=0

|en (xs)| ,

Eroot =

√
1

n+1

n

∑
s=0

(en (xs))2, Erel =
|en (xs)|
|y(xs)|

.

Besides, residual error of the presented method can be defined by

Rn (x) = a(x)Bn(y;x)−λ1

b∫
a

f (x, t)Bn(y; t)dt −λ2

x∫
a

v(x, t)Bn(y; t)dt −g(x) . (6)

Definition 5. [10] Let y(x) be defined on [a,b], the modulus of contunity of y(x) on [a,b], ω (δ ), is defined for δ > 0 by

ω (δ ) = sup
x1,x2∈[a,b]
|x1−x2|≤δ

|y(x1)− y(x2)| .

Lemma 1. [10] y(x) is uniformly continuous on [a,b] iff lim
δ→0

ω (δ ) = 0.

Theorem 3. (Uniqueness Theorem) Let the function a(x) ∈ C [a,b] and the kernels f ,v ∈ C
(
[a,b]2

)
. The equation (1)

has a unique solution whenever 0 < q < 1, q = M1 + |λ1|M2 (b−a)+ |λ2|M3 (b−a).

Proof. Let T : C [a,b]→ C [a,b] be a mapping. Then the equation (1) can be rewritten as

Ty = a(x)y(x)−g(x)−λ1

b∫
a

f (x, t)y(t)dt −λ2

x∫
a

v(x, t)y(t)dt,

Ty∗ = a(x)y∗(x)−g(x)−λ1

b∫
a

f (x, t)y∗(t)dt −λ2

x∫
a

v(x, t)y∗(t)dt

for y,y∗ ∈ C [a,b] such that y = Ty and y∗ = Ty∗.

Besides, a(x) , f (x, t) and v(x, t) are bounded functions such that |a(x)| ≤ M1, | f (x, t)| ≤ M2 and |v(x, t)| ≤ M3;
M1,M2,M3 > 0 because of a(x) ∈ C [a,b] and f ,v ∈ C

(
[a,b]2

)
. Considering the maximum norm for one variable
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function, we have

∥Ty−Ty∗∥∞ ≤ M1 ∥y− y∗∥∞ + |λ1|M2 ∥y− y∗∥∞

b∫
a

dt + |λ2|M3 ∥y− y∗∥∞

x∫
a

dt

≤ M1 ∥y− y∗∥∞ + |λ1|M2 (b−a)∥y− y∗∥∞ + |λ2|M3 (b−a)∥y− y∗∥∞

≤ (M1 + |λ1|M2 (b−a)+ |λ2|M3 (b−a))∥y− y∗∥∞ .

Denoting q = M1 + |λ1|M2 (b−a)+ |λ2|M3 (b−a) such that 0 < q < 1, the above inequality is

∥Ty−Ty∗∥∞ ≤ q∥y− y∗∥∞ .

From well-known Banach fixed-point theorem, there exict a unique solution of the equation (1) and this completes the
proof.

Theorem 4. [1] Let Bn (y;x) be generalized Bernstein polynomial solution on the interval [a,b]. If y(x) is continuous

function on the interval [a,b], then the following inequality and uniform convergence are hold:

|en (x)| ≤ ω
(

n−1/2
)(

1+
√
(x−a)(b− x)

)
and lim

n→∞
∥en∥∞ = 0.

Here ω (δ ) is modulus of contunity of y(x) on the interval [a,b].

Theorem 5. Let a(x), y(x) be continuous functions on the interval [a,b] and f (x, t), v(x, t) be continuous functions on the

square [a,b]× [a,b]. Then residual error of the generalized Bernstein polynomial approach holds for the linear FVIE (1)

as follows:
∥Rn∥∞ ≤ (α +(b−a) |λ1|β +(x−a) |λ2|γ)∥en∥∞ and lim

n→∞
∥Rn∥∞ = 0.

Here α = ∥a∥∞, β = ∥ f∥∞ and γ = ∥v∥∞ are positive constants.

