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Abstract: In this paper we present some theorems concerning pointwise convergence of nonlinear singular integral operators of the
form:

Tλ ( f ;x) =
∫
D

Kλ (t − x; f (t))dt, x ∈ D, λ ∈ Λ ,

where D = ⟨a,b⟩ is open, half-open or closed arbitrary bounded interval in R or D = R and Λ ̸= /0 be the set of indices, at a common
point of continuity and Lebesgue point of the functions f ∈ L1,φ (D) and φ ∈ L1(D). Here, L1,φ (D) is the space of all measurable

functions for which
∣∣∣ f

φ

∣∣∣ is integrable on D. Also we investigate the rate of pointwise convergence at Lebesgue points.

Keywords: Continuity point, Lebesgue point, rate of convergence, Lipschitz condition, nonlinear integral operators.

1 Introduction

In [15], Taberski, who emphasized the significance of singular integrals in Fourier analysis in his studies, analyzed the
pointwise approximation of functions f ∈ L1 ⟨−π,π⟩ and their derivatives by a family of convolution type linear singular
integral operators depending on two parameters of the form:

Lλ ( f ;x) =
π∫
−π

f (t)Kλ (t − x)dt, x ∈ ⟨−π,π⟩ , λ ∈ Λ ⊂ R+
0 (1)

where the symbol ⟨−π,π⟩ stands for closed, half-open or open interval and Kλ (t) is the kernel satisfying suitable
assumptions. Subsequently, the pointwise convergence of the operators of type (1) was examined by Gadjiev [5] and
Rydzewska [12] at generalized Lebesgue points and µ−generalized Lebesgue points of functions f ∈ L1 ⟨−π,π⟩,
respectively. Then, Karsli and Ibikli [6] generalized the results of [5], [15] and [12] by handling the operators of type (1)
in the space L1 ⟨a,b⟩ . Almali [1] studied the pointwise convergence of non-convolution type integral operators to
non-integrable functions at Lebesgue points. For further studies on linear singular operators in different settings, the
reader may see also e.g. [13]-[19].
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Later on, Musielak [10] improved the notion of singularity to include the case of nonlinear integral operators of the form:

Tw f (y) =
∫
G

Kw(x− y; f (x))dx, y ∈ G, w ∈ Λ (2)

where G be a locally compact Abelian group equipped with Haar measure and Λ ̸= /0 be an index set with any topology,
via replacing the linearity property of the operators by an assumption of Lipschitz condition for Kw with respect to
second variable. The studies, which were published until that time, showed that the singularity of the operators was
related to their linearity [3]. Afterwards, Swiderski and Wachnicki [14] investigated the pointwise convergence of the
operators of type (2) at p−Lebesgue points of the functions f ∈ Lp (−π,π).

Today, approximation via nonlinear integral operators is extensively used in many branches of science such as medicine
and engineering. Especially, effect of nonlinear integral operators in sampling theory must be emphasized here [3].
Further, signal and image processing are two main research fields around sampling theory. In view of this situation, one
would prefer to investigate the convergence of nonlinear integral operators rather than the convergence of linear integral
operators. For some advanced studies, auhors refer to [2] and [3].

The current manuscript is a continuation and further generalzation of [7] and deals with the pointwise convergence of
nonlinear singular integral operators of the form:

Tλ ( f ;x) =
∫
D

Kλ (t − x; f (t))dt, x ∈ D, λ ∈ Λ (3)

where D = ⟨a,b⟩ is open, half-open or closed arbitrary bounded interval in R or D = R, Λ ̸= /0 be the set of indices, at a
common continuity point and Lebesgue point of the functions f ∈ L1,φ(D) and φ ∈ L1(D). Here, L1,φ(D) is the space of
all measurable functions for which

∣∣∣ f
φ

∣∣∣ is integrable on D.

