An Estimating the \boldsymbol{p}-adic Sizes of Common Zeros of Partial Derivative Polynomials

Sapar S. $\mathrm{H}^{1,2}$, Mohd Atan K.A ${ }^{2}$, Aminuddin S. H^{2}
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Universiti Putra Malaysia, 43400 UPM Serdang
${ }^{2}$ Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang

Abstract

Let $\underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a vector in the space Z^{n} with Z ring of integers and q be a positive integer, f a polynomial in \underline{x} with coefficient in Z. The exponential sum associated with f is defined as $S(f ; q)=\sum \underline{x}$ modqe $\frac{\frac{2 \pi i f(x)}{q}}{}$, where the sum is taken over a complete set of residues modulo q. The value of $S(f ; q)$ depend on the estimate of cardinality $|V|$, the number of elements contained in the set $V=\left\{\underline{x} \bmod q \mid \underline{f_{x}}=\underline{0} \operatorname{modq}\right\}$ where f_{x} is the partial derivatives of \underline{f} with respect to \underline{x}. To determine the cardinality of V, the p -adic sizes of common zeros of the partial derivative polynomials need to be obtained. In this paper we estimate the p-adic sizes of common zeros of partial derivative polynomials of $f(x, y)$ in $Z_{p}[x, y]$ of degree nine by using Newton polyhedron technique. The degree nine polynomial is of the form $f(x, y)=a x^{9}+b x^{8} y+c x^{7} y^{2}+s x+t y+k$.

Keywords: Exponential sums; cardinality; p-adic sizes; Newton polyhedron.

1. Introduction

In our discussion, we use notations the ring of p-adic integers Z_{p}, the completion of algebraic closure of Q_{p} the field of rational p-adic numbers Ω_{p} and $\operatorname{ord}_{p} x$ is the highest power of p dividing x. It follows that for rational number x and $y, \operatorname{ord}_{p} x=\infty$ if and only if $x=0, \operatorname{ord}_{p}\left(x y=\operatorname{ord}_{p} x+\operatorname{ord}_{p} y\right.$ and $\operatorname{ord}_{p}(x+y) \geq \min \left\{\operatorname{ord}_{p} x, \operatorname{ord}_{p} y\right\}$ with equality if $\operatorname{ord}_{p} x \neq \operatorname{ord}_{p} y$.

Loxton and Vaughan (1985) are the researches who investigate the exponential sums $S(f ; q)=\sum_{\underline{x} \operatorname{modq}} \exp (2 \pi i q)$ where f is a nonlinear polynomial in $Z[\underline{x}]$. They showed that the number of common zeros of the partial derivative polynomials of f with respect to \underline{x} modulo q gives the estimation of $S(f ; q)$.

From the works of Loxton and Smith (1982), they found that the p-adic sizes of common zeros to partial derivative polynomials associated with f in the neighbourhood of points in the product space $\Omega_{\mathrm{p}}^{\mathrm{n}}, n>0$, can estimate the cardinality of V. Their result is the estimation of $\operatorname{ord}_{p}\left(\underline{x}-\xi_{i}\right)$ that will lead to a derivation of estimate of $N\left(\underline{f}, p^{\alpha}\right)$.

The estimations for lower degree two-variable polynomials by using Newton polyhedron technique are found by many researchers such as Mohd. Atan (1986), Chan and Mohd. Atan (1997) who estimates the cardinality $N\left(f ; p^{\alpha}\right)$ of the set of solutions to congruence equations modulo a prime power and also Heng and Mohd. Atan (1999). However, results for the polynomials of higher degrees are less complete.

Our approach entails the work developed by Mohd. Atan and Loxton (1986) who presented the p-adic Newton polyhedral method of finding the p-adic order of polynomials in $\Omega_{p}[x, y]$ which is an analogue of Newton polygon defined by Koblitz (1977). Sapar and Mohd. Atan (2002) improved the result and then Yap, Sapar and Mohd. Atan (2011) showed that the p-adic sizes of common zeros of partial derivative polynomials associated with a cubic form can
be found explicitly on the overlapping segment of the indicator diagrams associated with the polynomials by using Newton polyhedron technique.

Our work involves application of the Newton polyhedron technique at the point of intersection in the combination of indicator diagrams to determine explicitly the p-adic sizes of the component (ξ, η) a common root of partial derivative polynomials of $f(x, y)$ in $Z_{p}[x, y]$ of degree nine.

2. p-ADIC Orders of Zeros of A Polynomial

Sapar and Mohd Atan (2002) proved that for every point of intersection of the indicator diagrams, there exist common zeros of both polynomials in $Z_{p}[x, y]$ whose p-adic orders correspond to point (μ, λ) as mention in Theorem 2.1 below:

Theorem 2.1. Let p be a prime. Suppose f and g are polynomials in $Z_{p}[x, y]$. Let (μ, λ) be a point of intersection of the indicator diagrams associated with f and g at the vertices or simple points of intersections. Then there are ξ and η in Ω_{p} satisfying $f(\xi, \eta)=g(\xi, \eta)=0$ and $\operatorname{ord}_{p} \xi=\mu, \operatorname{ord}_{p} \eta=\lambda$.

Our investigation concentrates on the p-adic sizes of common zeros of partial derivative associated with a polynomial $f(x, y)=a x^{9}+b x^{8} y+c x^{7} y^{2}+s x+t y+k$. First we prove the following lemma.