Proof. Since y is continuous function on the interval [a,b], it can be denoted as Bernstein approximate solution.
Substituting g(x) given in the equation (1) to the absolute value of the residual error (6), the following inequality can be
written for the residual error:

|Rn (x)|=

∣∣∣∣∣∣a(x)Bn(y;x)−λ1

b∫
a

f (x, t)Bn(y; t)dt −λ2

x∫
a

v(x, t)Bn(y; t)dt −g(x)

∣∣∣∣∣∣
≤ |a(x)| |Bn(y;x)− y(x)|+ |λ1|

b∫
a

| f (x, t)| |Bn(y; t)− y(t)|dt + |λ2|
x∫

a

|v(x, t)| |Bn(y; t)− y(t)|dt.

Moreover, by using definitions of the maximum error and properties of the norm for one and two variables functions, the
residual error bound is obtained as:

∥Rn∥∞ ≤ ∥a∥∞ ∥en∥∞ +(b−a) |λ1|∥ f∥∞ ∥en∥∞ +(x−a) |λ2|∥v∥∞ ∥en∥∞

≤ (∥a∥∞ +(b−a) |λ1|∥ f∥∞ +(x−a) |λ2|∥v∥∞)∥en∥∞ .

Denoting α =∥a∥∞= max
x∈[a,b]

|a(x)|, β =∥ f∥∞= max
x,t∈[a,b]

| f (x, t)| and γ =∥v∥∞= max
x,t∈[a,b]

|v(x, t)|, the desired inequality is

founded.
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In view of the Theorem 4, the following relation

∥Rn∥∞ ≤
(

α +(b−a) |λ1|β + max
x∈[a,b]

(x−a) |λ2|γ
)
∥en∥∞ ≤ c∥en∥∞

and uniform convergence of the residual error are also proved. Here c = α + (b−a) |λ1|β + (b−a) |λ2|γ is positive
constant.

Corollary 2. The residual error bounds of linear FVIEs of the first and second kind are respectively

∥Rn∥∞ ≤ ((b−a) |λ1|β +(x−a) |λ2|γ)∥en∥∞ ,

∥Rn∥∞ ≤ (1+(b−a) |λ1|β +(x−a) |λ2|γ)∥en∥∞ .

Here α,β and γ are positive constants denoted as the Theorem 5.

Theorem 6. Let y be a continuous function and xs (s = 0,1, ...,n) be collocation points on the interval [a,b]. Then, the

residual error bound at the collocation points for linear FVIEs of the first, second and third kind are

|Rn (xs)|< κ (xs)(b−a)
(

1+
b−a

2

)
ω
(

n−1/2
)

and lim
n→∞

|Rn (xs)|= 0. Here κ is a positive constant depended on the collocation points.

Proof. Since y is continuous function on the interval [a,b], it can be denoted as Bernstein approximate solution. So absolute
value of residual error can be expressed at the collocation points for linear FVIE (1) of the third kind as

|Rn(xs)| ≤ |a(xs)| |Bn(y;xs)− y(xs)|+ |λ1|
b∫

a

| f (xs, t)| |Bn(y; t)− y(t)|dt + |λ2|
xs∫

a

|v(xs, t)| |Bn(y; t)− y(t)|dt.

Since Bn(y;xs) = y(xs) (s = 0,1, ...,n) from the collocation method and from the Theorem 4, the following inequality can
be written for the absolute residual error:

|Rn (xs)| ≤ ω
(

n−1/2
)|λ1|

b∫
a

| f (xs, t)|
[
1+

√
(t −a)(b− t)

]
dt + |λ2|

xs∫
a

|v(xs, t)|
[
1+

√
(t −a)(b− t)

]
dt

 .

Denoting εs= ε (xs)= |λ1| max
t∈[a,b]

| f (xs, t)|, ρs= ρ (xs)= |λ2| max
t∈[a,b]

|v(xs, t)|, and taking max
t∈[a,b]

[
1+

√
(t −a)(b− t)

]
= 1+ b−a

2

the residual error becomes

|Rn (xs)| ≤ ((b−a)εs +(xs −a)ρs)

(
1+

b−a
2

)
ω
(

n−1/2
)

≤ (εs +ρs)(b−a)
(

1+
b−a

2

)
ω
(

n−1/2
)

≤ κ (xs)(b−a)
(

1+
b−a

2

)
ω
(

n−1/2
)
.
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Table 1: Mean errors of Example 1.

