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Abstract: In this paper, a new numerical method based on the Bernstein polynomials is introduced for the approximate solution of
pantograph type differential equations with retarded case or advanced case. Either the approximate solutions that are converging to the
exact solutions or exact solutions of the problems are obtained by using this presented process. In addition, some numerical examples
are presented to show the properties of the given method and the results are discussed.
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1 Introduction

Functional-differential equations with proportional delays are usually referred to as pantograph equations or generalized

pantograph equations. The name pantograph originated from the work of Ockendon and Tayler on the collection of

current by the pantograph head of an electric locomotive [1,2].

From the beginning of 1990s, there has been a growing interest in the numerical treatment of pantograph equations of the

retarded and advanced type. A special feature of this type is the existence of compactly supported solutions [3]. This

phenomenon was studied in [4] and has direct applications to approximation theory and to wavelets [5]. Pantograph

equations are characterized by the presence of a linear functional argument and play an important role in explaining

many different phenomena. In particular they turnout to be fundamental when ODEs-based model fail. These equations

arise in industrial applications [6,7] and in studies based on number theory, electrodynamics, astro-physics, nonlinear

dynamical systems, probability theory on algebraic structures, quantum mechanics, economy, control theory and cell

growth, among others [8,9].

In recent years, the Taylor method has been used to find the approximate solutions of differential, difference, integral and

integro-differential-difference equations [7,11-20]. The basic motivation of this work is to apply the Bernstein method to

the non-homogenous pantograph equation with variable coefficients, which is extended of the multi-pantograph equation
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given in [6,10,31]. Our purpose in this study is to develop and to apply mentioned methods to the pantograph equation

u′(x) =
J

∑
j=0

Pj(x)u(λ jx+µ j)+ f (x), 0 ≤ x ≤ 1 (1)

with initial conditions

u(0) = γ ∈ R (2)

where u(x) is the unknown function, the known functions Pj(x) and f (x) are defined on the domain which we are analytical

functions and also λ j and µ j are real or complex constants.

2 Preliminaries and notations

We will now generalize the method in [11-20] in order to solve the pantograph equations. Let us first consider the equation

(1) as

u′(x) =
J

∑
j=0

Pj(x)u(λ jx+µ j)+ f (x) 0 ≤ x ≤ 1 (3)

with initial conditions

u(0) = γ ∈ R (4)

where u(x) is the unknown function, the known functions Pj(x) and f (x) are defined on the domain which we are

analytical functions and also λ j and µ j are real or complex constants.

We take for granted that the solution is expressed in general form of the Bernstein polynomials in [21] of nth-degree are

defined by

Bn,N(x) =

(
N

n

)
xn(R− x)N−n

RN , 0 ≤ n ≤ N (5)

for n = 0,1, ...,N, where the binomial coefficients Bn,N(x) =

(
N

n

)
xn(R−x)N−n

RN , are given by

(
N

n

)
=

N!
n!(N −n)!

(6)

and

(R− x)N−n =
N−n

∑
k=0

(
N −n

k

)
(−1)kRN−n−k xk. (7)

From (5) and (7), it is clear that

Bn,N(x) =
N−n

∑
k=0

(
N

n

)(
N −n

k

)
(−1)k

Rn−k xn+k (8)

where R is the maximum range of the interval [0, R] over which the polynomials are defined to form a complete basis.

There are n+ 1 nth- degree polynomials. For laborsaving, we set Bn,N(x) = 0, if n < 0 or n > N. It can be easily shown
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that any given polynomial of degree n can be expanded in terms of a linear combination of the basis functions

u(x) =
N

∑
n=0

unBn,N(x) (9)

We can write to begin with Bn,N(x) in the matrix form as follows:

BT
N (x) = ST XT (x)⇔ BN(x) = X(x)S (10)

where

BN(x) =
[

B0,N(x) B1,N(x) · · · BN,N(x)
]
, X(x) =

[
1 x x2 · · · xN

]
,

ST =



1

(
N

0

)(
N

1

)
(−1)1

R

(
N

0

)(
N

2

)
(−1)2

R2 · · ·

(
N

0

)
(−1)N

RN

0

(
N

1

)
1
R

(
N

1

)(
N −1

1

)
(−1)1

R2 · · ·

(
N

1

)
(−1)N−1

RN

0 0

(
N

2

)
1

R2 · · ·

(
N

2

)
(−1)N−2

RN

...
...