Lemma 2.1. Let $p>7$ be a prime, a, b and c in Z_{p} and λ_{1}, λ_{2} zeros of $k(\lambda)=c^{2} \lambda^{2}+b c \lambda+16 b^{2}-63 a c$. Let

$$
\alpha_{1}=\frac{4 b+\lambda_{1} c}{9 a+\lambda_{1} b} \text { and } \alpha_{2}=\frac{4 b+\lambda_{2} c}{9 a+\lambda_{2} b} .
$$

If $\operatorname{ord}_{p} b^{2}>\operatorname{ord}_{p} a c$, then $\operatorname{ord}_{p} \alpha_{i}=\operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right)=\frac{1}{2} \operatorname{ord} \frac{c}{a}$, for $i=1,2$ and $\operatorname{ord}_{p}\left(\alpha_{1}+\alpha_{2}\right)=\operatorname{ord}_{p} \frac{b}{a}$.
Proof. The zeros of $k(\lambda)=c^{2} \lambda^{2}+b c \lambda+16 b^{2}-63 a c$ are given by

$$
\lambda_{1} c=\frac{-b \pm \sqrt{252 a c-63 b^{2}}}{2}, \text { for } i=1,2 .
$$

Since $\operatorname{ord}_{p} b^{2}>\operatorname{ord}_{p} a c$ and $p>7$, we have $\operatorname{ord}_{p} \lambda_{i} c=\frac{1}{2} \operatorname{ord}_{p} a c, i=1,2$.
Hence, $\operatorname{ord}_{p} \lambda_{i} c=\frac{1}{2} \operatorname{ord}_{p} a c<\operatorname{ord}_{p} b$. Therefore,

$$
\begin{equation*}
\operatorname{ord}_{p}(4 b+\lambda c)=\operatorname{ord}_{p} \lambda c=\frac{1}{2} \operatorname{ord}_{p} a c . \tag{2.1}
\end{equation*}
$$

It can be shown that $\operatorname{or} d_{p} \lambda>\operatorname{ord}_{p} a$.
It follows that, $\operatorname{ord}_{p}(9 a+\lambda b)=\operatorname{ord}_{p} a$.

From (2.1) and (2.2), since $p>7$, we have

$$
\begin{equation*}
\operatorname{ord}_{p} \alpha_{i}=\operatorname{ord}_{p} \frac{4 b+\lambda_{i} c}{9 a+\lambda_{i} b}=\frac{1}{2} \operatorname{ord}_{p} a c-\operatorname{ord}_{p} a, \quad i=1,2 . \tag{2.3}
\end{equation*}
$$

That is ord $_{p} \alpha_{i}=\frac{1}{2} \operatorname{ord}_{p} \frac{c}{a}$, for $i=1,2$.
Clearly,

$$
\operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right)=\operatorname{ord}_{p} \frac{\left(\lambda_{1}-\lambda_{2}\right)\left(9 a c-4 b^{2}\right)}{\left(9 a+\lambda_{1} b\right)\left(9 a+\lambda_{2} b\right)}
$$

where $\lambda_{1}-\lambda_{2}=\frac{\sqrt{252 a c-63 b^{2}}}{c}$.
Thus,

$$
\operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right)=\operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}-\operatorname{ord}_{p} c+\operatorname{ord}_{p}\left(9 a c-4 b^{2}\right)-\operatorname{ord}_{p}\left(9 a+\lambda_{1} b\right)-\operatorname{ord}_{p}\left(9 a+\lambda_{2} b\right)
$$

Since $p>7$, ord $_{p} b^{2}>$ ord $_{p} a c$ and by (2.1), (2.2) and (2.3) we have

$$
\operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right)=\frac{1}{2} \operatorname{ord}_{p} \frac{c}{a}, \text { for } i=1,2 .
$$

It can be shown that

$$
\begin{equation*}
\operatorname{ord}_{p}\left(\alpha_{1}+\alpha_{2}\right)=\operatorname{ord}_{p} \frac{72 a b+2 b c \lambda_{1} \lambda_{2}+\left(9 a c-4 b^{2}\right)\left(\lambda_{1}+\lambda_{2}\right)}{\left(9 a+\lambda_{1} b\right)\left(9 a+\lambda_{2} b\right)} \tag{2.4}
\end{equation*}
$$

where $\lambda_{1} \lambda_{2}=\frac{64 b^{2}-252 a c}{4 c^{2}}$ and $\lambda_{1}+\lambda_{2}=-\frac{b}{a}$.
Since $p>7, \operatorname{ord}_{p} b^{2}>\operatorname{ord}_{p} a c$ and $\operatorname{ord}_{p}\left(9 a+\lambda_{i} b\right)=\operatorname{ord}_{p} a, i=1,2$ and simplifying (2.4) we have

$$
\operatorname{ord}_{p}\left(\alpha_{1}+\alpha_{2}\right)=\operatorname{ord}_{p} \frac{b}{a}
$$

as asserted.
Throughout the following discussion,

$$
\begin{equation*}
\alpha_{1}=\frac{4 b+\lambda_{1} c}{9 a+\lambda_{1} b} \text { and } \alpha_{2}=\frac{4 b+\lambda_{2} c}{9 a+\lambda_{2} b} \tag{2.5}
\end{equation*}
$$

with λ_{1}, λ_{2} zeros of $k(\lambda)=c^{2} \lambda^{2}+b c \lambda+16 b^{2}-63 a c$. $\alpha_{1} \neq \alpha_{2}$ since $\lambda_{1} \neq \lambda_{2}$.
Lemma 2.2. Suppose (U, V) in Ω_{p}^{2}. Let $p>7$ be a prime, a, b and c coefficient of α_{1} and α_{2} as in (2.5) Z_{p}. If $\operatorname{ord}_{p} b^{2}>\operatorname{ord}_{p} a c$, then $\operatorname{ord}_{p}\left(\alpha_{1} V-\alpha_{2} U\right)=\operatorname{ord}_{p}\left[7 b(U-V)+\sqrt{252 a c-63 b^{2}}(U+V)\right]-\operatorname{ord}_{p} a$.