In Section 2, we introduce fundamental notions. In Section 3, we prove the existence of the operators of type (3). In
Section 4, we give two theorems concerning the pointwise convergence of Tλ ( f ;x). In Section 5, we establish the rate of
pointwise convergence of the operators of type (3).

2 Preliminaries

Definition 1.(Class Aφ) Suppose that the function Kλ : R×R→R is integrable for each λ ∈Λ and satisfies the property

expressed as Kλ (ϑ ,0) = 0 for every ϑ ∈ R and for each λ ∈ Λ . Further, let w(t) = sup
x∈D

[
φ(t+x)

φ(x)

]
for every t ∈ R, where

φ : R→ R+ is a weight function and the following conditions are satisfied:

(a) There exists an integrable function Lλ : R→ R such that the following inequality:

|Kλ (t,u)−Kλ (t,v)| ≤ Lλ (t) |u− v|

holds for every t,u,v ∈ R and for each λ ∈ Λ .

(b) ∥wLλ∥L1(R) ≤ M < ∞, ∀λ ∈ Λ .

(c) lim
λ→λ0

[
sup

t∈R\Ω
Lλ (t)

]
= 0, ∀Ω ∈ N(0), where N(0) stands for all neighborhoods of the number 0 in R.
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(d) lim
λ→λ0

[ ∫
R\Ω

Lλ (t)dt

]
= 0, ∀Ω ∈ N(0).

(e) For a given δ0 > 0, Lλ (t) is non-decreasing function with respect to t on ⟨−δ0,0] and non-increasing function with

respect to t on [0,δ0⟩ .

(f) lim
λ→λ0

∣∣∣∣∫
R

Kλ (t,u)dt −u
∣∣∣∣= 0, ∀u ∈ R.

Remark. For the Lipschitz condition (a), authors refer to [9,10]. Besides, one may take φ(t) = 1 when f is integrable.

Class Aφ is a kernel by condition (a). Also, throughout this article we suppose that Kλ belongs to Class Aφ and f /∈ L1 (D) .

3 Existence of operators

Main results in this work are based on the following theorem.

Theorem 1. If f ∈ L1,φ (D) , then the operator Tλ ( f ;x) ∈ L1,φ(D) and

∥Tλ ( f ;x)∥L1,φ (D) ≤ ∥wLλ∥L1(R) ∥ f∥L1,φ (D)

for all λ ∈ Λ .

Proof. Let D = ⟨a,b⟩. Further, let us define a new function g by

g(t) :=

{
f (t), i f t ∈ ⟨a,b⟩ ,
0, i f t ∈ R\⟨a,b⟩ .

Using conditian (a) and Fubini’s Theorem (see, for example, [4]), we can write

∥Tλ ( f ;x)∥L1,φ ⟨a,b⟩ =

b∫
a

1
φ(x)

∣∣∣∣∣∣
b∫

a

Kλ (t − x; f (t))dt

∣∣∣∣∣∣dx

≤
b∫

a

1
φ(x)

b∫
a

|Kλ (t − x; f (t))−Kλ (t − x;0)|dtdx

≤
b∫

a

1
φ(x)

∞∫
−∞

∣∣∣∣g(t + x)
φ(t + x)
φ(t + x)

Lλ (t)
∣∣∣∣dtdx

=

b∫
a

1
φ(x)

∞∫
−∞

∣∣∣∣φ(t + x)
g(t + x)
φ(t + x)

Lλ (t)
∣∣∣∣dtdx

=

b∫
a

1
φ(x)

 ∞∫
−∞

φ(t + x)
∣∣∣∣ g(t + x)
φ(t + x)

∣∣∣∣Lλ (t)dt

dx

=

∞∫
−∞

Lλ (t)

 b∫
a

φ(t + x)
φ(x)

∣∣∣∣ g(t + x)
φ(t + x)

∣∣∣∣dx

dt

≤ ∥wLλ∥L1(R) ∥ f∥L1,φ ⟨a,b⟩ .
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Here the norm of f ∈ L1,φ ⟨a,b⟩ is given by the following equality (see e.g., [8]):

∥ f∥L1,φ ⟨a,b⟩ =

b∫
a

∣∣∣∣ f (x)
φ(x)

∣∣∣∣dx.

