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Abstract: In this study, a matrix method based on exponential polynomials by means of collocation points is proposed to solve
the higher-order linear Fredholm integro-differential-difference equations under the initial-boundary conditions. In addition, an error
analysis technique based on residual function is developed for our method. Illustrative examples are included to demostrate the validity
and applicability of the presented technique.
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1 Introduction

In this study, we consider the high-order linear integro-differential-difference equations with constant arguments
(advanced or delayed) and variable coefficients

m1

∑
k=0

n1

∑
j=0

Pk j(x)y(k)(x+ τk j) =
m2

∑
r=0

n2

∑
s=0

∫ b

0
Krs(x, t)y(r)(t +λrs)dt +g(x) (1)

with the mixed conditions
m1−1

∑
k=0

(aiky(k)(0)+biky(k)(b)) = µi, i = 0,1, ...,m1 −1 (2)

where Pk j(x), Krs(x, t) and g(x) are known functions defined on the interval 0 ≤ x, t ≤ b < ∞; τk j, λrs, aik and bik are
appropriate constants; y(x) is an unknown function to be determined.
The equatioin defined by [1] is a combination of differential, difference and Fredholm integral equations. This is an
important branch of modern mathematics and arises frequently in many applied areas which include engineering,
mechanic, physics, chemistry, astronomy, biology, economics, elasticity, plasticity and oscillation theory, etc. [1-9]. In
recent years, to solve the mentioned equations, several numerical methods were used such as the Successive
Approximations, Adomian Decomposition, Haar Wavelet, Block-Pulse, Monte-Carlo, Tau and Walsh series methods,

[10-13].

Additionally, since the beginning of 1994, Taylor, Chebysher, Laguere, Hermite, Brstein and Bessel methods based on
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Sezer’s method have been used by Sezer et all. [10-23] to solve linear differential, difference, integral and Fredholm
integro-differential-difference equations. Our purpose in this study is to develop a new matrix method, which is based on
the exponential basis set {1,e−x,e−2x, ...,e−nx, ..} [24] and collocation points, to obtain the approximate solution of the
problem (1)-(2) in the exponential polynomial form

y(x)∼= yN(x) =
N

∑
n=0

ane−nx, 0 ≤ x ≤ b < ∞ (3)

where the exponential basis set is defined by {1,e−x,e−2x, ...,e−Nx}; an (n = 0,1,2, ...,N) are unknown coefficients to be
determined.

The exponential polynomials based on the exponentials basis set are used to analyze successively many optices and
quantum electronics, automatic control, electrical, circuits theory, hydro meteorology, turbulance and boundary layer,
etc.[24-32].

The rest of this paper is organized as follows. The fundamential matrix relations with related to the exponential
polynomials and their derivatives are presented in section 2.

The new exponential matrix method besed on collocation points is described in Section 3. In section 4, the error analysis
technique related to residual function is developed for the present method. To support our findings, in section 5, we
present the results of numerical experiments. Section 5 concludes this study with a brief summary.

2 Matrix Relations for Exponential Polynomials

Firstly, we can write the desired solution y(x) defined by (3) of Eq. (1) in the matrix form as, for n = 0,1, ...,N,

y(x)∼= yN(x) = E(x)A (4)

where E(x) = [1 e−x e−2x ... e−Nx] and A = [a0 a1 a2 ... aN ]
T . Also, it is clearly seen that the relation between the matrix

E(x) and its derivative E′(x) is
E′(x) = E(x)M

and that, repeating the process

E′′(x) = E′M = E(x)M2

E′′′(x) = E′′M = E(x)M3

...

E(k)(x) = E(k−1)(x)M = E(x)Mk, k = 0,1,2, ... (5)

where
M = diag[0 (−1) (−2) ... (−N)]

M0 is unit matrix and

Mk = diag[0 (−1)k (−2)k ... (−N)k]
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From the matrix relations (4) and (5), it follows that

y(k)N (x)∼= E(x)MkA, k = 0,1,2, ...,m1 (6)

By putting x → x+ τk j in the relation (6) , we have, for k = 0,1, ...,m1,

y(k)(x+ τk j) = E(x+ τk j)MkA = E(x)B(τk j)MkA (7)

so that,
E(x+ τk j) = E(x)B(τk j) and B(τk j) = diag[0 e−τk j e−2τk j ...e−Nτk j ]

Similarly , we get the matrix relation for yr(t +λrs),

y(r)(t +λrs) = E(t +λrs)MrA = E(t)B(λrs)MrA,r = 0,1, ...,m2 (8)

On the other hand, by using Taylor expansion, we get the matrix relation between the standard basis matrix

X(x) = [1 x x2...xN ]

and the exponention basis matrix
E(x) = [1 e−x e−2x...e−Nx]

as follows: 

1
e−x

e−2x

...
e−Nx


=



1 0 0 · · · 0

1 −1
1!