Proof.

$$
\begin{align*}
& \operatorname{ord}_{p}\left(\alpha_{1} V-\alpha_{2} U\right)=\operatorname{ord}_{p}\left(\frac{4 b+\lambda_{1} c}{9 a+\lambda_{1} b} V-\frac{4 b+\lambda_{2} c}{9 a+\lambda_{2} b} U\right) \tag{2.6}\\
& =\operatorname{ord}_{p}\left[\left(4 b+\lambda_{1} c\right)\left(9 a+\lambda_{2} b\right) V-\left(4 b+\lambda_{2} c\right)\left(9 a+\lambda_{1} b\right) U\right]-\operatorname{ord}_{p}\left(9 a+\lambda_{1} b\right)-\operatorname{ord}_{p}\left(9 a+\lambda_{2} b\right) .
\end{align*}
$$

Now, let λ_{1} and λ_{2} be the zeros of $k(\lambda)=c^{2} \lambda^{2}+b c \lambda+16 b^{2}-63 a c$ are of the form

$$
\lambda_{1}=\frac{-b+\sqrt{252 a c-63 b^{2}}}{2 c} \text { and } \lambda_{2}=\frac{-b-\sqrt{252 a c-63 b^{2}}}{2 c}
$$

From (2.6), we have

$$
\left(4 b+\lambda_{1} c\right)\left(9 a+\lambda_{2} b\right) V-\left(4 b+\lambda_{2} c\right)\left(9 a+\lambda_{1} b\right) U=\left(\frac{9 a c-4 b^{2}}{2 c}\right)\left[7 b(U-V)+\sqrt{252 a c-63 b^{2}}(U+V)\right] .
$$

Therefore, from (2.6) we have
$\operatorname{ord}_{p}\left(\alpha_{1} V-\alpha_{2} U\right)=\operatorname{ord}_{p}\left(\frac{9 a c-4 b^{2}}{2 c}\right)\left[7 b(U-V)+\sqrt{252 a c-63 b^{2}}(U+V)\right]-\operatorname{ord}_{p}\left(9 a+\lambda_{1} b\right)-\operatorname{ord}_{p}\left(9 a+\lambda_{2} b\right)$
Since $\operatorname{ord} d_{p} b^{2}>\operatorname{ord}_{p} a c$, and by proof of Lemma 2.1, $\operatorname{ord}_{p}\left(9 a+\lambda_{i} b\right)=\operatorname{ord}_{p} a$ for $i=1,2$, we obtain

$$
\operatorname{ord}_{p}\left(\alpha_{1} V-\alpha_{2} U\right)=\operatorname{ord}_{p}\left[7 b(U-V)+\sqrt{252 a c-63 b^{2}}(U+V)\right]-\operatorname{ord}_{p} a
$$

as asserted.
From the above result, it is clear that to ascertain the p-adic sizes of ord $_{p}\left(\alpha_{1} V-\alpha_{2} U\right)$ we need to examine the p-adic size of $\left[7 b(U-V)+\sqrt{252 a c-63 b^{2}}(U+V)\right]$. To do this, the sizes of each quantity in the expression should be considered. This is done in the proof of the following assertion.

Lemma 2.3. Suppose (x, y) in Ω_{p}^{2} and $U=x^{4}+\alpha_{1} x^{3} y, V=x^{4}+\alpha_{2} x^{3} y$ where α_{1} and α_{2} as in (2.5). Let $p>7$ be a prime, a, b and c coefficient of α_{1} and $\alpha_{2} Z_{p}$ and ord $_{p} b^{2}>\operatorname{ord}_{p} a c$. Then ord $_{p} x \geq \frac{1}{4} W$ and ord $d_{p} y \geq \frac{1}{4}[W-$ 12 ordpcb6a7 or ordpy $\geq 14 W-12$ ordpcb6a $7-3 \varepsilon$ in an exceptional case with $W=$ minordpV,ordp U and some $\varepsilon \geq 0$ which can be specified explicitly.

Proof. From $U=x^{4}+\alpha_{1} x^{3} y$ and $V=x^{4}+\alpha_{2} x^{3} y$, we have

$$
x=\left(\frac{\alpha_{1} V-\alpha_{2} U}{\alpha_{1}-\alpha_{2}}\right)^{\frac{1}{4}} \text { and } y=\frac{U-V}{\left(\alpha_{1}-\alpha_{2}\right) x^{3}} .
$$

Thus, $\operatorname{ord}_{p} x=\frac{1}{4} \operatorname{ord}_{p}\left(\alpha_{1} V-\alpha_{2} U\right)-\frac{1}{4} \operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right)$
and $\operatorname{ord}_{p} y=\operatorname{ord}_{p}(U-V)-\operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right)-\operatorname{ord}_{p} x^{3}$.
By (2.7), Lemmas 2.1 and 2.2, we have

$$
\operatorname{ord}_{p} x=\frac{1}{4} \operatorname{ord}_{p}\left[7 b(U-V)+\sqrt{252 a c-63 b^{2}}(U+V)\right]-\frac{1}{8} \text { ord }_{p} a c .
$$

Now, we have to consider two cases.
Case 1: $\left\{\operatorname{ord}_{p} 7 b(U-V) \neq \operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)\right\}$
(i) \quad Suppose $\min \left\{\operatorname{ord}_{p} 7 b(U-V), \operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)\right\}=\operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)$