The assertion may be proven with the above method for the case D = R. Thus the proof is completed.

4 Convergence at characteristic points

Theorem 2. Suppose that φ(t) and Lλ (t − x) are almost everywhere differentiable functions on R with respect to t such

that the following inequality:
d
dt

φ(t)
d
dt

Lλ (t − x)> 0, for any fixed x ∈ R (4)

holds. If x0 ∈ R is a common continuity point of the functions f ∈ L1,φ(R) and φ ∈ L1(R), then

lim
(x,λ )→(x0,λ0)

Tλ ( f ;x) = f (x0)

on any set Z on which the function
x0+δ∫

x0−δ

φ(t)Lλ (t − x)dt (5)

is bounded as (x,λ ) tends to (x0,λ0).

Proof. Let 0 < x0 − x < δ
2 for a given δ > 0. Set I = |Tλ ( f ;x)− f (x0)| . From Theorem 2 in [7], we have

I =

∣∣∣∣∣∣
∞∫

−∞

Kλ (t − x; f (t))dt − f (x0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∫

−∞

Kλ (t − x; f (t))dt −
∞∫

−∞

Kλ (t − x;
f (x0)

φ(x0)
φ(t))dt

+

∞∫
−∞

Kλ (t − x;
f (x0)

φ(x0)
φ(t))dt − f (x0)

∣∣∣∣∣∣ .
Using condition (a) of class Aφ , we have

I ≤
∞∫

−∞

∣∣∣∣ f (t)
φ(t)

− f (x0)

φ(x0)

∣∣∣∣φ(t)Lλ (t − x)dt

+

∣∣∣∣∣∣
∞∫

−∞

Kλ (t − x;
f (x0)

φ(x0)
φ(t))dt − f (x0)

∣∣∣∣∣∣
= I1 + I2.
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From Theorem 2 in [7], I2 → 0 as (x,λ ) tends to (x0,λ0). Clearly, I1 can be written in the form:

I1 =


∫

R\⟨x0−δ ,x0+δ ⟩

+
∫

⟨x0−δ ,x0+δ ⟩


∣∣∣∣ f (t)
φ(t)

− f (x0)

φ(x0)

∣∣∣∣φ(t)Lλ (t − x)dt

= I11 + I12.

By (4) and condition (e) of class Aφ , we may write

I11 ≤ {φ (x0 −δ )+φ (x0 +δ )}

 sup
|ξ |> δ

2

Lλ (ξ )∥ f∥L1,φ (R)+

∣∣∣∣ f (x0)

φ (x0)

∣∣∣∣ ∫
|ξ |> δ

2

Lλ (ξ )dξ

 .

Therefore, by conditions (c) and (d) of class Aφ , I11 → 0 as (x,λ ) tends to (x0,λ0). Since the function f (t)
φ(t) is continuous

at t = x0, we have

I12 ≤ ε
x0+δ∫

x0−δ

φ(t)Lλ (t − x)dt.

The remaining part of the proof is clear by the hypothesis (5). Hence

lim
(x,λ )→(x0,λ0)

Tλ ( f ;x) = f (x0).

Also, using similar proof method, same conclusion is obtained for the case 0 < x− x0 <
δ
2 for a given δ > 0. Thus the

proof is completed.

