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Abstract: Recently, researches have contributed a lot towards fuzzification of Soft Set Theory. In this paper, we introduce the
topological structure of fuzzyfying soft sets called fuzzy parametrized fuzzy soft sets. We define the notion of quasi-coincidence for
fuzzy parametrized fuzzy soft sets and investigated basic properties of it. We study the closure, interior, base, continuity and
compactness in the content of fuzzy parametrized fuzzy soft topological spaces.

Keywords: Fuzzy parametrized fuzzy soft set, fuzzy parametrized fuzzy soft mapping, topology

1 Introduction

In 1965, Zadeh [32] generalized the usual notion of a set with the introduction of fuzzy set. The theory of fuzzy set has

been successfully applied to many areas such as many real life problems in uncertain, ambiguous environment. Chang

[15] defined the fuzzy topology and introduced many topological notions in fuzzy setting, in 1968.

In 1999, Molodtsov [26] introduced the soft set theory which is a new approach for modelling uncertainty and presented

that soft set can be applied to several areas, such as game theory, perron integrations, smoothness of functions and so on.

Many researchers successfully improved the theory by applying this concept on topological spaces (e.g. [6,7,19,27,33]),

group theory, ring theory (e.g. [1,2,14,17,21]), and also decision making problems (e.g. [12,13,16,23]).

Recently, researchers have combined fuzzy set and soft set to generalize the spaces and to solve more complicated

problems. By this way, many interesting applications of soft set theory have been expanded. First combination of fuzzy

set and soft set is fuzzy soft set and it was given by Maji and et al [24]. Then fuzzy soft set theory has been applied in

several directions, such as topology (e.g. [3,5,29,30]), various algebraic structures (e.g. [4,20]) and especially decision

making (e.g. [18,22,28,31]). Second combination of fuzzy set and soft set was given by Çağman and et al. [8] and called

it as fuzzy parametrized soft set (as shortly FPS set). In that paper, Çağman and et al. defined operations on FPS sets and

improved several results. After that, Çağman and Deli [9,11] applied FPS sets to define some decision making methods

and applied these methods to problems that contain uncertainties and fuzzy object. The third and the last one was also

given by Çağman and et al. [10] and it is called fuzzy parametrized fuzzy soft set (as shortly FPFS set). Then they

defined operations on FPFS sets and improved an method to solve some decision making problems.

In the present paper, we consider the topological structure of FPFS sets. Firstly, we give some basic ideas of FPFS sets

and also studied results. We define FPFS quasi-coincidence, as a generalization of quasi-coincidence in fuzzy manner
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[25] and use this notion to characterize concepts of FPFS closure and FPFS base in FPFS topological spaces. We also

introduce the notion of mapping on FPFS classes and investigate the properties of FPFS images and FPFS inverse images

of FPFS sets. We define FPFS topology in Chang’s sense. We study the FPFS closure and FPFS interior operators and

properties of these concepts. Lastly we define FPFS continuous mappings and we show that image of a FPFS compact

space is also FPFS compact.

This paper is the fundamental study on FPFS topological spaces. One can use results deducted from this paper in the

theory topological structures.

2 Preliminaries

Throughout this paper X denotes initial universe, E denotes the set of all possible parameters which are attributes,

characteristic or properties of the objects in X , and the set of all subsets of X will be denoted by P(X).

Definition 1. [32] A function A from X to unit interval [0,1] is called fuzzy set in X. For every x ∈ A, µA(x) is called the

grade of membership of x in A. A fuzzy point in X, whose value is α (0 < α ≤ 1) at the support x ∈ X , is denoted by xα . A

fuzzy point xα ∈ A, where A is fuzzy set in X iff α ≤ µA(x). A is called empty fuzzy set if µA(x) = 0 for all x ∈ X, denoted

by 0. If µA(x) = 1 for all x ∈ X, A is denoted by 1.

Definition 2. [26] A pair (F,E) is called a soft set over X if F is a mapping defined by F : E → P(X).

In the other words, a soft set is a parametrized family of subsets of the set X. For each e ∈ E, the set F(e) may be

considered as the set of e-elements of the soft set (F,E).

Definition 3. [10] Let A be a fuzzy set over E. A fuzzy parametrized fuzzy soft set (FPFS) FA on the universe X is defined

as follows:

FA = {(µA(e)/e, fA(e)) : e ∈ E, fA(e) ∈ IX ,µA(e) ∈ [0,1]},

where the function fA : E → IX is called approximate function of FA such that fA(e) = 0 if µA(e) = 0.