It follow that, $\operatorname{ord}_{p} x=\frac{1}{4} \operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)-\frac{1}{8} o r d_{p} a c$.
Since $p>7$ and $\operatorname{ord}_{p} b^{2}>\operatorname{ord}_{p} a c$, we have

$$
\begin{equation*}
\operatorname{ord}_{p} x=\frac{1}{4} \operatorname{ord}_{p}(U+V) \tag{2.9}
\end{equation*}
$$

It follow that, ord $_{p} x \geq \frac{1}{4} W$.
From the definition of U and V,

$$
\operatorname{ord}_{p}(U+V)=\operatorname{ord}_{p}\left(2 x^{4}+\left(\alpha_{1}+\alpha_{2}\right) x^{3} y\right)
$$

From (2.9),

$$
\operatorname{ord}_{p} x^{4}=\operatorname{ord}_{p}(U+V)
$$

Thus,

$$
\operatorname{ord}_{p} x \leq \operatorname{ord}_{p}\left(\alpha_{1}+\alpha_{2}\right) y
$$

Hence from (2.8), we have

$$
\operatorname{ord}_{p} y \geq \operatorname{ord}_{p}(U-V)-\operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right)-\operatorname{ord}_{p}\left(\alpha_{1}+\alpha_{2}\right)^{3}-3 \operatorname{ord}_{p} y
$$

and from the proof of Lemma 2.1 and simplify it, we have

$$
\operatorname{ord}_{p} y \geq \operatorname{ord}_{p}(U-V)-\frac{1}{2}\left[\operatorname{ord}_{p} \frac{c}{a} \operatorname{ord}_{p} \frac{b^{3}}{a^{3}}\right]
$$

by Lemma 2.1, we have

$$
\operatorname{ord}_{p} y \geq \frac{1}{4}\left[W-\frac{1}{2} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}\right] .
$$

Hence, in this case,

$$
\begin{equation*}
\operatorname{ord}_{p} x \geq \frac{1}{4} W \text { and } \operatorname{ord}_{p} y \geq \frac{1}{4}\left[W-\frac{1}{2} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}\right] \tag{2.10}
\end{equation*}
$$

(ii) \quad Suppose $\min \left\{\operatorname{ord}_{p} 7 b(U-V), \operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)\right\}=\operatorname{ord}_{p} 7 b(U-V)$

We have

$$
\begin{equation*}
\operatorname{ord}_{p} x=\frac{1}{4} \operatorname{ord}_{p} 7 b(U-V)-\frac{1}{8} \operatorname{ord}_{p} a c=\frac{1}{4} \operatorname{ord}_{p}(U-V)+\frac{1}{8}\left(\operatorname{ord}_{p} b^{2}-\operatorname{ord}_{p} a c\right) . \tag{2.11}
\end{equation*}
$$

Since $\operatorname{ord} d_{p} b^{2}>\operatorname{ord}_{p} a c$, we have

$$
\operatorname{ord}_{p} x^{4} \geq \operatorname{ord}_{p}(U-V)
$$

That is, $\operatorname{ord}_{p} x=\frac{1}{4} W$.
By (2.10) and (2.11),

$$
\operatorname{ord}_{p} x \leq \frac{1}{4} \operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)-\frac{1}{8} \text { ord }_{p} a c=\frac{1}{8} \text { ord }_{p} a c+\frac{1}{4} \text { ord }_{p}(U+V)--\frac{1}{8} \text { ord }_{p} a c .
$$

That is, $\operatorname{ord}_{p} x \leq \frac{1}{4} \operatorname{ord}_{p}(U+V)$.
Now $(U+V)=2 x^{4}+\left(\alpha_{1}+\alpha_{2}\right) x^{3} y$. Thus,

$$
\operatorname{ord}_{p} x \leq \operatorname{ord}_{p}\left(2 x+\left(\alpha_{1}+\alpha_{2}\right) y\right)
$$

It follows that,

$$
\operatorname{ord}_{p} x \leq \operatorname{ord}_{p}\left(\alpha_{1}+\alpha_{2}\right) y .
$$

By (2.8), and the same argument as in (i) we have,

$$
\operatorname{ord}_{p} y \geq \frac{1}{4}\left[W-\frac{1}{2} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}\right] .
$$

Case2: $\left\{\operatorname{ord}_{p} 7 b(U-V)=\operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)\right\}$.
We have

$$
\begin{aligned}
\operatorname{ord}_{p} x= & \frac{1}{4}\left[\operatorname{ord}_{p} 7 b(U-V)+\operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)\right]-\frac{1}{8} \text { ord }_{p} a c \\
& \geq \frac{1}{4} \min \left\{\operatorname{ord}_{p} 7 b(U-V), \operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)\right\}-\frac{1}{8} \text { ord }_{p} a c .
\end{aligned}
$$

Since $\operatorname{ord}_{p} 7 b(U-V)=\operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)$ and $p>7$,

$$
\operatorname{ord}_{p} x \geq \frac{1}{4} \operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)-\frac{1}{8} \operatorname{ord}_{p} a c
$$

Since $p>7$ and ord $_{p} b^{2}>\operatorname{ord}_{p} a c$, we have

$$
\operatorname{ord}_{p} x \geq \frac{1}{4} \operatorname{ord}_{p}(U+V)+\frac{1}{8}\left(\operatorname{ord}_{p} a c-\operatorname{ord}_{p} a c\right)
$$