...
. . .

...

0 0 0 · · ·

(
N

N −1

)
(−1)1

RN

0 0 0 · · ·

(
N

N

)
1

RN



.

3 Basic matrix representations

We first consider the desired solution u(x) of (1) defined by the Bernstein polynomials in (10). Then we can put (10) in

the matrix form

[u(x)] = BN(x)U

or from (10)

[u(x)] = X(x)SU. (11)

It is clearly seen that the relation [30] between the matrix X(x) and its derivative X (1)(x) is

X (1)(x) = X(x)T (12)

where

T =



0 1 0 . . . 0

0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . N

0 0 0 . . . 0


.
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On the other hand, the solution expressed by (9) and its derivative can be written in the matrix forms using the relation

(12)

[u(x)] = X(x)SU and [u(1)(x)] = X(x)TSU (13)

where

X(x) = [ 1 x x2 · · · xN ], U = [ u0 u1 u2 · · · uN ]T ,

and for the collocation points x = xi; ( i = 0,1, ...,N ), the matrices system

[u(xi)] = X(xi)SU and [u(1)(xi)] = X(xi)TSU, (14)

where

X =


X(x0)

X(x1)
...

X(xN)

=


1 x0 · · · xN

0

1 x0 · · · xN
0

...
...

. . .
...

1 xN · · · xN
N

, U = [ u0 u1 u2 · · · uN ]T .

We can write the expression u(λx+µ) as

u(λx+µ) =
N

∑
n=0

un Bn,N(λx+µ)n (15)

Hence (15) we have matrix form

[u(λx+µ) ] = X(x)B(λ , µ)SU (16)

so that

X(x) = [ 1 x x2 · · · xN ], U = [ u0 u1 u2 · · · uN ]T ,

B(λ , µ) =



1

(
1

0

)
µ

(
2

0

)
µ2 · · ·

(
N

0

)
µN

0 λ

(
2

1

)
λ µ · · ·

(
N

1

)
λ µN−1

0 0 λ 2 · · ·

(
N

2

)
λ 2µN−2

...
...

...
. . .

...

0 0 0 · · · λ N


,

and for x = xi; ( i = 0,1, ...,N ) the matrices system

[u(λxi +µ) ] = X(xi)B(λ , µ)SU (17)

where

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 4, 179-195 (2015) / www.ntmsci.com 183

X =


X(x0)

X(x1)
...

X(xN)

=


1 x0 · · · xN

0

1 x1 · · · xN
1

...
...

. . .
...

1 xN · · · xN
N

 .

4 The process of the method by using the matrix representations

We are now ready to construct the fundamental matrix equation corresponding to (1). For this intention, we substitute the

matrix relation (13) and (16) into (1) and obtain the matrix equation

X(x)TSU =
J

∑
j=0

Pj(x)X(x)B(λ j,µ j)SU+ f (x) (18)

By using in (18) collocation points xi defined by

xi =
i
N , i = 0,1, . . . ,N,

the system of matrix equations is obtained as

X(xi)TSU =
J

∑
j=0

Pj(xi)X(xi)B(λ j,µ j)SU+ f (xi), i = 0,1, . . . ,N,

or in short the fundamental matrix equation{
XTS−

J

∑
j=0

PjXB(λ j,µ j)S

}
U = F (19)

where

Pj =



Pj(x0) 0 0 · · · 0

0 Pj(x1) 0 · · · 0

0 0 Pj(x2) · · · 0
...

