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Abstract: Let                be a vector in the space    with   ring of integers and   be a positive integer,   a polynomial in 

  with coefficient in  . The exponential sum associated with   is defined as               
       

 , where the sum is taken over 

a complete set of residues modulo  . The value of        depend on the estimate of cardinality    , the number of elements 

contained in the set                     where    is the partial derivatives of   with respect to  . To determine the 

cardinality of  , the p-adic sizes of common zeros of the partial derivative polynomials need to be obtained. In this paper we estimate 

the p-adic sizes of common zeros of partial derivative polynomials of        in         of degree nine by using Newton polyhedron 

technique. The degree nine polynomial is of the form                              . 
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1.  Introduction  

In our discussion, we use notations the ring of p-adic integers   , the completion of algebraic closure of    the field 

of rational p-adic numbers    and       is the highest power of   dividing  . It follows that for rational number   and 

 ,         if and only if    ,                                                    with equality 

if            . 

Loxton and Vaughan (1985) are the researches who investigate the exponential sums                         

where   is a nonlinear polynomial in     . They showed that the number of common zeros of the partial derivative 

polynomials of   with respect to   modulo   gives the estimation of       . 

From the works of Loxton and Smith (1982), they found that the p-adic sizes of common zeros to partial derivative 

polynomials associated with   in the neighbourhood of points in the product space   
     , can estimate the 

cardinality of  . Their result is the estimation of            that will lead to a derivation of estimate of        . 

The estimations for lower degree two-variable polynomials by using Newton polyhedron technique are found by 

many researchers such as Mohd. Atan (1986), Chan and Mohd. Atan (1997) who estimates the cardinality         of 

the set of solutions to congruence equations modulo a prime power and also Heng and Mohd. Atan (1999). However, 

results for the polynomials of higher degrees are less complete. 

Our approach entails the work developed by Mohd. Atan and Loxton (1986) who presented the p-adic Newton 

polyhedral method of finding the p-adic order of polynomials in         which is an analogue of Newton polygon 

defined by Koblitz (1977). Sapar and Mohd. Atan (2002) improved the result and then Yap, Sapar and Mohd. Atan 

(2011) showed that the p-adic sizes of common zeros of partial derivative polynomials associated with a cubic form can 

http://www.ntmsci.com/


39 
 
be found explicitly on the overlapping segment of the indicator diagrams associated with the polynomials by using 

Newton polyhedron technique. 

Our work involves application of the Newton polyhedron technique at the point of intersection in the combination of 

indicator diagrams to determine explicitly the p-adic sizes of the component       a common root of partial derivative 

polynomials of        in         of degree nine. 

2.  p-ADIC Orders of Zeros of A Polynomial  

Sapar and Mohd Atan (2002) proved that for every point of intersection of the indicator diagrams, there exist 

common zeros of both polynomials in         whose p-adic orders correspond to point       as mention in Theorem 

2.1 below: 

Theorem 2.1. Let   be a prime. Suppose   and   are polynomials in        . Let       be a point of intersection of the 

indicator diagrams associated with   and   at the vertices or simple points of intersections. Then there are   and   in    

satisfying                   and                 . 

Our investigation concentrates on the p-adic sizes of common zeros of partial derivative associated with a polynomial 

                             . First we prove the following lemma. 

Lemma 2.1. Let     be a prime,     and   in    and       zeros of                        . Let 

   
      

      
        

      

      
  

If      
        , then                    

 

 
    

 

 
, for       and                 

 

 
. 

Proof. The zeros of                         are given by 

    
              

 
            

Since      
         and    , we have         

 

 
              

Hence,         
 

 
            . Therefore, 

                   
 

 
        (2.1) 

 

It can be shown that            . 

It follows that,                     
(2.2) 

 

From (2.1) and (2.2), since    , we have 

           

      

      
 

 

 
                    

That is        
 

 
    

 

 
             (2.3) 

 

Clearly, 
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where       
           

 
. 

Thus, 

                                                                           

Since          
          and by (2.1), (2.2) and (2.3) we have 

            
 

 
    

 

 
            

It can be shown that 

                

                             

                
   (2.4) 

 

where      
          

    and        
 

 
  

Since          
          and                          and simplifying (2.4) we have 

                

 

 
 

as asserted. 