From now on, the set of all FPFS sets over X will be denoted by FPFS(X ,E).

Definition 4. [10] Let FA ∈ FPFS(X ,E).

(1) FA is called the empty FPFS set if µA(e) = 0 and fA(e) = 0 for all every e ∈ E, denoted by F∅.

(2) FA is called A-universal FPFS set if µA(e) = 1 and fA(e) = 1 for all e ∈ A, denoted by FÃ.

If A = E, then A-universal FPFS set is called universal FPFS set, denoted by FẼ .

Definition 5. [10] Let FA,FB ∈ FPFS(X ,E).

(1) FA is called a subset of FB if A ≤ B and fA(e)≤ fB(e) for every e ∈ E and we write FA⊂̃FB.

(2) FA and FB are said to be equal, denoted by FA = FB if FA⊂̃FB and FB⊂̃FA.

(3) The union of FA and FB, denoted by FA∪̃FB, is the FPFS set, defined by the membership and approximate functions

µA∪B(e) = max{µA(e),µB(e)} and fA∪B(e) = fA(e)∨gB(e) for every e ∈ E, respectively.

(4) The intersection of FA and FB, denoted by FA∩̃GB, is the FPFS set, defined by the membership and approximate

functions µA∩B(e) = min{µA(e),µB(e)} and fA∩B(e) = fA(e)∧gB(e) for every e ∈ E, respectively.
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Definition 6. [10] Let FA ∈ FPFS(X ,E). Then the complement of FA, denoted by Fc
A , is the FPFS set, defined by the

membership and approximate functions µAc(e) = 1−µA(e) and f c
A(e) = 1− fA(e) for every e ∈ E, respectively. Clearly,

(Fc
A)

c = FA, Fc
Ẽ
= F∅ and Fc

∅ = FẼ .

Proposition 1. [10] Let FA, FB and FC ∈ FPFS(X ,E). Then

(1) (FA∪̃FB)
c = Fc

A ∩̃Fc
B .

(2) (FA∩̃FB)
c = Fc

A ∪̃Fc
B .

(3) FA∩̃FA = FA, FA∪̃FA = FA.

(4) FA∩̃F∅ = F∅, FA∩̃FẼ = FA.

(5) FA∩̃FB = FB∩̃FA, FA∪̃FB = FB∪̃FA.

(6) FA∩̃(FB∩̃FC) = (FA∩̃FB)∩̃FC, FA∪̃(FB∪̃FC) = (FA∪̃FB)∪̃FC.

(7) FA∪̃F∅ = FA, FA∪̃FẼ = FẼ .

3 Some properties of FPFS sets and FPFS mappings

Definition 7. Let J be an arbitrary index set and FAi ∈ FPFS(X ,E) for all i ∈ J.

(1) The union of FAi ’s, denoted by ∪̃
i∈J

FAi , is the FPFS set, defined by the membership and approximate functions

µ ∪
i∈J

Ai(e) = sup
i∈J

{µAi(e)} and f ∪
i∈J

Ai(e) = ∨
i∈J

fAi(e) for every e ∈ E, respectively.

(2) The intersection of FAi ’s, denoted by ∩̃
i∈J

FAi , is the FPFS set, defined by the membership and approximate functions

µ ∩
i∈J

Ai(e) = inf
i∈J

{µAi(e)} and f ∩
i∈J

Ai(e) = ∧
i∈J

fAi(e) for every e ∈ E, respectively.

Proposition 2. Let J be an arbitrary index set and FAi ∈ FPFS(X ,E) for all i ∈ J. Then

(1) ( ∪̃
i∈J

FAi)
c = ∩̃

i∈J
Fc

Ai
.

(2) ( ∩̃
i∈J

FAi)
c = ∪̃

i∈J
Fc

Ai
.

Proof.

(1) Put FB = ( ∪̃
i∈J

FAi)
c and FC = ∩̃

i∈J
Fc

Ai
. Then for all e ∈ E,

µB(e) = 1−µ ∪
i∈J

Ai(e) = 1− sup
i∈J

{µAi(e)}= inf
i∈J

{1−µAi(e)}= inf
i∈J

{µAc
i
(e)}= µC(e)

and

fB(e) = 1− f ∪
i∈J

Ai(e) = 1− ∨
i∈J

fAi(e) = ∧
i∈J

(1− fAi(e)) = ∧
i∈J

fAc
i
(e) = f ∩

i∈J
Ac

i
(e) = fC(e).