n xs =
s
n xs = cos(πs

n ) n xs =
s
n xs = cos(πs

n )
2 0 3.7e−017 11 2.7e−015 3.3e−016
3 4.9e−017 1.1e−016 12 1.4e−015 3.6e−016
4 2.5e−017 1.8e−016 13 4.4e−015 2.5e−016
5 3.6e−016 5.4e−017 14 2.6e−015 1.7e−016
6 5.4e−016 9.8e−017 16 1.5e−015 3.5e−016
7 4.2e−016 9.8e−017 17 2.1e−014 2.7e−016
8 2.8e−016 2.4e−016 18 2.5e−014 2.2e−016
9 1.2e−016 2.0e−016 19 8.8e−014 3.2e−016
10 2.4e−016 2.0e−016 20 1.5e−013 4.0e−016

Here κ (xs) is bigger constant than εs and ρs for a ≤ xs ≤ b. Since ω
(
n−1/2

)
→ 0 in view of the Lemma 1, |Rn (xs)| → 0

as n → ∞. The proof is completed. Besides, this theorem is hold for linear FVIEs of the first and second kind because of
Bn(y;xs) = y(xs).

4 Numerical results

Four numerical examples are given by using the Bernstein collocation method. The collocation points are selected as
uniform xs = a+ (b−a)s

n and nonuniform xs=
(a+b)−(b−a)cos( πs

n )
2 ;s = 0,1, ...,n. Numerical results computed in MATLAB

7.1 with 32 digits are compared with the other methods and they are presented via the Tables and Figures.

Example 1. Consider the

y(x) = 1+
1∫

−1

(
xt + x2t2)y(t)dt; −1 ≤ x ≤ 1

linear Fredholm integral equation of the second kind that the exact solution is y(x) = 1+ 10
9 x2.

The mean errors of Bernstein collocation method obtained at the uniform and nonuniform collocation points with
increasing n are given in Table 1. The Table shows that the numerical results obtained at the nonuniform collocation
points are better than the results obtained at the uniform collocation points. Mean errors obtained for n = 4 by using the
numerical method [8] based on the Bernstein basis polynomials is nearby 10−13, whereas mean errors of the presented
method is nearby 10−17 for n = 2. Therefore, we can say that our method is effective even for smaller value n.

Example 2. Consider the

y(x) = cos(x)− ex sin(x)+
x∫

0

exy(t)dt; 0 ≤ x ≤ 1

linear Volterra integral equation of the second kind that analytic solution is y(x) = cosx.

In Table 2, the root of the mean square errors of collocation method based on the generalized Bernstein polynomials at the
collocation points xs= (1−cos(πs

n ))/2 for n ≥ 2 are compared with the Bernstein approach [7]. It is seen from the Table,
the numerical results of proposed method converge more rapidly than the other method for n ≥ 4.
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Table 2: Comparison the Eroot errors for Example 2.

n Presented method Bernstein approach [7]
2 4.7e−003 2.0e−003
3 3.1e−004 2.3e−004
4 4.7e−006 6.2e−006
5 1.8e−007 5.4e−007
6 2.1e−009 1.1e−008
7 1.0e−010 1.1e−009
8 1.3e−012 3.4e−010
9 5.2e−014 3.3e−010
10 6.6e−016 3.4e−010

Table 3: Mean errors of Example 3.

n xs =
s
n xs =

1−cos( πs
n )

2 n xs =
s
n xs =

1−cos( πs
n )

2
2 6.0e−004 6.0e−004 12 1.1e−016 1.6e−016
3 5.8e−005 2.5e−005 17 3.4e−016 1.9e−016
4 1.2e−006 4.7e−007 18 8.8e−015 1.9e−016
5 1.1e−007 1.2e−008 19 3.0e−015 3.3e−016
6 2.0e−009 1.3e−010 20 1.6e−014 2.5e−016
7 1.5e−010 3.9e−012 21 1.2e−013 1.8e−016
8 2.2e−012 3.8e−014 22 1.9e−013 3.0e−016
9 1.4e−013 1.4e−015 23 9.0e−015 2.2e−016
10 1.6e−015 1.6e−016 24 6.4e−013 2.0e−016
11 1.7e−016 2.3e−016 25 5.9e−014 2.4e−016

Table 4: Comparison of the Erel errors for Example 3.

n = 5 n = 7
x Presented method Galerkin method [11] Presented method Galerkin method [11]