...
...

. . .
...

0 0 0 · · · Pj(xN)


, F =



f (x0)

f (x1)

f (x2)
...

f (xN)


, X =


X(x0)

X(x1)
...

X(xN)

=


1 x0 · · · xN

0

1 x1 · · · xN
1

...
...

. . .
...

1 xN · · · xN
N

,

and we can also write (19) in the form

WU = F or [W ;F], where W = XTS−
J

∑
j=0

PjXB(λ j,µ j)S (20)

that corresponds to a system of (N +1) algebraic equations with the unknown Bernstein coefficients.

We can gain the matrix form corresponding to the condition u(0) = γ as, from the relation (13),

[ 1 0 · · · 0 ]SU = [γ ] (21)
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or

[ 1 0 · · · 0 ; γ ].

To obtain the solution of (1) subject to (2), now we have the new augmented matrix by replacing the row matrix (21) by

the last row of matrix (20)

[W̃; F̃ ] =



w00 w01 · · · w0N ; 0

w01 w11 · · · w1N ; 0
...

...
. . .

... ;
...

w0,N−1 wN−1,1 · · · wN−1,N ; 0

u0 u1 · · · uN ; γ


(22)

where for condition u(0) = γ; u0 = 1, u1 = · · ·= uN = 0 [20-28].

If rank W̃ = rank [W̃; F̃ ] = N +1 in (17), then we can write

U = (W̃)−1 F̃ (23)

where it can be uniquely determined. If det(W̃) = 0, in that case there is no solution and the method cannot be used or we

may obtain the particular solutions by means of the system. Besides, by means of systems we may obtain the particular

solutions.

5 Error analysis

Theorem 1. For a function f (x) bounded on [0,1], the relation

lim
n→∞

Bn.N(x) = f (x) (24)

holds at each point of continuity x of f ; and the relation holds uniformly on [0,1] if f (x) is continuous on this interval

[22].

Proof. We shall compute the value of

T =
N

∑
n=0

(n−Nx)2Bn,N(x) =
N

∑
n=0

{n(n−1)− (2Nx−1)n+N2x2}Bn,N(x) (25)

Clearly
N
∑

n=0
Bn,N(x) = 1; moreover, we have

N

∑
n=0

nBn,N(x) = Nx
N−1

∑
µ=0

(
N −1

µ

)
xµ(1− x)N−µ−1 = Nx,

N

∑
n=0

n(n−1)Bn,N(x) = N(N −1)x2
N−2

∑
µ=0

(
N −2

µ

)
xµ(1− x)N−µ−2 = N(N −1)x2,
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and therefore

T = N2x2 − (2Nx−1)Nx+N(N −1)x2 = Nx(1− x) (26)

Since x(1− x)≤ 1
4 on [0,1], we obtain the inequality

∑
| n

N −x|≥δ
Bn,N(x)≤

1
δ 2 ∑

| n
N −x|≥δ

( n
N
− x
)2

Bn,N(x)≤
1

N2δ 2 T =
x(1− x)

Nδ 2 ≤ 1
4Nδ 2 (27)

If now the function f is bounded, say | f (u)| ≤ M in 0 ≤ u ≤ 1 and x a point of continuity, for a given ε > 0 we can find a

δ > 0 such that |x− x′|< δ implies | f (x)− f (x′ )|< ε . We have

| f (x)−Bn,N(x)|=

∣∣∣∣∣ N

∑
n=0

{
f (x)− f

(
n

N

)}
Bn,N(x)

∣∣∣∣∣ (28)

≤ ∑
| n

N −x|<δ

∣∣∣∣∣ f (x)− f

(
n

N

)∣∣∣∣∣Bn,N(x)+ ∑
| n

N −x|≥δ

The first sum is ≤ ε ∑Bn,N(x) = ε , the second is, by (22), ≤ 2M(4Nδ 2)−1. Therefore

| f (x)−Bn,N(x)| ≤ ε +M(2Nδ 2)−1, (29)

and if N is sufficiently large, | f (x)−Bn,N(x)| ≤ 2ε . Finally, if f (x) is continuous in the whole interval [0,1] then (35)

holds with a δ independent of x, so that Bn,N(x)→ f (x) uniformly. This completes the proof.