Throughout the following discussion, 

   
      

      
        

      

      
   (2.5) 

 

with       zeros of                               since      . 

Lemma 2.2. Suppose       in   
 . Let     be a prime,     and   coefficient of   and     as in (2.5)   . If 

     
        , then                                                   . 

Proof. 

                   
      
      

  
      
      

                                                                                     

                                                                     
 (2.6) 

 

Now, let    and    be the zeros of                         are of the form 

   
              

  
        

              

  
  

From (2.6), we have  

                                     
       

  
                           . 

Therefore, from (2.6) we have 

                   
       

  
                                                      

Since      
        ,  and by proof of Lemma 2.1,                    for      , we obtain 
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as asserted. 

From the above result, it is clear that to ascertain the p-adic sizes of               we need to examine the p-adic 

size of                           . To do this, the sizes of each quantity in the expression should be 

considered. This is done in the proof of the following assertion. 

Lemma 2.3. Suppose      in   
  and         

           
   where    and    as in (2.5). Let     be a  

prime,     and   coefficient of   and       and      
        . Then       

 

 
  and       

 

 
   

12      6 7 or      ≥14 −12      6 7−3  in an exceptional case with  =        ,      and some  ≥0 

which can be specified explicitly. 

Proof. From         
               

  , we have 

   
       

     

 

 
 
       

   

        
 
  

Thus,      
 

 
              

 

 
            (2.7) 

 

and                                  
   (2.8) 

 

By (2.7), Lemmas 2.1 and 2.2, we have 

      
 

 
                               

 

 
        

Now, we have to consider two cases. 

Case 1:                                    

(i) Suppose                                                            

It follow that,       
 

 
                     

 

 
        

Since     and      
        , we have 

      
 

 
          (2.9) 

 

It follow that,       
 

 
 . 

From the definition of        , 

                 
          

     

From (2.9), 

     
             

Thus,  

                    



42 
 
Hence from (2.8), we have 

                                       
         

and from the proof of Lemma 2.1 and simplify it, we have 

                
 

 
     

 

 
    

  

  
  

by Lemma 2.1, we have 

      
 

 
   

 

 
    

   

  
   

Hence, in this case, 

      
 

 
            

 

 
   

 

 
    

   

  
   

(ii)         Suppose                                                   (2.10) 
 

We have 

      
 

 
            

 

 
       

 

 
          

 

 
      

           (2.11) 
 

Since      
        , we have 

     
             

That is,       
 

 
 . 

By (2.10) and (2.11), 

      
 

 
                     

 

 
       

 

 
       

 

 
           

 

 
        

That is,       
 

 
         . 

Now                   
  . Thus, 

                         

It follows that, 

                    

By (2.8), and the same argument as in (i) we have, 

      
 

 
   

 

 
    

   

  
   

Case2:                                     

We have 
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Since                                   and    , 

      
 

 
                     

 

 
        

Since     and      
        , we have 

      
 

 
          

 

 
                 

Therefore,       
 

 
           

It follows that,       
 

 
   

From (2.7) and (2.8), we obtain 

                              
 

 
              

 

 
              

By Lemmas 2.1 and 2.2, we obtain 

                
 

 
    

 

  
 

 

 
                                   (2.12) 

 

Let,                                      (2.13) 
 

Then, there exist   and   such that, 

            with         and                 with        . 

From (2.13),                    Hence from (2.12), we have 

      
 

 
        

 

 
    

 

  
 

 

 
           

Let            , then 

      
 

 
          

 

 
    

   

  
 

 

 
   

It follows that, 

      
 

 
  

 

 
    

   

  
 

 

 
   

Hence, we have 

      
 

 
   

 

 
    

   

  
     

with                 and           . 
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Therefore,       
 

 
  and       

 

 
   

 

 
    

   

    or       
 

 
   

 

 
    

   

       

with                 and     as asserted. 

The following lemma gives explicit estimates of the components     in   and   in terms of p-adic sizes of integers in 

   where   and   as in Lemma 2.3. the proof utilizes the result obtained above. 

Lemma 2.4. Suppose      in   
  and         

           
   where    and    as in (2.5). Let     be a  

prime,         and   in         
        ,                         and              . If       

 

 
    

     

      
 and       

 

 
    

     

      
 then       

 

 
      and       

 

 
      or       

 

 
        

for some    . 