This completes the proof. The other can be proved similarly

Definition 8. The FPFS set FA ∈ FPFS(X ,E) is called FPFS point if A is a fuzzy point in E and fA(e) is a fuzzy point in

X for e ∈suppA. If A = {e}, µA(e) = β ∈ (0,1] and fA(e)(x) = α ∈ (0,1], then we denote this FPFS point by eβ
xα .

Definition 9. Let eβ
xα , FA ∈ FPFS(X ,E). We say that eβ

xα ∈̃FA read as eβ
xα belongs to FA if β ≤ µA(e) and α ≤ fA(e)(x).

Proposition 3. Every non empty FPFS set FA can be expresssed as the union of all the FPFS points which belong to FA.
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Proof. This follows from the fact that any fuzzy set is the union of fuzzy points which belong to it [25].

Definition 10. Let FA, FB ∈ FPFS(X ,E). FA is said to be FPFS quasi-coincident with FB, denoted by FAqFB, if there

exists e ∈ E such that µA(e) + µB(e) > 1 or there exists x ∈ X such that fA(e)(x) + fB(e)(x) > 1. If FA is not FPFS

quasi-coincident with FB, then we write FAqFB.

Definition 11. Let eβ
xα , FA ∈ FPFS(X ,E). eβ

xα is said to be FPFS quasi-coincident with FA, denoted by eβ
xα qFA, if β +

µA(e)> 1 or α + fA(e)(x)> 1. If eβ
xα is not FPFS quasi-coincident with FA, then we write eβ

xα qFA.

Proposition 4. Let FA, FB ∈ FPFS(X ,E), Then the following are true.

(1) FA⊆̃FB ⇔ FAqFc
B .

(2) FAqFB ⇒ FA∩̃FB ̸= F∅.

(3) FAqFc
A .

(4) FAqFB ⇔there exists an eβ
xα ∈̃FA such that eβ

xα qFB.

(5) For all eβ
xα ∈ FPFS(X ,E), eβ

xα ∈̃Fc
A ⇔ eβ

xα qFA.

(6) FA⊆̃FB ⇒ If eβ
xα qFA, then eβ

xα qFB for all eβ
xα ∈ FPFS(X ,E).

Proof.

(1) FA⊆̃FB ⇔ for all e ∈ E , A ≤ B and fA(e)≤ fB(e)

⇔ for all e ∈ E and x ∈ X , µA(e)≤ µB(e) and fA(e)(x)≤ fB(e)(x)

⇔ for all e ∈ E and x ∈ X , µA(e)−µB(e)≤ 0 and fA(e)− fB(e)≤ 0

⇔ for all e ∈ E and x ∈ X , µA(e)+1−µB(e)≤ 1 and fA(e)(x)+1− fB(e)(x)≤ 1

⇔ FAqFc
B .

(2) Let FAqFB. Then there exists an e ∈ E and x ∈ X such that µA(e)+µB(e)> 1 or fA(e)(x)+ fB(e)(x)> 1. If µA(e)+

µB(e)> 1, then A∧B ̸= 0 and the proof is easy. If fA(e)(x)+ fB(e)(x)> 1, then fA(e)∧ fB(e) ̸= 0. Hence FA∩̃FB ̸=F∅.

(3) Suppose that FAqFc
A . Then there exists e∈ E and x ∈ X such that µA(e)+1−µA(e)> 1 or fA(e)(x)+1− fA(e)(x)> 1.

This is contradiction.

(4) If FAqFB, then there exist an e ∈ E and x ∈ X such that µA(e)+µB(e)> 1 or fA(e)(x)+ fB(e)(x)> 1 Put β = µA(e)

and α = fA(e)(x). Then we have eβ
xα ∈̃FA and eβ

xα qFB.

Conversely, let eβ
xα ∈̃FA with eβ

xα qFB. Then β ≤ µA(e), α ≤ fA(e)(x). Since eβ
xα qFB, β + µB(e) > 1 or

α + fB(e)(x)> 1. Therefore, we have µA(e)+µB(e)> 1 or fA(e)(x)+ fB(e)(x)> 1. This shows that FAqFB.

(5) It is obvious from (1).

(6) Let eβ
xα , FA ∈ FPFS(X ,E) and eβ

xα qFA. Then β + µA(e) > 1 or α + fA(e)(x) > 1. Since FA⊆̃FB, β + µB(e) > 1 or

α + fB(e)(x)> 1. Hence we have eβ
xα qFB.