(−1)2

2! · · · (−1)N

N!

1 −2
1!

(−2)2

2! · · · (−2)N

N!
...

...
...

...
...

1 −N
1!

(−N)2

2! · · · (−N)N

N!





1
x
x2

...
xN


or briefly

E(x) = X(x)TT (9)

where

E(x)T =



1
e−x

e−2x

...
e−Nx


,T =



1 0 0 · · · 0

1 −1
1!

(−1)2

2! · · · (−1)N

N!

1 −2
1!

(−2)2

2! · · · (−2)N

N!
...

...
...

...
...

1 −N
1!

(−N)2

2! · · · (−N)N

N!


and

X(x)T =



1
x
x2

...
xN


.

Now we can convert the kernel function Krs(x, t) to the matrix form, by means of the following procedure. The function
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Krs(x, t) can be approximated by the truncated Taylor Series and the truncated exponontial series, respectively,

Krs(x, t) =
N

∑
m=0

N

∑
n=0

krsxmtn (TaylorSeries) (10)

= X(x)Kt
rsX

T (t),m,n = 0,1, ..,N

Kt
rs =

[
ktmn

rs
]
,ktmn

rs =
1

m!n!
∂ m+nKrs(0,0)

∂xm∂ tn

and

Krs(x, t) =
N

∑
m=0

N

∑
n=0

ke,mn
rs Em(x)En(t) (ExponontialSeries) (11)

= E(x)Ke
rsE

T (t),Ke
rs = [ke,mn

rs ]

By using the relations (9),(10) and (11), we obtain the matrix equation

X(x)Kt
rsX

T (t) = E(x)Ke
rsE

T (t) = X(x)TT Ke
rsTXT (t)

or briefly,
Ke

rs = (TT )−1Kt
rsT

−1,Kt
rs =

[
ktmn

rs
]

(12)

3 Method of Solution

For constructing the fundamental matrix equation, we first substitute the matrix relations (7),(8) and (11) into Eq.(1).
Then, by simplifying the result equation, we obtain the fundamental matrix equation for Eq.(1) as follows:

{
m1

∑
k=0

n1

∑
j=0

Pk j(x)E(x)B(τk j)Mk −
m2

∑
r=0

n2

∑
s=0

E(t)Ke
rsQB(λrs)Mr}A = g(x) (13)

where

Q = [qmn] =
∫ b

0
ET (t)E(t)dt,qmn =

{
b, m = n = 0

1−e−(m+n)b

m+n , otherwise

}
By using in Eq(13) the collacation points defined by

xi =
b
N

i, i = 0,1, ...,N,

we obtain the system of the matrix equations

{
m1

∑
k=0

n1

∑
j=0

Pk j(xi)E(xi)B(τk j)Mk −
m2

∑
r=0

n2

∑
s=0

E(xi)KrsQB(λrs)Mr}A = g(xi)

and therefore the fundamental matrix equation

{
m1

∑
k=0

n1

∑
j=0

Pk jEB(τk j)Mk −
m2

∑
r=0

n2

∑
s=0

EKe
rsQB(λrs)Mr}A = G (14)
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where
Pk j = diag[Pk j(x0) Pk j(x1) ... Pk j(xN)]

E =



E(x0)

E(x1)

E(x2)
...

E(xN )


=


1 e−x0 e−2x0 · · · e−Nx0

1 e−x1 e−2x1 · · · e−Nx1

...
...

...
...