The Bernstein polynomials are not orthogonal. However, these can be expressed in terms of some orthogonal polynomials,

such as the Chebychev polynomials Un(x) of second kind [23]. It can be shown that

Bn,N(x) =
1

2N

(
N

n

)
N

∑
s=0

dn,N
s

1
2N

[ s
2 ]

∑
m=0

{(
s

m

)
−

(
s

m+1

)}
Us−2m(x) (30)

with

dn,N
s = ∑

k
(−1)s−k

(
n

k

)(
N −n

s− k

)
(31)

the summation over k being taken as follows:

For n < N < N −n,

(i) k = 0 to s for s ≤ n,

(ii) k = 0 to n for n < s ≤ N −n,

(iii) k = s− (N −n) to N −n for N −n < s ≤ N while for n = N −n (N being an even integer);

(a) k = 0 to s for s ≤ n,

(b) k = s−n to n for n < s ≤ N −n

and N −n above are to be interchanged.
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Thus, an approximation un(x) of the function u(x) in terms of the Bernstein polynomials in the form

u(x)∼= uN(x) =
N

∑
n=0

anBn,N(x) (32)

is eventually expressed as

uN(x) =
N

∑
j=0

b jU j(x) (33)

where b j , ( j = 0,1, ...,N) can be expressed in terms of an, (n = 0,1, ...,N) and vice-versa. If u j(x) =
√

2
π U j(x), then

u j(x), ( j = 0,1, ...,N) form an orthonormal polynomial basis in [−1,1] with respect to the weight function w(x) =

(1− x2)1/2. Then

∥u−un∥w <

√
π
2

b0n−r, r > 0

where ∥ l ∥w ≡
1∫

−1
{l(x)}2w(x)dx and b0 is some constant. Thus, the convergence is very fast if r is large. In our method

on pantograph equations, both Pj(x) and f (x) are C∞-functions, and such as, the method converges rapidly. This is also

reflected in the numerical computations.

On the other hand, we can easily check the accuracy of the obtain solutions as follows [24]. Since the obtained

polynomial expansion is an approximate solution, when the function u(x) are the derive u′(x) are substituted in (1), the

resulting equation must be satisfied approximately: that is, for x = xi ∈ [a, b], i = 0, 1, ...,N

E(xi) =

∣∣∣∣∣u′(xi)−
J

∑
j=0

Pj(xi)u(λ j(xi)+µ j)+ f (xi)

∣∣∣∣∣∼= 0

or

E(xi)≤ 10ki , (ki is any positive integer).

If max(10ki) = 10−k, (k is any positive integer) is prescribed, then the truncation limit N is increased until the difference

E(xi) at each of points xi becomes smaller than the prescribed 10−k.

6 Illustrations

In this section, five numerical examples are given to illustrate the accuracy and efficiency of the presented method.

Example 1. (Z.-H. Yu, [25]). Consider the multi-pantograph equation{
u′(x) =− 5

6 u(x)+4u
( x

2

)
+9u

( x
3

)
+ x2 −1, 0 < x ≤ 1

u(0) = 1.
(34)

We assume that the problem has a Bernstein polynomial solution in the form

u(x) =
N

∑
n=0

unBn,N(x)
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where N = 4, P0(x) =−5/6, P1(x) = 4, P2(x) = 9, f (x) = x2 −1 and λ0 = 1, µ0 = 0, λ1 = 1/2, µ1 = 0,

λ2 = 1/3, µ2 = 0.