Proposition 5. Let {FAi : i ∈ J} be a family of FPFS sets in FPFS(X ,E) where J is an index set. Then eβ
xα is quasi-

coincident with ∪̃i∈JFAi if and only if there exists some FAi ∈ {FAi : i ∈ J} such that eβ
xα qFAi .

Proof. Obvious.

Definition 12. Let FPFS(X ,E) and FPFS(Y,K) be families of all FPFS sets over X and Y , respectively. Let u : X → Y

and p : E → K be two functions. Then a FPFS mapping fup : FPFS(X ,E)→ FPFS(Y,K) is defined as:
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(1) for FA ∈ FPFS(X ,E), the image of FA under the fup is the FPFS set GS over Y defined by the approximate function,

∀k ∈ K and,

gS(k)(y) =

 ∨
x∈u−1(y)

( ∨
e∈p−1(k)∩limsuppÃ

fA(e))(x), if u−1(y) ̸=∅ and p−1(k)∩ limsuppÃ ̸=∅;

0, otherwise.
where p(A) = S is fuzzy set in K.

(2) for GS ∈ FPFS(Y,K), then the pre-image of GS under the fup is the FPFS set FA over X defined by the approximate

function, ∀e ∈ E. fA(e)(x) = gS(p(e))(u(x)) where A = p−1(S) is fuzzy set in E.

If u and p is injective, then the FPFS mapping fup is said to be injective. If u and p is surjective, then the FPFS mapping

fup is said to be surjective. The FPFS mapping fup is called constant, if u and p are constant.

Theorem 1. Let X and Y crips sets FA, FAi ∈ FPFS(X ,E), GS, GSi ∈ FPFS(Y,K) ∀i ∈ J, where J is an index set. Let

fup : FPFS(X ,E)→ FPFS(Y,K) be a FPFS mapping. Then,

(1) If FA1⊂̃FA2 then fup(FA1)⊂̃ fup(FA2).

(2) If GS1⊂̃GS2 then f−1
up (GS1)⊂̃ f−1

up (GS2).

(3) FA⊂̃ f−1
up ( fup(FA)), the equality holds if fup is injective.

(4) fup( f−1
up (GS))⊂̃GS, the equality holds if fup is surjective.

(5) fup(∪̃i∈JFAi) = ∪̃i∈J fup(FAi).

(6) fup(∩̃i∈JFAi)⊂̃∩̃i∈J fup(FAi), the equality holds if fup is injective.

(7) f−1
up (∪̃i∈JGSi) = ∪̃i∈J f−1

up (GSi).

(8) f−1
up (∩̃i∈JGSi) = ∩̃i∈J f−1

up (GSi).

(9) ( f−1
up (GS))

c = f−1
up (Gc

S).

(10) f−1
up (GK̃) = FẼ .

(11) f−1
up (G∅) = F∅.

(12) fup(FẼ)⊂̃GK̃ , the equality holds if fup is surjective.

(13) fup(F∅) = G∅.

Proof. We only prove (3),(5),(7),(9),(10) and (11). The others can be proved similarly.

(3) Put GS = fup(FA) and FB = f−1
up (GS). Since A ≤ p−1(p(A)) = p−1(S) = B, it is sufficient to show fA(e) ≤ fB(e) for

all e ∈ E and x ∈ X

fB(e)(x) = gS(p(e))(u(x))

= ∨
x∈u−1(u(x))

( ∨
e∈p−1(p(e))∩limsuppÃ

fA(e))(x)

≥ fA(e)(x)

This completes the proof.

(5) Put GSi = fup(FAi) and GS = fup(∪̃i∈J(FAi)). Then S = p(∨Ai) = ∨p(Ai) = ∨Si and for all k ∈ K and y ∈ Y,
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gB(k)(y) =

 ∨
x∈u−1(y)

( ∨
e∈p−1(k)∩limsuppÃ

(∨
i∈J

fAi(e))(x)) ; if u−1(y) ̸=∅, p−1(k)∩ limsuppÃ ̸=∅

0 ; otherwise

=

 ∨
x∈u−1(y)

( ∨
e∈p−1(k)∩limsuppÃ

(∨
i∈J

( fAi(e))(x))) ; if u−1(y) ̸=∅, p−1(k)∩ limsuppÃ ̸=∅

0 ; otherwise

=

 ∨
i∈J

( ∨
x∈u−1(y)

( ∨
e∈p−1(k)∩limsuppÃ

( fAi(e))(x)) ; if u−1(y) ̸=∅, p−1(k)∩ limsuppÃ ̸=∅

0 ; otherwise

= ∨
i∈J

 ∨
x∈u−1(y)

( ∨
e∈p−1(k)∩limsuppÃ

( fAi(e))(x) ; if u−1(y) ̸=∅, p−1(k)∩ limsuppÃ ̸=∅

0 ; otherwise

= (∨i∈JgBi(k))(y)

This completes the proof.