Theorem 3. Suppose that φ(t) and Lλ (t − x) are almost everywhere differentiable functions on R with respect to t such

that the following inequality:
d
dt

φ(t)
d
dt

Lλ (t − x)> 0, for any fixed x ∈ ⟨a,b⟩ (6)

holds. If x0 ∈ ⟨a,b⟩ is a common Lebesgue point of the functions f ∈ L1,φ ⟨a,b⟩ and φ ∈ L1 ⟨a,b⟩ , then

lim
(x,λ )→(x0,λ0)

Tλ ( f ;x) = f (x0)

on any set Z on which the function

x0+δ∫
x0−δ

φ(t)Lλ (t − x)dt +2Lλ (0)φ(x) |x− x0| (7)

is bounded as (x,λ ) tends to (x0,λ0).

Proof. Let

x0 +δ < b, x0 −δ > a and 0 < x0 − x <
δ
2
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for a given δ > 0. Set I = |Tλ ( f ;x)− f (x0)| . From Theorem 3 in [7], we may write

I =

∣∣∣∣∣∣
b∫

a

Kλ (t − x; f (t))dt − f (x0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
b∫

a

Kλ (t − x; f (t))dt −
b∫

a

Kλ (t − x;
f (x0)

φ(x0)
φ(t))dt

+

b∫
a

Kλ (t − x;
f (x0)

φ(x0)
φ(t))dt − f (x0)

∣∣∣∣∣∣ .
Using condition (a) of class Aφ , the following inequality:

I ≤
b∫

a

∣∣∣∣ f (t)
φ(t)

− f (x0)

φ(x0)

∣∣∣∣φ(t)Lλ (t − x)dt

+

∣∣∣∣∣∣
b∫

a

Kλ (t − x;
f (x0)

φ(x0)
φ(t))dt − f (x0)

∣∣∣∣∣∣
= I1 + I2

is obtained. From Theorem 3 in [7], I2 → 0 as (x,λ ) tends to (x0,λ0). Now, I1 can be written in the form:

I1 =


∫

⟨x0−δ ,x0+δ ⟩

+
∫

⟨a,b⟩\⟨x0−δ ,x0+δ ⟩


∣∣∣∣ f (t)
φ(t)

− f (x0)

φ(x0)

∣∣∣∣φ(t)Lλ (t − x)dt

= I11 + I12.

Next, we consider the integral I11. Splitting I11 into two parts yields the following:

I11 =


x0∫

x0−δ

+

x0+δ∫
x0


∣∣∣∣ f (t)
φ(t)

− f (x0)

φ(x0)

∣∣∣∣φ(t)Lλ (t − x)dt

= I111 + I112.

By the definition of Lebesgue point (see, e.g., [11] and [14]), for every ε > 0 there exists a corresponding number δ0 > 0
such that

x0∫
x0−h

∣∣∣∣ f (t)
φ (t)

− f (x0)

φ (x0)

∣∣∣∣dt < εh (8)

holds for all 0 < h ≤ δ < δ0. Now, we define the function F (t) by

F (t) =

x0∫
t

∣∣∣∣ f (y)
φ (y)

− f (x0)

φ (x0)

∣∣∣∣dy. (9)
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Therefore, we have

dF (t) =−
∣∣∣∣ f (t)
φ (t)

− f (x0)

φ (x0)

∣∣∣∣dt. (10)

From (8) and (9) for all t satisfying the condition 0 < x0 − t ≤ δ < δ0 we have

F (t)≤ ε (x0 − t) . (11)

By virtue of (9) and (10) we get

I111 =

x0∫
x0−δ

∣∣∣∣ f (t)
φ (t)

− f (x0)

φ (x0)

∣∣∣∣Lλ (t − x)φ (t)dt

=

x0∫
x0−δ

Lλ (t − x)φ (t)d [−F (t)] .

Using integration by parts and applying (11), we have the following inequality:

|I111| ≤ εδLλ (x0 −δ − x)φ (x0 −δ )+ ε
x0∫

x0−δ

(x0 − t) |dLλ (t − x)φ (t)|

= εδLλ (x0 −δ − x)φ (x0 −δ )+ ε
x0−x∫

x0−x−δ

(x0 − x− t) |dLλ (t)φ (t + x)| .