...
1 e−xN e−2xN · · · e−NxN

 ,G =



g(x0)

g(x1)

g(x2)
...

g(xN )


The Fundemental Matrix equation (14) for Eq.(1) corresponds to a system of (N+1) algebraic equations for the (N+1)
unknown coefficients a0,a1, ...,aN . Briefly, we write Eq.(14) in the form

WA = G or [W : G] (15)

where
W = [wpq], p,q = 0,1, ...N

On the other hand, we can obtain the matrix forms for the conditions (2), by means of the relation (6) as follows;

m1−1

∑
k=0

(aikE(0)+bikE(b))MkA = [ ηi], i = 0,1, ...,m1 −1

or briefly

UiA = [ηi]

or

[Ui : ηi], i = 0,1, ...,m1 −1,where, Ui = [ui0 ,ui1 , ...,uiN ] (16)

Consequently, to obtain the solution of Eq. (1) under the conditions (2), by replacing the row matrices (16) by the last m
rows of the augmented matrix (15), we have the required augmented matrix [7,15,21]

[W̃;G̃]. (17)

If rankW̃= rank[W̃;G̃] =N+1, then we can write A= W̃−1G̃. Thus the matrix A (there by the coefficients a0,a1, ...,an) is
uniquely determined and the Eq. (1) under the conditions (2) has a unique solution. This solution is given by the truncated
exponential series (3)

yN (x) =
N

∑
n=0

ane−nx

On the other hand, when |W̃ |= 0, if rank W̃ = rank[W̃;G̃]< N +1, then we may find a particular solution, otherwise if
rank W̃ ̸= rank[W̃; G̃]< N +1, then, it is not a solution.

4 Error Analysis Technique Based on Residual Function:Accuracy of Solutions

We can easily check the accuracy of the obtained solutions as follows. As the truncated exponontial series in (3) is an
approximate solution of Eq.(1), when the function yN(x) and its derivatives are substituted in Eq.(1), the resulting equation
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must be approximately satisfied; that is, for

x = xi ε [0,b], i = 0,1, ...,N

RN(xi ) =
m1

∑
k=0

n1

∑
j=0

Pk j(xi)y
K

N
(xi)−

m2

∑
r=0

n2

∑
s=0

∫ b

0
K(xi, t)y

r

N
(xt)dt −g(xi)≈ 0 (18)

or
RN(xi )≤ 10−ki

(ki is any positive integer). If max 10−ki = 10−k(k is any positive integer) is prescribed, then the truncation limit N is

increased until the difference RN(xi ) at each of the points becomes smaller than the prescribed 10−k.

On the other hand, by means of the residual function defined by RN(x) and the mean value of the function |RN(x)| on the

interval [0,b] , the accuracy of the solution can be controlled and the error can be estimated. If RN(x)→ 0 when N is

sufficiently large enough, then the error decreases. Also, by using the Mean-Value Theorem, we can estimate the upper
bound mean error R as follows: ∣∣∣∣∫ b

0
RN(x)dx

∣∣∣∣≤ ∫ b

0
|RN(x)|dx

and ∫ b

0
RN(x)dx = bRN(c)⇒

∣∣∣∣∫ b

0
RN(x)dx

∣∣∣∣= b |RN(c)|

⇒ b |RN(c)| ≤
∫ b

0
|RN(x)|dx ⇒

|RN(c)| ≤
∫ b

0 |RN(x)|dx
b

= RN (0 ≤ c ≤ b)

5 Numerical Examples

In this section, we apply the method for some examples. All numerical computations have been done by using a
computer program written in Maple.

Example 1: Let us consider the differential-difference equation given by

y′(x)+ y(x)+ e(x−1)y(x−1) = 1

with initial condition y(0) = 1.

From equation (14) the colacation points for N = 2 are computed as{
x0 = 0,x1 =

1
2
,x2 = 1

}
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and the fundamental matrix equation of the problem is

{
P00EB(τ00)M0 +P01EB(τ01)M1 +P10EB(τ10)M1 +P11EB(τ11)M1}A = G

where
τ00 = 0,τ01 =−1,τ10 = 0,τ11 = 0

B(τ00) = B(τ10) = B(τ11) = B(0) =

1 0 0
0 1 0
0 0 1



B(τ01) = B(−1) =

1 0 0
0 e 0
0 0 e2

 ,

P00 = P10 =

1 0 0
0 1 0
0 0 1

 ,P01 =

e−1 0 0
0 e

−1
2 0

0 0 1

 ,P11 =

0 0 0
0 0 0
0 0 0



M0 =

1 0 0
0 1 0
0 0 1

 ,E =

1 1 1
1 e

−1
2 e−1

1 e−1 e−2

 .