(7) Put FAi = f−1
up (GSi) and FA = f−1

up (∪̃i∈JGSi). Then A = p−1(∨Si) = ∨p−1(Si) = ∨Ai and for all e ∈ E and x ∈ X ,

fA(e)(x) = ∨
i∈J

gSi(p(e))(u(x))

= ∨
i∈J

(gSi(p(e))(u(x)))

= ∨
i∈J

fAi(e)(x)

This completes the proof.

(9) Put f−1
up (GS) = FA and f−1

up (Gc
S) = FB. Then for all e ∈ E and x ∈ X ,

fB(e)(x) = fp−1(Sc)(e)(x) = f(p−1(S))c(e)(x) = fAc(e)(x)

where p−1(S) and p−1(Sc) are fuzzy sets in E. This shows that the approximate functions of FB and Fc
A are equal. This

completes the proof.

(10) Put FA = f−1
up (GK̃). Then for all e ∈ E and x ∈ X , fA(e)(x) = gK̃(p(e))(u(x))) = 1. This shows that FA = FẼ .

(11) Since p−1(K) is fuzzy empty set i.e. 0, the proof is clear.

4 FPFS topological spaces

Definition 13. A FPFS topological space is a pair (X ,τ) where X is a nonempty set and τ is a family of FPFS sets over

X satisfying the following properties:

(T1) F∅,FẼ ∈ τ.
(T2) If FA, FB ∈ τ , then FA∩̃FB ∈ τ.
(T3) If FAi ∈ τ, ∀i ∈ J, then ∪̃i∈JFAi ∈ τ.

Then τ is called a FPFS topology on X. Every member of τ is called FPFS open in (X ,τ). FB is called FPFS closed in

(X ,τ) if Fc
B ∈ τ.
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Example 1. The families τindiscrete = {F∅,FẼ} and τdiscrete = FPFS(X ,E) are FPFS topology on X .

Example 2. Assume that X = {x1,x2,x3,x4} is a universal set and E = {e1,e2,e3} is a set of parameters. If

FA1 = {((e1)0,2,{(x1)0,3,(x3)0,5}),((e2)0,3,{(x1)0,7,(x4)0,6}),((e3)0,4,{(x2)0,2})},

FA2 = {((e1)0,2,{(x1)0,3,(x2)0,7,(x3)0,6}),((e2)0,5,{(x1)0,7,(x4)0,6}),((e3)0,4,{(x1)0,8,(x2)0,5})},

FA3 = {((e1)0,7,{(x1)1,(x3)0,5}),((e2)0,3,1X ),((e3)0,9,{(x2)0,2,(x3)0,9})},

FA4 = {((e1)0,7,{(x1)1,(x2)0,7,(x3)0,6}),((e2)0,5,1X ),((e3)0,9,{(x1)0,8,(x2)0,5,(x3)0,9})},

then τ = {F∅,FA1 ,FA2 ,FA3 ,FA4 ,FẼ} is a FPFS topology on X .

Theorem 2. Let (X ,τ) be a FPFS topological space and τ ′ be family of all FPFS closed sets. Then;

(1) F∅,FẼ ∈ τ ′,
(2) If FA, FB ∈ τ ′, then FA∪̃FB ∈ τ ′,
(3) If FAi ∈ τ ′, ∀i ∈ J, then ∩̃i∈JFAi ∈ τ ′.

Proof. Straightforward.

Definition 14. Let (X ,τ) be a FPFS topological space and FA ∈ FPFS(X ,E). The FPFS closure of FA in (X ,τ), denoted

by FA, is the intersection of all FPFS closed supersets of FA.

Clearly, FA is the smallest FPFS closed set over X which contains FA.

Theorem 3. Let (X ,τ) be a FPFS topological space and FA, FB ∈ FPFS(X ,E). Then,

(1) F∅ = F∅ and FẼ = FẼ .

(2) FA⊂̃FA.

(3) FA = FA.

(4) If FA⊂̃FB, then FA⊂̃FB.

(5) FA is a FPFS closed set if and only if FA = FA.

(6) FA∪̃FB = FA∪̃FB.

Proof. The statements (1),(2),(3) and (4) are obvious from the definition of FPFS closure.