Following the procedure in Section 3, collocation points are computed as{
x0 = 0,x1 =

1
4
,x2 =

1
2
,x3 =

3
4
,x4 = 1

}
and from (19), the fundamental matrix equation of the problem is{

XTS−
J

∑
j=0

PjXB(λ j,µ j)S

}
U = F

{XTS−P0XB(λ0,µ0)S−P1XB(λ1,µ1)S−P2XB(λ2,µ2)S}U = F

where

S =



1 0 0 0 0

−4 4 0 0 0

6 −12 6 0 0

−4 12 −12 4 0

1 −4 6 −4 1


, P0 =



−5/6 0 0 0 0

0 −5/6 0 0 0

0 0 −5/6 0 0

0 0 0 −5/6 0

0 0 0 0 −5/6


, P1 =



4 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 4


,

P2 =



9 0 0 0 0

0 9 0 0 0

0 0 9 0 0

0 0 0 9 0

0 0 0 0 9


, T =



0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

0 0 0 0 0


, X =



1 0 0 0 0

1 1/4 1/16 1/64 1/256

1 1/2 1/4 1/8 1/16

1 3/4 9/16 27/64 81/256

1 1 1 1 1


,

F =



−1

−15/16

−3/4

−7/16

0


, B(1,0) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, B(1

/
2,0) =



1 0 0 0 0

0 1/2 0 0 0

0 0 1/4 0 0

0 0 0 1/8 0

0 0 0 0 1/16


,

B(1
/

3,0) =



1 0 0 0 0

0 1/3 0 0 0

0 0 1/9 0 0

0 0 0 1/27 0

0 0 0 0 1/81


,

The augmented matrix for this fundamental matrix equation is
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[W ;F ] =



−97/6 4 0 0 0 ; −1

−93295/9216 −7601/2304 1073/1536 1135/2304 593/9216 ; −15/16

−3487/576 −857/144 −151/96 127/144 305/576 ; −3/4

−10805/3072 −1465/256 −2133/512 −153/256 1881/1024 ; −7/16

−73/36 −41/9 −25/6 −53/9 161/36 ; 0



From (21), the matrix forms for initial condition is

[ 1 0 · · · 0 ; γ ] =
[

1 0 0 0 0 ; 1
]

From system (24), the new augmented matrix based on conditions can be obtained as follows

[W̃ ; F̃ ] =



−97/6 4 0 0 0 ; −1

−93295/9216 −7601/2304 1073/1536 1135/2304 593/9216 ; −15/16

−3487/576 −857/144 −151/96 127/144 305/576 ; −3/4

−10805/3072 −1465/256 −2133/512 −153/256 1881/1024 ; −7/16

1 0 0 0 0 ; 1



solving this system, Bernstein coefficients matrix are obtained as

U =
[

1 91/24 4519/432 121057/5184 58075/1296
]

T .

We, therefore, obtain the solution of the problem for N = 4 become

u(x) =
12157
1296

x3 +
1675
72

x2 +
67
6

x+1

which is the also exact solution.

Example 2. Consider the linear delay differential equation of first order

{
u′(x) =−u(0.8x)−u(x),

u(0) = 1.
(35)

We assume that the problem has a Bernstein polynomial solution in the form

u(x) =
N

∑
n=0

anBn,N(x)

From (19), the fundamental matrix equation of the problem is

{XTS−P0XB(λ0,µ0)S−P1XB(λ1,µ1)S}U = F
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where P0(x) =−1, P1(x) =−1, f (x) = 0, λ0 = 0.8, µ0 = 0, λ1 = 1, µ1 = 0.

Following the procedure in Section 3, we find the solutions of the problem for N = 8,

y(x) = 1.7999995x2 −2.0x−0.98399264x3 +0.37190582x4 −0.10470307x5

+0.02288761x6 −0.003808588x7 +0.0003815305x8 +1 .

Table 1 shows solutions of (41) with N = 8and10 by presented method. The previous results of Rao and Palanisamy by

Walsh series approach [26], Hwang and Shih by Laguerre series approach [24], and Sezer and Akyüz by Taylor series

approach [14] are also given in Table 1 for comparison. The Bernstein method seems more rapidly convergent than

Taylor method. The error functions are seen in Table 2.