Therefore, ord $_{p} x \geq \frac{1}{4} \operatorname{ord}_{p}(U+V)$.
It follows that, $\operatorname{ord}_{p} x \geq \frac{1}{4} W$.
From (2.7) and (2.8), we obtain

$$
\operatorname{ord}_{p} y=\operatorname{ord}_{p}(U-V)-\operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right)-3\left[\frac{1}{4} \operatorname{ord}_{p}\left(\alpha_{1} V-\alpha_{2} U\right)-\frac{1}{4} \operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right)\right]
$$

By Lemmas 2.1 and 2.2, we obtain

$$
\begin{equation*}
\operatorname{ord}_{p} y=\operatorname{ord}_{p}(U-V)-\frac{1}{8} \operatorname{ord}_{p} \frac{c}{a^{7}}-\frac{3}{4} \operatorname{ord}_{p}\left[7 b(U-V)+\sqrt{252 a c-63 b^{2}}(U+V)\right] . \tag{2.12}
\end{equation*}
$$

Let, $\beta=\operatorname{ord}_{p} 7 b(U-V)=\operatorname{ord}_{p} \sqrt{252 a c-63 b^{2}}(U+V)$.
Then, there exist k and l such that,
$7 b(U-V)=p^{\beta} k$ with $\operatorname{ord}_{p} k=0$ and $\sqrt{252 a c-63 b^{2}}=p^{\beta} l$ with ord $l=0$.
From (2.13), $\operatorname{ord}_{p}(U-V)=\beta-\operatorname{ord}_{p} b$. Hence from (2.12), we have

$$
\operatorname{ord}_{p} y=\frac{1}{4} \beta-\operatorname{ord}_{p} b-\frac{1}{8} \operatorname{ord}_{p} \frac{c}{a^{7}}-\frac{3}{4} \operatorname{ord}_{p}(k+l) .
$$

Let $\varepsilon=\operatorname{ord}_{p}(k+l)$, then

$$
\operatorname{ord}_{p} y=\frac{1}{4} \operatorname{ord}_{p}(U-V)-\frac{1}{8} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}-\frac{3}{4} \varepsilon
$$

It follows that,

$$
\operatorname{ord}_{p} y \geq \frac{1}{4} W-\frac{1}{8} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}-\frac{3}{4} \varepsilon .
$$

Hence, we have

$$
\operatorname{ord}_{p} y \geq \frac{1}{4}\left[W-\frac{1}{2} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}-3 \varepsilon\right]
$$

with $W=\left\{\operatorname{ord}_{p} V, \operatorname{ord}_{p} U\right\}$ and $\operatorname{\varepsilon ord}_{p}(k+l)$.

Therefore, $\operatorname{ord}_{p} x \geq \frac{1}{4} W$ and $\operatorname{ord}_{p} y \geq \frac{1}{4}\left[W-\frac{1}{2} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}\right]$ or $\operatorname{ord}_{p} y \geq \frac{1}{4}\left[W-\frac{1}{2} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}-3 \varepsilon\right]$
with $W=\left\{\operatorname{ord}_{p} V, \operatorname{ord}_{p} U\right\}$ and $\varepsilon \geq 0$ as asserted.
The following lemma gives explicit estimates of the components x, y in U and V in terms of p-adic sizes of integers in Z_{p} where U and V as in Lemma 2.3. the proof utilizes the result obtained above.

Lemma 2.4. Suppose (x, y) in Ω_{p}^{2} and $U=x^{4}+\alpha_{1} x^{3} y, V=x^{4}+\alpha_{2} x^{3} y$ where α_{1} and α_{2} as in (2.5). Let $p>7$ be a prime, a, b, c, s and t in $Z_{p} \operatorname{ord}_{p} b^{2}>\operatorname{ord}_{p} a c, \delta=\max \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c\right\}$ and $\operatorname{ord}_{p} s, \operatorname{ord}_{p} t \geq \delta$. If $\operatorname{ord}_{p} U=$ $\frac{1}{2} \operatorname{ord}_{p} \frac{s+\lambda_{1} t}{9 a+\lambda_{1} b}$ and $\operatorname{ord}_{p} V=\frac{1}{2} \operatorname{ord}_{p} \frac{s+\lambda_{2} t}{9 a+\lambda_{2} b}$ then $\operatorname{ord}_{p} x \geq \frac{1}{8}(\alpha-\delta)$ and $\operatorname{ord}_{p} y \geq \frac{1}{8}(\alpha-\delta)$ or $\operatorname{ord}_{p} y \geq \frac{1}{8}(\alpha-\delta-\varepsilon)$ for some $\varepsilon \geq 0$.

Proof. Since $U=x^{4}+\alpha_{1} x^{3} y, V=x^{4}+\alpha_{2} x^{3} y$ and $\operatorname{ord}_{p} b^{2}>$ ord $_{p} a c$, we have from Lemma 2.3

$$
\begin{equation*}
\operatorname{ord}_{p} x \geq \frac{1}{4} W \tag{2.14}
\end{equation*}
$$

where $W=\min \left\{\operatorname{ord}_{p} U, \operatorname{ord}_{p} V\right\}$.
Now,

$$
\operatorname{ord}_{p} U=\frac{1}{2} \operatorname{ord}_{p} \frac{s+\lambda_{1} t}{9 a+\lambda_{1} b} \text { and }^{9} \operatorname{ord}_{p} V=\frac{1}{2} \operatorname{ord}_{p} \frac{s+\lambda_{2} t}{9 a+\lambda_{2} b} .
$$

It follows from (2.14) that

$$
\operatorname{ord}_{p} x \geq \frac{1}{8} \operatorname{ord}_{p} \frac{s+\lambda_{i} t}{9 a+\lambda_{i} b}, \quad i=1 \text { or } 2 .
$$