The augmented matrix for this matrix equation is calculated as

[W : G] =

 1+ e−1 1 −1+ e : 1
1+ e−1/2 1 −e−1 + e1/2 : 1

2 1 1− e−2 : 1


The matrix form of initial condition is [

1 1 1 : 1
]
.

The new augmented matrix based on condition can be written as

[
W̃ : G̃

]
=

 1+ e−1 1 −1+ e : 1
1+ e−1/2 1 −e−1 + e1/2 : 1

1 1 1 : 1

 .

Solving this system, the unknown coefficients are obtained as

A =
[
0 1 0

]T

By substituting the coefficients into (4), we have approximate solution

y2(x) = e−x

which is also exact solution.
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Example 2: Now we consider the Firedholm integro-diferantial-difference equation with variable coefficients

y
′′
(x)− ex+2y′(x+1) = e−x +

1∫
0

y(t −1)dt

with initial conditions y(0) = 2,y′(0) =−1.

The exact solution of this problem is y(x) = 1+ e−x. Using the procedure in Section 3, for n = 2 the fundamental matrix
equation of the problem is,

{
P20EB(τ20)M2 +P11EB(τ11)M1 −EK00QB(λ00)M0}A = G{

P20EB(0)M2 +P11EB(1)M−EK00QB(−1)M0}A = G

where

P00 = P01 = P10 = P21 = 0

P20 = 1,P11 =−ex+2

τ20 = 0,τ11 = 1,λ00 =−1

P20 =

1 0 0
0 1 0
0 0 1

 ,P11 =

−e2 0 0
0 −e5/2 0
0 0 −e3



B(0) =

1 0 0
0 1 0
0 0 1

 ,B(1) =

1 0 0
0 e−1 0
0 0 e−2

 ,B(−1) =

1 0 0
0 e1 0
0 0 e2



M0 =

1 0 0
0 1 0
0 0 1

 ,M =

0 0 0
0 −1 0
0 0 −2

 ,M2 =

0 0 0
0 1 0
0 0 4



E =

1 1 1
1 e

−1
2 e−1

1 e−1 e−2

 ,K00 =

1 0 0
0 0 0
0 0 0

 ,G =

 1
e−1/2

e−1



Q =

 1 1− e−1 1
2 −

e−2

2

1− e−1 1
2 −

e−2

2
1
3 −

e−2

3
1
2 −

e−2

2
1
3 −

e−2

3
1
4 −

e−2

4


The augmented matrix for this matrix equation is

[W : G] =

−1 2 13−e2

2 : 1
−1 1+ e−1/2 4e−1 +2e−1/2 − e2

2 + 1
2 : e−1/2

−1 1+ e−1 4e−2 +2e−1 − e2

2 + 1
2 : e−1
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The new augmented matrix based on conditions can be written as

[
W̃ : G̃

]
=

−1 2 13−e2

2 : 1
1 1 1 : 2
0 −1 −2 : −1

 .

Solving this system with given conditions, the unknown coefficients are obtained as

A =
[
1.0100 1.0041 −0.00075

]T

By substituting the coefficients into (4), we have approximate solution

y2(x) = 1.0100+1.0041e−x −0.00075e−2x

For n = 4 the approximate solution is found as

y4(x) = 1.0092383+0.9984129e−x +0.00003046e−2x −0.00003918e−3x −0.000014341e−4x

The graphics of exact and numerical solution for n=2 and n=4 is given in figure 1 and figure 2.

Fig. 1: Numerical and Exact Solution of Example 2 for N=2
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Fig. 2: Numerical and Exact Solution of Example 2 for N=4

6 Conclusions

In this paper, we have presented an exponential colacation method based on Sezer’s Matrix Method for the solutions of
the Fredholm Integro-differential-difference equations. Also, by using the tecnique given in section 4, the control of the
solutions is performed. If the exact solution of the problem is exist and an exponential polynomial, such as in example 1,
then the exact solution can be found by this tecnique. It is observed that the presented tecnique gives good result which
is too close to exact solution base on values R2 = 0.0115824 and R4 = 0.003157 calculated for example 2 and figure1
and figure 2. This illustrative example also involves the approximate solutions for N = 5, N = 8, and N = 10, which
yield us the exact solution. Therefore, the accuracy of the presented method is validated. This tecnique can be used to test
reliability of the solutions of the other problems.
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