Table 1. Numerical results of Example 2 for the approximate solution uN(x), N = 8,10 and the other methods.

xi
Walsh series

method

Laguerre series

method
Taylor series method Bernstein method

n = 20 N = 8 N = 11 N = 8 N = 10

0 1.000000 0.999971 1.000000 1.000000 1.000000000000000 1.000000000000000

0.2 0.665621 0.664703 0.664691 0.664691 0.664691000243432 0.664691000946436

0.4 0.432426 0.433555 0.433561 0.433561 0.433560778295009 0.433560778879920

0.6 0.275140 0.276471 0.276483 0.276482 0.276482329799246 0.276482330288006

0.8 0.170320 0.171482 0.171484 0.171484 0.171484111252193 0.171484112022145

1 0.100856 0.102679 0.102744 0.102670 0.1026701625 0.102670125200000

Table 2. Comparison of errors of the approximate solutions for (35).

Taylor series method Present method
xi N = 11, E(xi) N = 10, E(xi)

0 4.75 E-15 0

0.2 5.24 E-10 3.489 E-10

0.4 3.29 E-10 2.631 E-11

0.6 7.20 E-10 3.764 E-12

0.8 1.69 E-11 2.455 E-11

1 1.48 E-12 2.226 E-09

Example 3. Consider the following problem:

{
u′(x) = 1

2 ex/2u
( x

2

)
+ 1

2 u(x), 0 ≤ x ≤ 1,

u(0) = 1,
(36)

which has exact solution u(x) = exp(x).

From (19), the fundamental matrix equation of the problem is

{XTS−P0XB(λ0,µ0)S−P1XB(λ1,µ1)S}U = F
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where P0(x) = 1
2 ex/2, P1(x) = 1

2 , f (x) = 0, λ0 =
1
2 , µ0 = 0, λ1 = 1, µ1 = 0.

Following the procedure in Section 3, we find the solution of the problem for N = 10.

u(x) = 1.0x+0.50000018x2 +0.16666396x3 +0.04168504x4 +0.00826252x5

+0.0015564x6 −0.00004968x7 +0.00024932x8 −0.00011084x9 +0.000024933x10 +1.0 .

The absolute error and estimation error of solution obtained by presented method for N = 12 are compared with the

absolute errors of solutions given by other methods [3,14,25,27,28,30] in the Table 3 and Figure 1. The Present method

has better results than the Variational iteration method, Taylor method, Spline Function Approximation and the Spline

method. However, the absolute errors of Adomian and the present methods seem like each other.

Table 3. Comparison of the absolute and approximate errors for the present method and other methods for Example 3.

Spline method,

h = 0.001

Adomain

method

with 13

terms [8]

E(xi)

Taylor

method

Variational

method

Bernstein method

N = 9, E(xi)

xi m = 3 [7-23], E(xi) N = 9, E(xi) Ext.err Est.err

0.2 0.198 E-7 1.37 E-11 0.00 0.705 E-14 2.44 E-05 3.479 E-11 7.614 E-11

0.4 0.473 E-7 3.27 E-11 2.22 E-16 0.106 E-10 2.28 E-04 3.989 E-11 1.756 E-11

0.6 0.847 E-7 5.86 E-11 2.22 E-16 0.294 E-9 9.00 E-04 5.521 E-11 7.094 E-11

0.8 0.135 E-6 9.54 E-11 1.33 E-15 0.386 E-8 2.50 E-03 8.580 E-11 1.650 E-10

1 0.201 E-6 1.43 E-10 4.88 E-15 0.290 E-7 5.71 E-03 4.540 E-10 1.389 E-7

 

 

-4,00E-08

1,00E-08

6,00E-08

1,10E-07

1,60E-07

2,10E-07

0,2 0,4 0,6 0,8 1

xi

E
(x

i)

Spline Fn. Approx.