(5) Let FA be a FPFS closed set. Since FA is the smallest FPFS closed set which contains FA, then FA⊂̃FA. Therefore, we

have FA = FA.

(6) Since FA⊂̃FA∪̃FB and FB⊂̃FA∪̃FB by (4), FA⊂̃FA∪̃FB , FB⊂̃FA∪̃FB and hence FA∪̃FB⊂̃FA∪̃FB.

Conversely, since FA, FB are FPFS closed sets, FA∪̃FB is a FPFS closed set. Again since FA∪̃FB⊂̃FA∪̃FB by (4),

FA∪̃FB⊂̃FA∪̃FB.

Definition 15. Let (X ,τ) be a FPFS topological space. A FPFS set FA in FPFS(X ,E) is called FPFS-Q-neighborhood

(briefly, FPFS-Q-nbd) of a FPFS set FB if there exists a FPFS open set FC in τ such that FBqFC and FC⊆̃FA.
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Theorem 4. Let eβ
xα , FA ∈ FPFS(X ,E). Then eβ

xα ∈̃FA if and only if each FPFS-Q-nbd of eβ
xα is FPFS quasi-coincident

with FA.

Proof. Let eβ
xα ∈̃FA. Suppose that FC is a FPFS-Q-nbd of eβ

xα and FCqFA. Then there exists a FPFS open set FB such that

eβ
xα qFB⊆̃FC. Since FCqFA, by Proposition 4(1), FA⊆̃Fc

C⊆̃Fc
B . Again since eβ

xα qFB, eβ
xα does not belong to Fc

B . This is a

contradiction with FA⊆̃Fc
B .

Conversely, let each Q-nbd of eβ
xα be FPFS quasi-coincident with FA. Suppose that eβ

xα does not belong to FA. Then there

exists a FPFS closed set FB which is containing FA such that eβ
xα does not belong to FB. By Proposition 4(5), we have

eβ
xα qFc

B . Then Fc
B is a FPFS-Q-nbd of eβ

xα and by Proposition 4(1), FAqFc
B . This is a contradiction with the hypothesis.

Definition 16. Let (X ,τ) be a FPFS topological space and FA ∈ FPFS(X ,E). The FPFS interior of FA, denoted by F◦
A , is

the union of all FPFS open subsets of FA. Clearly, F◦
A is the largest FPSFS open set contained in FA.

Theorem 5. Let (X ,τ) be a FPFS topological space and FA, FB ∈ FPFS(X ,E). Then,

(1) (F∅)◦ = F∅ and (FẼ)
◦ = FẼ .

(2) F◦
A ⊂̃FA.

(3) (F◦
A )

◦ = F◦
A .

(4) If FA⊂̃FB, then F◦
A ⊂̃F◦

B .

(5) FA is a FPFS open set if and only if FA = F◦
A .

(6)
(
FA∩̃FB

)◦
= F◦

A ∩̃F◦
B .

Proof. Similar to that of Theorem 3.

Theorem 6. Let (X ,τ) be a FPFS topological space and FA ∈ FPFS(X ,E). Then,

(1) (F◦
A )

c = Fc
A .

(2)
(
FA

)c
= (Fc

A)
◦ .

Proof. We only prove (1). The other is similar.

(F◦
A )

c = (∪̃{FB
∣∣FB ∈ τ , FA⊂̃FB

}
)c

= ∩̃{Fc
B

∣∣FB ∈ τ , FA⊂̃FB
}

= ∩̃{Fc
B

∣∣Fc
B ∈ τ ′, Fc

B⊂̃Fc
A

}
= Fc

A

Definition 17. Let (X ,τ) be a FPFS topological space. A subcollection B of τ is called a base for τ if every member of τ
can be expressed as a union of members of B.

Example 3. If we consider the FPFS topology τ in Example 2, then one easily see that the family

B ={F∅,FA1 ,FA2 ,FA3 ,FẼ} is a basis for τ.

Proposition 6. Let (X ,τ) be a FPFS topological space and B is subfamily of τ . B is a base for τ if and only if for each

eβ
xα in FPFS(X ,E) and for each FPFS open Q-nbd FA of eβ

xα , there exists a FB ∈ B such that eβ
xα qFB⊆̃FA.