By proof of Lemma 2.1, $\operatorname{ord}_{p}\left(9 a+\lambda_{i} b\right)=\operatorname{ord}_{p} a$ for $i=1,2$. As such

$$
\begin{equation*}
\operatorname{ord}_{p} x \geq \frac{1}{8}\left[\operatorname{ord}_{p}\left(s+\lambda_{i} t\right)-\operatorname{ord}_{p} a\right] \tag{2.15}
\end{equation*}
$$

If $\min \left\{\operatorname{ord}_{p} s, \operatorname{ord}_{p} \lambda_{i} t\right\}=\operatorname{ord}_{p} s, i=1,2$ then

$$
\operatorname{ord}_{p} x \geq \frac{1}{8}\left(\operatorname{ord}_{p} s-\operatorname{ord}_{p} a\right)
$$

By the hypothesis, we obtain

$$
\operatorname{ord}_{p} x \geq \frac{1}{8}(\alpha-\delta)
$$

Now, if $\min \left\{\operatorname{ord}_{p} s, \operatorname{ord}_{p} \lambda_{i} t\right\}=\operatorname{ord}_{p} \lambda_{i} t, i=1,2$ then

$$
\operatorname{ord}_{p} x \geq \frac{1}{8}\left[\operatorname{ord}_{p} \lambda_{i} t-\operatorname{ord}_{p} a\right] .
$$

Since $\operatorname{ord}_{p} a \leq \operatorname{ord}_{p} \lambda_{i} b, i=1,2$ it follows that

$$
\operatorname{ord}_{p} x \geq \frac{1}{8}\left[\operatorname{ord}_{p} t-\operatorname{ord}_{p} b\right]
$$

By the hypothesis, we obtain

$$
\operatorname{ord}_{p} x \geq \frac{1}{8}(\alpha-\delta)
$$

By Lemma 2.3, we have

$$
\begin{equation*}
\operatorname{ord}_{p} y \geq \frac{1}{4}\left[W-\frac{1}{2} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}\right] \text { or } \operatorname{ord}_{p} y \geq \frac{1}{4}\left[W-\frac{1}{2} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}-3 \varepsilon\right] \tag{2.16}
\end{equation*}
$$

for some $\varepsilon \geq 0$ where $W=\min \left\{\operatorname{ord}_{p} U, \operatorname{ord}_{p} V\right\}$.
For the first inequality we have from (2.16),

$$
\operatorname{ord}_{p} y \geq \frac{1}{4}\left[\frac{1}{2} \operatorname{ord}_{p}\left(\frac{s+\lambda_{i} t}{9 a+\lambda_{i} b}\right)-\frac{1}{2} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}\right], i=1,2 .
$$

Since $\operatorname{ord}_{p}\left(9 a+\lambda_{i} b\right)=\operatorname{ord}_{p} a$ for $i=1,2$,

$$
\begin{equation*}
\operatorname{ord}_{p} y \geq \frac{1}{8}\left[\operatorname{ord}_{p}\left(s+\lambda_{i} t\right)+\operatorname{ord}_{p} a^{6}-\operatorname{ord}_{p} b^{6} c\right] \tag{2.17}
\end{equation*}
$$

Since ord $d_{p} b^{2}>\operatorname{ord}_{p} a c$, we have

$$
\operatorname{ord}_{p} y \geq \frac{1}{8}\left[\operatorname{ord}_{p}\left(s+\lambda_{i} t\right)+\operatorname{ord}_{p} a\right]
$$

By using the same method as equation (2.15), we have

$$
\operatorname{ord}_{p} y \geq \frac{1}{8}(\alpha-\delta)
$$

Now, we consider the second inequality,

$$
\operatorname{ord}_{p} y \geq \frac{1}{4}\left[W-\frac{1}{2} \operatorname{ord}_{p} \frac{c b^{6}}{a^{7}}-3 \varepsilon_{0}\right]
$$

with $W=\min \left\{\operatorname{ord}_{p} U\right.$, ord $\left.d_{p} V\right\}$ and for some $\varepsilon_{0} \geq 0$.
By the same argument for the first inequality not involving ε_{0}, we let $\varepsilon=3 \varepsilon_{0}$ and we will arrive at

$$
\operatorname{ord}_{p} y \geq \frac{1}{8}(\alpha-\delta-\varepsilon)
$$

Therefore, ord $_{p} x \geq \frac{1}{8}(\alpha-\delta)$ and $\operatorname{ord}_{p} y \geq \frac{1}{8}(\alpha-\delta)$ or ord $_{p} y \geq \frac{1}{8}(\alpha-\delta-\varepsilon)$
as asserted.
The next theorem will gives the p-adic sizes of common zeros of partial derivative polynomials associated with a polynomial $f(x, y)$ in $Z_{p}[x, y]$, in terms of the coefficients of its dominant terms.

Theorem 2.2. Let $f(x, y)=a x^{9}+b x^{8} y+c x^{7} y^{2}+s x+t y+k$ be a polynomial in $Z_{p}[x, y]$ with $p>7$. Let $\alpha>$ $0, \delta=\max \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c\right\}$ and $\operatorname{ord}_{p} b^{2}>\operatorname{ord}_{p} a c$. If $\operatorname{ord}_{p} f_{x}(0,0), \operatorname{ord}_{p} f_{y}(0,0) \geq \alpha>\delta$ then there exists (ξ, η) such that $f_{x}(\xi, \eta)=0, f_{y}(\xi, \eta)=0$ and $\operatorname{ord}_{p} \xi \geq \frac{1}{8}(\alpha-\delta)$, ord $\operatorname{or}_{p} \geq \frac{1}{8}(\alpha-\delta)$ or in an exceptional case $\operatorname{ord}_{p} \eta \geq \frac{1}{8}(\alpha-\delta-\varepsilon)$ with a certain $\varepsilon \geq 0$.