Now, we define the following variation function:

E(t) =


t
∨

x0−x−δ
Lλ (u)φ (u+ x) , x0 − x−δ < t ≤ x0 − x,

0, t = x0 − x−δ .

Using above variation we have

|I111| ≤ εδLλ (x0 −δ − x)φ (x0 −δ )+ ε
x0−x∫

x0−x−δ

(x0 − x− t) |dE(t)| .

Now, if we use hypothesis (6) and integration by parts, then we have the following expression:

|I111| ≤ −ε
x0−x∫

x0−x−δ

(E(t)+Lλ (x0 −δ − x)φ (x0 −δ )){x0 − x− t}′t dt

= ε
x0−x∫

x0−x−δ

(E(t)+Lλ (x0 −δ − x)φ (x0 −δ ))dt.
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We evaluate the above integral using condition (e) of class Aφ . Therefore, we obtain

|I111| ≤ ε


x0∫

x0−δ

Lλ (t − x)φ (t)dt +2Lλ (0)φ (x) |x0 − x|

 .

Using same strategy, we can estimate the integral I112 as

|I112| ≤ ε
x0+δ∫

x0

Lλ (t − x)φ (t)dt.

Combining |I111| and |I112| , we obtain

I11 ≤ ε


x0+δ∫
x0−δ

Lλ (t − x)φ (t)dt +2Lλ (0)φ (x) |x0 − x|

 .

In view of hypothesis (7), if the points (x,λ ) ∈ Z are sufficiently near to (x0,λ0) , then I11 tends to zero. The remaining
part of the proof is analogous to proof of the preceding theorem. Therefore, I12 → 0 as (x,λ ) tends to (x0,λ0). Also, using
similar proof method, the same conclusion is obtained for the case 0 < x− x0 <

δ
2 for a given δ > 0. Hence, the proof is

completed.

Theorem 4. Suppose that φ(t) and Lλ (t − x) are almost everywhere differentiable functions on R with respect to t such

that the following inequality:
d
dt

φ(t)
d
dt

Lλ (t − x)> 0, for any fixed x ∈ R

holds. If x0 ∈ R is a common Lebesgue point of the functions f ∈ L1,φ(R) and φ ∈ L1(R), then

lim
(x,λ )→(x0,λ0)

Tλ ( f ;x) = f (x0)

on any set Z on which the function

x0+δ∫
x0−δ

φ(t)Lλ (t − x)dt +2Lλ (0)φ(x) |x− x0|

is bounded as (x,λ ) tends to (x0,λ0).

Proof. Set I = |Tλ ( f ;x)− f (x0)| . Making similar calculations as in the proof of Theorem 3, we have

I ≤ {φ (x0 −δ )+φ (x0 +δ )}

 sup
|ξ |> δ

2

Lλ (ξ )∥ f∥L1,φ (R)+

∣∣∣∣ f (x0)

φ (x0)

∣∣∣∣ ∫
|ξ |> δ

2

Lλ (ξ )dξ


c⃝ 2016 BISKA Bilisim Technology
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+ε
x0+δ∫
x0−δ

Lλ (t − x)φ (t)dt +2εLλ (0)φ (x) |x0 − x|

+

∣∣∣∣∣∣
∞∫

−∞

Kλ (t − x;
f (x0)

φ(x0)
φ(t))dt − f (x0)

∣∣∣∣∣∣ .
Using conditions (b) and (c) of class Aφ and from Theorem 4 in [7], we obtain I → 0 as (x,λ ) → (x0,λ0) . Hence the
proof is completed.

5 Rate of convergence

In this section, two theorems concerning rate of pointwise convergence will be given.