Proof. Let B be a base for τ , eβ
xα ∈̃FPFS(X ,E) and FA be a FPFS open Q-nbd of eβ

xα . Then there exists a subfamily B′

of B such that FA = ∪̃{FB|FB ∈ B′}. Suppose that eβ
xα qFB for all FB ∈ B′. Then β + µB(e) ≤ 1 and α + fB(e)(x) ≤ 1
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for every FB ∈ B′. But this is contradiction with µA(e) = sup{µB(e)|FB ∈ B′} and fA(e)(x) = sup{ fB(e)(x)|FB ∈ B′}.

Conversely, If B is not a base for τ , then there exists a FA ∈ τ such that FC = ∪̃{FB ∈ B : FB⊆̃FA} ̸= FA. Since FC ̸= FA,

there exists e ∈ E and x ∈ X such that µC(e) < µA(e) or fC(e)(x) < fA(e)(x). Put β = 1− µC(e) or α = 1− fC(e)(x).

Then in both case, we obtain that eβ
xα qFA and eβ

xα qFC. Therefore, we have eβ
xα qFB for all FB ∈ B which contained in FA.

This is a contradiction.

Definition 18. Let (X ,τ1) and (Y,τ2) be two FPFS topological spaces. A FPFS mapping fup : (X ,τ1)→ (Y,τ2) is called

FPFS continuous if f−1
up (GS) ∈ τ1, for all GS ∈ τ2.

Example 4. Let X = {x1,x2,x3}, Y = {y1,y2,y3}, E = {e1,e2}, K = {k1,k2} and τ1 = {F∅,FẼ ,FA}, τ2 = {0̃K , 1̃K ,GS}
be FPFS topologies on X and Y respectively, where FA = {((e1)0,3,{(x2)0,3,(x3)0,5}),((e2)0,2,{(x1)0,7,(x2)0,4})}, GS =

{((k1)0,2, {(y1)0,4,(y2)0,7}) ,((k2)0,3,{(y1)0,3,(y3)0,5})}. Define u : X → Y and p : E → K as u(x1) = y2, u(x2) = y1,

u(x3) = y3 and p(e1) = k2, p(e2) = k1. Then the FPFS mapping fup : (X ,τ1)→ (Y,τ2) is FPFS continuous.

Note that the constant mapping fup : (X ,τ1)→ (Y,τ2) is not continuous in general. As the following example shows.

Example 5. Let X = {x1,x2,x3}, Y = {y1,y2}, E = {e1,e2}, K = {k1,k2} and τ1 = {F∅,FẼ}, τ2 = {F∅,FK̃ ,GS} be

topologies on X and Y respectively, where GS = {((k1)0,2,{(y1)0,4,(y2)1}), ((k2)0,5,{(y2)0,7,(y3)0,4})}. Define u : X →Y

and p : E → K as u(x1) = u(x2) = u(x3) = y2 and p(e1) = p(e2) = k1. Then the FPFS mapping fup : (X ,τ1)→ (Y,τ2) is

a constant FPFS mapping and is not continuous.

Let α ∈ [0,1]. A constant fuzzy set on E taking value α will be denoted by αE .

Definition 19. Let FA ∈ FPFS(X ,E). FA is called αβ −A-universal FPFS set if µA(e) = α and fA(e) = βX for all e ∈ A,

denoted by Fα̃β A
.

Definition 20. (see [5]) A FPFS topology is called enriched if it satisfies Fα̃β A
∈ τ for all α ∈ (0,1] and β ∈ (0,1].

Theorem 7. Let (X ,τ1) be a enriched FPFS topological space, (Y,τ2) be a FPFS topological space and

fup : FPFS(X ,E)→ FPFS(Y,K) be a constant FPFS mapping. Then fup is FPFS continuous.

Proof. Let u : X →Y , p : E →K be constant mapping defined as u(x) = y0, p(e) = ko and GS ∈ τ2. Put f−1
up (GS) =FA. Then

A = p−1(S) = αE where α = µS(k) and fA(e)(x) = gS(p(e))(u(x)) = gS(k0)(y0) = β for all e ∈ E. Hence FA = Fα̃β E
∈ τ1

and so fup : (X ,τ1)→ (Y,τ2) is FPFS continuous.

Theorem 8. Let (X ,τ1) and (Y,τ2) be two FPFS topological spaces and fup : FPFS(X ,E) → FPFS(Y,K) be a FPFS

mapping. Then the following are equivalent:

(1) fup is FPFS continuous,

(2) f−1
up (GS) is FPFS closed for every FPFS closed set GS over Y ,

(3) fup(FA)⊂̃ fup(FA), ∀FA ∈ FPFS(X ,E),

(4) f−1
up (GS)⊂̃ f−1

up (GS), ∀GS ∈ FPFS(Y,K),

(5) f−1
up (G◦

S)⊂̃( f−1
up (GS))

◦, ∀GS ∈ FPFS(Y,K).