Proof. Let $g=f_{x}$ and $h=f_{y}$ and λ be a constant where, $g=f_{x}=9 a x^{8}+8 b x^{7} y+7 c x^{6} y^{2}+s$ and $h=f_{y}=b x^{8}+$ $2 c x^{7} y+t$.

Then,

$$
\begin{align*}
& (g+\lambda h)(x, y)=(9 a+\lambda b) x^{8}+(8 b+2 \lambda c) x^{7} y+7 c x^{6} y^{2}+s+\lambda t . \text { That is } \\
& \frac{(g+\lambda h)(x, y)}{9 a+\lambda b}=x^{8}+\left(\frac{8 b+2 \lambda c}{9 a+\lambda b}\right) x^{7} y+\left(\frac{7 c}{9 a+\lambda b}\right) x^{6} y^{2}+\frac{s+\lambda t}{9 a+\lambda b} \tag{2.18}
\end{align*}
$$

By completing the square in (2.18), we have

$$
\begin{equation*}
\frac{(g+\lambda h)(x, y)}{9 a+\lambda b}=\left(x^{4}+\frac{4 b+\lambda c}{9 a+\lambda b} x^{3} y\right)^{2}+\frac{s+\lambda t}{9 a+\lambda b} . \tag{2.19}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{7 c}{9 a+\lambda b}-\left(\frac{4 b+\lambda c}{9 a+\lambda b}\right)^{2}=0 \tag{2.20}
\end{equation*}
$$

That is, $c^{2} \lambda^{2}+b c \lambda+16 b^{2}-63 a c=0$.
From the equation (2.20) above, we have

$$
\lambda_{1}=\frac{-b+\sqrt{252 a c-63 b^{2}}}{2 c} \text { and } \lambda_{2}=\frac{-b-\sqrt{252 a c-63 b^{2}}}{2 c} .
$$

Let the above λ_{1}, λ_{2} be the zeros of the equation (2.20) whose expressions are given in Lemma 2.1. $\lambda_{1} \neq \lambda_{2}$, since ord $_{p} b^{2}>$ ord $_{p}$ ac implies $b^{2} \neq 4 a c$.

Now let

$$
\begin{align*}
& U=x^{4}+\frac{4 b+\lambda_{1} c}{9 a+\lambda_{1} b} x^{3} y \tag{2.21}\\
& V=x^{4}+\frac{4 b+\lambda_{2} c}{9 a+\lambda_{2} b} x^{3} y \tag{2.22}\\
& F(U, V)=\left(g+\lambda_{1} h\right)(x, y) \tag{2.23}
\end{align*}
$$

and

$$
\begin{equation*}
F(U, V)=\left(g+\lambda_{2} h\right)(x, y) \tag{2.24}
\end{equation*}
$$

Substitution of U and V in (2.19), for $i=1,2$, we have polynomials in (U, V),

$$
\begin{align*}
& F(U, V)=\left(9 a+\lambda_{1} b\right) U^{2}+s+\lambda_{1} t \tag{2.25}\\
& F(U, V)=\left(9 a+\lambda_{2} b\right) U^{2}+s+\lambda_{2} t \tag{2.26}
\end{align*}
$$

The combination of the indicator diagrams associated with the Newton polyhedron of (2.25) and (2.26) is shown in figure below

Figure 2.2.1. The indicator diagrams of $F(U, V)=\left(9 a+\lambda_{1} b\right) U^{2}+s+\lambda_{1} t$ (bold line) and $F(U, V)=\left(9 a+\lambda_{2} b\right) U^{2}+s+\lambda_{2} t$ (broken line)
From Figure 2.2.1 and by Theorem 2.1, there exists $(\widehat{U}, \widehat{V})$ in Ω_{p}^{2} such that $F(\widehat{U}, \widehat{V})=0, F(\widehat{U}, \widehat{V})=0$ and ord $d_{p} \widehat{U}=\mu_{1}$, $\operatorname{ord}_{p} \widehat{V}=\mu_{2}$ with $\mu_{1}=\frac{1}{2} \operatorname{ord}_{p} \frac{s+\lambda_{1} t}{9 a+\lambda_{1} b}$ and $\mu_{2}=\frac{1}{2} \operatorname{ord}_{p} \frac{s+\lambda_{2} t}{9 a+\lambda_{2} b}$.

Suppose $U=\widehat{U}$ and $V=\widehat{V}$ in (2.21) and (2.22). Thus, there exists $\left(x_{0}, y_{0}\right)$ in Ω_{p}^{2} such that

$$
\begin{align*}
& \widehat{U}=x_{0}^{4}+\alpha_{1} x_{0}^{3} y_{0} \tag{2.27}\\
& \widehat{V}=x_{0}^{4}+\alpha_{2} x_{0}^{3} y_{0} \tag{2.28}
\end{align*}
$$

with $\alpha_{1}=\frac{4 b+\lambda_{1} c}{9 a+\lambda_{1} b}$ and $\alpha_{2}=\frac{4 b+\lambda_{2} c}{9 a+\lambda_{2} b}, \lambda_{1}, \lambda_{2}$ the zeros $k(\lambda)=c^{2} \lambda^{2}+b c \lambda+16 b^{2}-63 a c . \alpha_{1} \neq \alpha_{2}$ since $\lambda \neq \lambda$.
By solving (2.27) and (2.28) simultaneously, we have

$$
x_{0}=\left(\frac{\alpha_{1} \hat{V}-\alpha_{2} \widehat{U}}{\alpha_{1}-\alpha_{2}}\right)^{\frac{1}{4}} \text { and } y_{0}=\frac{\widehat{U}-\hat{V}}{\left(\alpha_{1}-\alpha_{2}\right) x_{0}^{3}}
$$