Spline Method (m=3)

Adomian Method

Taylor Method (N=9)

Bernstein Method (N=9) Ext.err

Bernstein Method (N=9) Est.err

 
Fig. 1. Comparison of the absolute errors and estimate of errors E(xi) for N = 9 of an approximated solution by the

methods
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Example 4. Consider the pantograph equation of{
u′(x) =−u(x)+ q

2 u(qx)− q
2 e−qx, 0 ≤ x ≤ 1,

u(0) = 1,
(37)

which has exact solution u(x) = e−x.

From (19), the fundamental matrix equation of the problem is

{XTS−P0XB(λ0,µ0)S−P1XB(λ1,µ1)S}U = F

where P0(x) =−1, P1(x) =
q
2 , f (x) =− q

2 e−qx, λ0 = 1, µ0 = 0, λ1 = q, µ1 = 0.

Following the procedure in Section 3, we find the solution of the problem for N = 13 and q = 1, q = 0.2 respectively,

u(x) = 1− x+0.500000000000328x2 −0.166666666674781x3 +0.416666667587229E −1x4

−0.833333394476986E −2x5 +0.138889150582022E −2x6 −0.198420261618556E −3x7

+0.248166609118034E −4x8 −0.277648561972118E −5x9 +0.294952748666358E −6x10

−0.367508039050922E −7x11 +0.618440621168329E −8x12 −0.773904241676987E −9x13,

u(x) = 1− x+0.50000000000022x2 −0.16666666667236x3 +0.41666666733808E −1x4

−0.833333379392323E −2x5 +0.138889091302536E −2x6 −0.19841867419705E −3x7

+0.248136977517014E −4x8 −0.277261736288716E −5x9 +0.29148068206839E −6x10

−0.347045064964356E −7x11 +0.547021422781133E −8x12 −0.661910550152943E −9x13 .

Table 4 compares the results of the present method, the collocation method [29] and the Taylor method [14]. Also, the

absolute errors are compared for q = 0.2 and q = 1 in Figure 2(a)-(b). Note that q = 1 is not a pantograph equation, is a

linear differential equation. In any case, the Bernstein method has far better results than collocation method. In any case,

the absolute errors of the Taylor method and the present method seem like each other.

Table 4. Comparison of the absolute errors for q = 0.2 and q = 1 of (37).

xi

q = 1 q = 0.2
Collocation

Method

Taylor

method

Bernstein

method

Collocation

Method

Taylor

method

Bernstein

method

m = 2 N = 6 N = 6 m = 2 N = 6 N = 6

2−1 5.005 E-06 1.458 E-06 1.002 E-08 2.719 E-05 1.458 E-06 4.6788 E-07

2−2 1.877 E-07 1.174 E-08 2.4306 E-09 1.080 E-06 1.174 E-08 6.5210 E-08

2−3 6.434 E-09 9.315 E-11 5.0626 E-10 3.817 E-08 9.315 E-11 6.1038 E-09

2−4 2.106 E-10 7.334 E-13 8.4669 E-11 1.269 E-09 7.334 E-13 2.6234 E-10

2−5 6.700 E-12 5.662 E-15 1.2309 E-11 4.090 E-11 5.662 E-15 8.3965 E-10

2−6 2.100 E-13 0.000 1.6608 E-12 1.200 E-12 0.000 2.3625 E-11
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Table 5. Numerical Results of Example 4 for N = 5,N = 7 and N = 9.

xi
Exact Solution

u(x) = exp(−x)
N = 5 N = 7 N = 9

2−1 0.6065306597 0.6065301918 0.6065306589 0.6065306597

2−2 0.7788007831 0.778800131 0.7788007823 0.7788007831

2−3 0.8824969026 0.8824962922 0.8824969014 0.8824969026

2−4 0.9394130628 0.9394128005 0.9394130622 0.9394130628

2−5 0.9692332345 0.9692331505 0.9692332343 0.9692332345

2−6 0.984496437 0.9844964134 0.984496437 0.984496437

 

 

q=1

-2.00E-04

8.00E-04

1.80E-03

2.80E-03

3.80E-03

4.80E-03

0.5 0.25 0.125 0.0625 0.03125 0.015625 x

E(x)

Collocation Method (m=2) Taylor Method (N=6)

Bernstein Method (N=6)

 
Fig. 2(a). Comparison of the absolute errorsE(xi) for q = 1.