Proof. (1) ⇒(2) It is obvious from Theorem 1 (9).

(2) ⇒(3) Let FA ∈ FPFS(X ,E). Since FA⊂̃ f−1
up ( fup(FA)), FA⊂̃ f−1

up ( fup(FA))∈ τ ′1. Therefore we have FA⊂̃ f−1
up ( fup(FA)).

By Theorem 1 (4), we get fup(FA)⊂̃ fup( f−1
up ( fup(FA))⊂̃ fup(FA).
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(3) ⇒(4) Let GS ∈ FPFS(Y,K). If we choose f−1
up (GS) instead of FA in (3), then fup( f−1

up (GS))⊂̃ fup( f−1
up (GS))⊂̃GS.

Hence by Theorem 1(3), f−1
up (GS)⊂̃ f−1

up ( fup( f−1
up (GS))) ⊂̃ f−1

up (GS).

(4) ⇔(5) These follow from Theorem 1 (9) and Theorem 6.

(5) ⇒(1) Let GS ∈ τ2. Since GS is a FPFS open set by (5) f−1
up (GS) = f−1

up (G◦
S)⊂̃ f−1

up (GS). Consequently, f−1
up (GS) is a

FPFS open and so fup is FPFS continuous.

Theorem 9. Let fup : (X ,τ1)→ (Y,τ2) be a FPFS mapping and B be a base for τ2. Then fup is FPFS continuous if and

only if f−1
up (GS) ∈ τ1, for all GS ∈ B.

Proof. Straightforward.

Definition 21. A family C of FPFS sets is a cover of a FPFS set FA if FA⊆̃∪̃{FAi : FAi ∈C , i ∈ J}. It is a FPFS open cover

if each member of C is a FPFS open set. A subcover of C is a subfamily of C which is also a cover.

Definition 22. A FPFS topological space (X ,τ) is FPFS-compact if each FPFS open cover of FẼ has a finite subcover.,

Example 6. Let X = {x1,x2, ...}, E = {e1,e2, ...} and FAn = {((e1)1,{(x1)1}),((e2) 1
2
,{(x1)1,(x2) 1

2
}),...,

((en) 1
n
,{(x1)1,(x2) 1

2
, ...,(xn) 1

n
}) : n = 1,2, ...}. Then τ = {FAn : n = 1,2, ...} ∪{F∅,FẼ} is a FPFS topology on X and

(X ,τ) is FPFS-compact.

Definition 23. A family C of FPFS sets has the finite intersection property if the intersection of the members of each finite

subfamily of C is not empty FPFS set.

Theorem 10. A FPFS topological space is FPFS compact if and only if each family of FPFS closed sets with the finite

intersection property has a non empty FPFS intersection.

Proof. If C is a family of FPFS sets in a FPFS topological space (X ,τ), then C is a cover of FẼ if and only if one of the

following conditions holds:

(1) ∪̃{FAi : FAi ∈ C , i ∈ J}= FẼ .

(2) (∪̃{FAi : FAi ∈ C , i ∈ J})c = Fc
Ẽ
= F∅.

(3) ∩̃
{

Fc
Ai

: FAi ∈ C , i ∈ J}= F∅.

Hence this shows that FPFS topological space is FPFS compact if and only if each family of FPFS open sets over X such

that no finite subfamily covers FẼ , fails to be a cover, and this is true if and only if each family of FPFS closed sets which

has the finite intersection property has a nonempty FPFS intersection.

Theorem 11. Let (X ,τ1) and (Y,τ2) be FPFS topological spaces and fup : FPFS(X ,E) → FPFS(Y,K) be a FPFS

mapping. If (X ,τ1) is FPFS compact and fup is FPFS continuous surjection, then (Y,τ2) is FPFS compact.

Proof. Let C = {GSi : i∈ J} be a cover of GK̃ by FPFS open sets. Then since fup is FPFS continuous, { f−1
up (GSi : GSi ∈C }

is a cover of FẼ by FPFS open sets. Again since (X ,τ1) FPFS compact, there exist a finite subset J0 of J such that

{ f−1
up (GSi : i ∈ J0} covers FẼ . Then we have fup(∪̃{ f−1

up (GSi) : i ∈ J0}= fup(FẼ) and so ∪̃{GSi : i ∈ J0}= GK̃ . This shows

that (Y,τ2) is FPFS compact.
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