That is,

$$
\begin{equation*}
\operatorname{ord}_{p} x_{0}=\frac{1}{4} \operatorname{ord}_{p}\left(\alpha_{1} \hat{V}-\alpha_{2} \widehat{U}\right)-\frac{1}{4} \operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\operatorname{ord}_{p} y_{0}=\operatorname{ord}_{p}(\widehat{V}-\widehat{U})-\operatorname{ord}_{p}\left(\alpha_{1}-\alpha_{2}\right)-\operatorname{ord}_{p} x_{0}^{3} .
$$

From Lemma 2.4, we have
$\operatorname{ord}_{p} x_{0} \geq \frac{1}{8}(\alpha-\delta)$, ord $_{p} y_{0} \geq \frac{1}{8}(\alpha-\delta)$ or $\operatorname{ord}_{p} y_{0} \geq \frac{1}{8}(\alpha-\delta-\varepsilon)$ for some $\varepsilon \geq 0$.
Let $x_{0}=\xi$ and $y_{0}=\eta$. Since $F(\widehat{U}, \widehat{V})=0$ and $G(\widehat{U}, \widehat{V})=0$, by back substitution in (2.23) and (2.24) we would have $g(\xi, \eta)=f_{x}(\xi, \eta)=0 \quad$ and $h(\xi, \eta)=f_{y}(\xi, \eta)=0$. Thus, $\quad \operatorname{ord}_{p} \xi \geq \frac{1}{8}(\alpha-\delta), \quad \operatorname{ord}_{p} \eta \geq \frac{1}{8}(\alpha-\delta) \quad$ or \quad ord $_{p} \eta \geq$ $\frac{1}{8}(\alpha-\delta-\varepsilon)$ where (ξ, η) is a common zero of f_{x} and $f_{y} \delta=\max \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b, \operatorname{ord} d_{p} c\right\}$, for some $\varepsilon \geq 0$.

3. Conclusion

From this project, we found that if p is a prime, $p>7, f(x, y)=a x^{9}+b x^{8} y+c x^{7} y^{2}+s x+t y+k$ with all coefficients in Z_{p} such that for $\alpha>0, \delta=\max \left\{\operatorname{ord} d_{p} a, \operatorname{ord}_{p} b, \operatorname{ord}_{p} c\right\}$ and $\operatorname{ord}_{p} b^{2}>\operatorname{ord}_{p} a c$ if $\operatorname{ord}_{p} f_{x}(0,0)$,
$\operatorname{ord}_{p} f_{y}(0,0) \geq \alpha>\delta$ then there exists (ξ, η) such that $f_{x}(\xi, \eta)=0, f_{y}(\xi, \eta)=0$ and $\operatorname{ord}_{p} \xi \geq \frac{1}{8}(\alpha-\delta)$, ord $_{p} \eta \geq$ $\frac{1}{8}(\alpha-\delta)$ or in an exceptional case $\operatorname{ord}_{p} \eta \geq \frac{1}{8}(\alpha-\delta-\varepsilon)$ with a certain $\varepsilon \geq 0$.

The p-adic sizes of common zeros that we obtained in this project can be used to find the cardinality $|V|$ and through that we can solve the exponential sums $S(f ; q)=\sum \underline{x} \operatorname{modqexp}(2 \pi i / q)$ that depended from estimate of cardinality. Therefore, we also suggest that by using the same technique as in this project, the p-adic sizes of common zeros of partial derivative polynomials associated with much higher degree two-variable polynomials also can be found.

Acknowledgements

We would like to thanks to Institute Mathematical Research for their concern on this paper that has enabled us to carry out this research.

References

[1] Chan, K. L. and Mohd. Atan, K. A. 1997. On the Estimate to Solutions of Congruence Equations Associated with a Quartic Form, J. Phys. Sci. 8: 21-34.
[2] Heng, S. H. and Mohd. Atan, K. A. 1999. An Estimation of Exponential Sums Associated with a Cubic Form, J. Phys. Sci. 10: 1-21.
[3] Loxton, J. H. and Smith, R. A. 1982. Estimate for Multiple Exponential Sums, J. Aust. Math. Soc. 33: 125-134.
[4] Loxton, J. H. and Vaughan, R. C. 1985. The Estimate of Complete Exponential Sums, Canad. Math. Bull. 28(4): 440-454.
[5] Mohd. Atan, K. A. 1986. Newton polyhedral Method of Determining p-adic Orders of Zeros Common to Two Polynomials in $Q_{p}[x, y]$, Pertanika 9(3): 375-380.
[6] Mohd. Atan, K. A. and Loxton, J. H. Newton polyhedra and solutions of congruences, In Proceeding of Diophantine Analysis, Cambridge University Press, 1986, eds. Loxton, J. H. and Poorten, A. Van der. pp. 67-82, 1986.
[7] Sapar, S. H. and Mohd. Atan, K. A. 2002. Estimate for the Cardinality of the Set of Solution to Congruence Equations, J. Technology 36(C): 13-40.
[8] Sapar, S. H. and Mohd. Atan, K. A. 2009. A Method of Estimating the p-adic Sizes of Common Zeros of Partial Derivative Polynomials Associated with a Quintic Form, World Scientific 5: 541-554.
[9] Yap, H. K., Sapar, S. H. and Mohd. Atan, K. A. 2011. Estimation of p-adic Sizes of Common Zeros of Partial Derivative Associated with a Cubic Form, Sains Malaysiana 40(8): 921-926.