Proof. Since         
           

   and      
        , we have from Lemma 2.3 

      
 

 
  (2.14) 

 

where                   . 

Now, 

      
 

 
    

     

      
           

 

 
    

     

      
  

It follows from (2.14) that 

      
 

 
    

     

      
              

By proof of Lemma 2.1,                    for      . As such 

      
 

 
                    (2.15) 

 

If                                then 

      
 

 
               

By the hypothesis, we obtain 

      
 

 
       

Now, if                                  then 

      
 

 
                 

Since                     it follows that 

      
 

 
               

By the hypothesis, we obtain 
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By Lemma 2.3, we have 

      
 

 
   

 

 
    

   

  
           

 

 
   

 

 
    

   

  
     (2.16) 

 

for some     where                   . 

For the first inequality we have from (2.16), 

      
 

 
 
 

 
     

     

      
  

 

 
    

   

  
         

Since                    for        

      
 

 
                  

       
    (2.17) 

 

Since      
        , we have 

      
 

 
                     

By using the same method as equation (2.15), we have 

      
 

 
       

Now, we consider the second inequality, 

      
 

 
   

 

 
    

   

  
      

with                    and for some     . 

By the same argument for the first inequality not involving   , we let       and we will arrive at 

      
 

 
         

Therefore,       
 

 
      and       

 

 
      or       

 

 
         

as asserted. 

The next theorem will gives the p-adic sizes of common zeros of partial derivative polynomials associated with a 

polynomial        in        , in terms of the coefficients of its dominant terms. 

Theorem 2.2. Let                               be a polynomial in         with    . Let   

                           and      
        . İf            ,                 then there exists 

      such that          ,           and       
 

 
     ,       

 

 
      or in an exceptional case 

      
 

 
        with a certain    . 

Proof. Let      and      and   be a constant where,                          and          

       . 
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Then, 

                                               That is  

           

     
     

      

     
      

  

     
      

    

     
  (2.18) 

 

By completing the square in (2.18), we have 

           

     
     

     

     
    

 

 
    

     
  (2.19) 

 

with 

  

     
  

     

     
 
 

   (2.20) 

 

That is,                     . 

From the equation (2.20) above, we have 

   
              

  
        

              

  
  

Let the above       be the zeros of the equation (2.20) whose expressions are given in Lemma 2.1.      , since 

     
         implies       . 

Now let 

     
      

      
    (2.21) 

     
      

      
    (2.22) 

                    (2.23) 
 

and 

                    (2.24) 
 

Substitution of   and   in (2.19), for      , we have polynomials in      , 

                
        (2.25) 

                
          (2.26) 

 

The combination of the indicator diagrams associated with the Newton polyhedron of (2.25) and (2.26) is shown in 

figure below 
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Figure 2.2.1. The indicator diagrams of                 
        (bold line) and                 

        (broken line) 

From Figure 2.2.1 and by Theorem 2.1, there exists         in   
  such that           ,            and          , 

          with    
 

 
    

     

      
 and    

 

 
    

     

      
. 

Suppose      and      in (2.21) and (2.22). Thus, there exists         in   
  such that 

     
      

    (2.27) 

     
      

    (2.28) 
 

with    
      

      
 and    

      

      
,       the zeros                        .       since    . 

By solving (2.27) and (2.28) simultaneously, we have 

    
         

     

 

 
 

        
     

         
   

That is, 

       
 

 
                

 

 
            (2.7) 

 

and 

                                     
   

From Lemma 2.4, we have 

       
 

 
             

 

 
                

 

 
                      

Let      and     . Since            and           , by back substitution in (2.23) and (2.24) we would have 

                 and                 . Thus,       
 

 
     ,       

 

 
      or       

 

 
        where       is a common zero of    and                            , for some    . 

3.  Conclusion  

From this project, we found that if   is a prime,                                   with all 

coefficients in    such that for    ,                          and      
         if            , 
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                then there exists       such that          ,           and       
 

 
     ,       

 

 
      or in an exceptional case       

 

 
        with a certain    . 

The p-adic sizes of common zeros that we obtained in this project can be used to find the cardinality     and through 

that we can solve the exponential sums                         that depended from estimate of cardinality. 

Therefore, we also suggest that by using the same technique as in this project, the p-adic sizes of common zeros of 

partial derivative polynomials associated with much higher degree two-variable polynomials also can be found. 
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