Theorem 5. Suppose that the hypothesis of Theorem 3 is satisfied. Let

∆(x,λ ,δ ) =
x0+δ∫
x0−δ

Lλ (t − x)φ (t)dt +2Lλ (0)φ (x) |x0 − x|

where 0 < δ < δ0, and the following conditions are satisfied:

(i) ∆(x,λ ,δ )→ 0 as (x,λ )→ (x0,λ0) for some δ > 0.
(ii) For every ξ > 0,

Lλ (ξ ) = o(∆(x,λ ,δ ))

as (x,λ )→ (x0,λ0)

(iii)
∣∣∣∣ b∫
a

Kλ (t − x; f (x0)
φ(x0)

φ(t))dt − f (x0)

∣∣∣∣= o(∆(x,λ ,δ )).

Then at each common Lebesque point of functions f ∈ L1,φ ⟨a,b⟩ and φ ∈ L1 ⟨a,b⟩ we have as (x,λ )→ (x0,λ0)

|Tλ ( f ;x)− f (x0)|= o(∆(x,λ ,δ )).

Proof. Under the hypothesis of Theorem 3, we write

|Tλ ( f ;x)− f (x)| ≤ {φ (x0 −δ )+φ (x0 +δ )}

× sup
|ξ |> δ

2

Lλ (ξ )
{
∥ f∥L1,φ ⟨a,b⟩+

∣∣∣∣ f (x0)

φ (x0)

∣∣∣∣(b−a)
}

+ ε
x0+δ∫
x0−δ

Lλ (t − x)φ (t)dt +2εLλ (0)φ (x) |x0 − x|

+

∣∣∣∣∣∣
b∫

a

Kλ (t − x;
f (x0)

φ(x0)
φ(t))dt − f (x0)

∣∣∣∣∣∣ .
From (i)-(iii), we have the desired result i.e.:

|Tλ ( f ;x)− f (x0)|= o(∆(x,λ ,δ )).
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Theorem 6. Suppose that the hypothesis of Theorem 4 is satisfied. Let

∆(x,λ ,δ ) =
x0+δ∫
x0−δ

Lλ (t − x)φ (t)dt +2Lλ (0)φ (x) |x0 − x|

where 0 < δ < δ0, and the following conditions are satisfied:

(i) ∆(x,y,λ ,δ )→ 0 as (x,λ )→ (x0,λ0) for some δ > 0.
(ii) For every ξ > 0,

Lλ (ξ ) = o(∆(x,λ ,δ ))

as (x,λ )→ (x0,λ0).

(iii) For every ξ > 0,
lim

λ→λ0

∫
|t|>ξ

Lλ (t)dt = o(∆(x,λ ,δ ))

as (x,λ )→ (x0,λ0).

(iv)
∣∣∣∣ ∞∫
−∞

Kλ (t − x; f (x0)
φ(x0)

φ(t))dt − f (x0)

∣∣∣∣= o(∆(x,λ ,δ )).

Then at each common Lebesque point of functions f ∈ L1,φ(R) and φ ∈ L1(R) we have as (x,λ )→ (x0,λ0)

|Tλ ( f ;x)− f (x0)|= o(∆(x,λ ,δ )).

Proof. Under the hypothesis of Theorem 4, we write

|Tλ ( f ;x)− f (x0)| ≤ sup
|ξ |> δ

2

Lλ (ξ )(φ (x0 −δ )+φ (x0 +δ ))∥ f∥L1,φ (R)

+(φ (x0 −δ )+φ (x0 +δ ))
∣∣∣∣ f (x0)

φ (x0)

∣∣∣∣ ∫
|ξ |> δ

2

Lλ (ξ )dξ

+ ε
x0+δ∫
x0−δ

Lλ (t − x)φ (t)dt +2εLλ (0)φ (x) |x0 − x|

+

∣∣∣∣∣∣
∞∫

−∞

Kλ (t − x;
f (x0)

φ(x0)
φ(t))dt − f (x0)

∣∣∣∣∣∣ .
From (i)-(iv), we have the desired result i.e.:

|Tλ ( f ;x)− f (x0)|= o(∆(x,λ ,δ )).
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