0.1 1.5e−006 1.9e−005 1.4e−009 1.3e−005
0.2 3.4e−007 7.2e−006 1.2e−009 3.8e−006
0.3 8.6e−007 1.0e−005 3.4e−010 6.1e−006
0.4 3.4e−007 1.1e−005 3.1e−010 3.5e−006
0.5 2.1e−008 4.8e−007 6.4e−010 7.6e−006
0.6 3.4e−007 9.2e−006 3.4e−010 1.4e−006
0.7 7.1e−007 7.8e−006 3.7e−010 5.9e−006
0.8 3.4e−007 3.6e−006 8.8e−010 3.3e−006
0.9 6.0e−007 9.3e−006 4.5e−010 5.5e−006
1 3.4e−007 2.1e−005 4.5e−010 1.5e−005

Example 3. Consider the linear Fredholm integral equation of the second kind:

y(x) = ex +2
1∫

0

ex+ty(t)dt; 0 ≤ x ≤ 1.

Exact solution of the above equation is y(x) = ex

2−e2 .

Mean errors obtained by using the presented method are given in Table 3. When the collocation points are not equally
spaced, Table 3 shows that results obtained on these points are much better than the other results. The absolute relative

c⃝ 2016 BISKA Bilisim Technology



NTMSCI 4, No. 1, 203-213 (2016) / www.ntmsci.com 211

Table 5: Mean errors of Example 4.

n xs =
s
n xs =

1−cos( πs
n )

2 n xs =
s
n xs =

1−cos( πs
n )

2
2 9.8e−018 9.3e−018 10 3.5e−017 8.1e−017
3 2.3e−017 4.3e−017 14 7.6e−017 7.6e−017
4 0 7.4e−018 15 7.7e−017 6.7e−017
5 3.7e−017 1.1e−016 16 4.7e−016 1.1e−016
6 8.2e−017 1.9e−017 18 5.5e−016 5.4e−017
7 1.3e−016 1.8e−016 20 5.0e−015 9.3e−017
8 2.6e−017 6.2e−017 25 4.8e−014 7.6e−017
9 5.9e−017 7.0e−017 30 2.0e−012 7.3e−017

Table 6: Comparison of the Emax errors for Example 4.

n Presented method Collocation method [3] Fixed point method [3] Taylor expansion method [4]
14 3.3e−016 − − 2.0e−015
16 6.7e−016 7.8e−005 3.8e−004 −
32 2.5e−012 4.7e−005 9.5e−005 −

errors are compared with the Galerkin method [11] based on the Bernstein basis polynomials in Table 4. It shows that the
results obtained on the collocation points xs = s/n are better than the results given by the other method.

Example 4. Consider the following linear Fredholm-Volterra integral equation of the third kind:

3y(x) = 3x2 − sinx(x2 sinx+2xcosx−2sinx− sin1+2cos1)+
1∫

0

sinxcos ty(t)dt +
x∫

0

sinxcos ty(t)dt

Analytic solution of the above equation is y(x) = x2.
The mean errors of the presented method with increasing n are given in Table 5. From the Table, we can see that the
numerical results obtained at the not equally spaced points are better than the numerical results obtained at the equally
spaced points.

In Figure 1, the absolute error results obtained at the collocation points xs = s/n by applying derivated Bernstein
collocation method are presented for different values n. The figures show that the numerical results converge more
rapidly for increasing values n.

The maximum errors obtained with Bernstein collocation method at the number n + 1 collocation points
xs=(1− cos(πs

n ))/2 are compared with the maximum errors presented for number n by Taylor expansion method [4],
collocation method and fixed point method [3] in Table 6. It shows that the presented method is more effective than the
other methods. Besides, the results of proposed method obtained without iteration are better than the results of
collocation and fixed point methods [3] obtained with 8th iteration.

5 Conclusions

In this work, a collocation method based on the generalized Bernstein polynomials has been introduced for the numerical
solution of linear FVIEs directly. This method is valid for the integral equations whoose solution is continuous on the
interval [a,b]. The error bounds and convergence of the Bernstein collocation method have been presented. Some
numerical examples have been given to show the applicability and accuracy of the proposed method. The collocation
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Fig. 1: The results of |en (x)| absolute errors for n = 2,3,4.

method has much better numerical results obtained at nonuniform points than the uniform points for increasing values n.
It is also more effective method than the other methods given in the examples (1-4). Consequently, all these positive
reasons are encouraged that the proposed method can be applied to the other linear and nonlinear equations.
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