 

 

q=0.2

-2.00E-05

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

0.5 0.25 0.125 0.0625 0.03125 0.015625
x

E(x)

Collocation Method (m=2) Taylor Method (N=6) Bernstein Method(N=6)

 
Fig. 2(b). Comparison of the absolute errorsE(xi) for q = 0.2.
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Example 5. Consider the pantograph equation with variable coefficients

{
u′(x) =−u(x)+µ1(x)u(x

/
2)+µ2(x)u(x

/
4),0 ≤ x ≤ 1 ,

u(0) = 1.
(38)

Hereµ1(x) = −e−0.5x sin(0.5x), µ2(x) = −2e−0.75x cos(0.5x)sin(0.25x). It can be seen that the exact solution of this

problem is u(x) = e−x cos(x) [17].

From (19), the fundamental matrix equation of the problem is

{XTS−P0XB(λ0,µ0)S−P1XB(λ1,µ1)S−P2XB(λ2,µ2)S}U = F

where P0(x) =−1, P1(x) = µ1(x), P2(x) = µ2(x),λ0 = 1, λ1 =
1
2 , λ2 =

1
4 , µ0 = µ1 = µ2 = f (x) = 0.

Following the procedure in Section 3, we find the solution of the problem for N = 7,

u(x) = 0.333403165x3 −0.000005916x2 −0.999999999x−0.16701361x4

+0.034243842x5 −0.001333669x6 −0.0005281649x7 +1.0 .

For N = 7 in Figure 3 and Table 6, the absolute error and solution obtained by the Bernstein method is compared the

absolute error and solution of Taylor method given in [23]. It is seen from Figure 4 and Table 5 that the results obtained

by the present method is very superior to that obtained by Taylor method.

Table 6. Comparison of the solutions and the absolute errors of (37).

xi
Exact Solution

u(x) = e−x cos(x)
N = 5 N = 7 N = 9 N = 9,E(xi)

0 1.0 1.0 1.0 1.0 0

0.2 0.8024106474 0.8024125376 0.802410633 0.8024106474 5.74800 E-11

0.4 0.6174056479 0.6174062718 0.6174056369 0.6174056479 1.64602 E-12

0.6 0.4529537892 0.4529551434 0.4529537829 0.4529537892 5.47500 E-11

0.8 0.313050504 0.3130489942 0.313050505 0.3130505041 9.55200 E-11

1.0 0.1987661104 0.1988138463 0.1987656481 0.1987661083 2.04641 E-09

Exact Solution Taylor method Bernstein method
xi u(x) = e−x cos(x) N = 7,u(x) N = 7,E(xi) N = 7,u(x) N = 7,E(xi)

0 1 1 0 1 0

0.2 8.0241 E-01 8.0241 E-01 9.9331 E-10 8.0241 E-01 1.4522 E-08

0.4 6.1741 E-01 6.1741 E-01 2.4854 E-07 6.1741 E-01 1.1150 E-08

0.6 4.5295 E-01 4.5295 E-01 6.2234 E-06 4.5295 E-01 6.3522 E-09

0.8 3.1305 E-01 3.1299 E-01 6.0719 E-05 3.1305 E-01 8.8968 E-10

1 1.9877 E-01 1.9841 E-01 3.5341 E-04 1.9877 E-01 4.6165 E-07
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Fig. 3. Results for N = 5,7,9 and exact solution.

7 Conclusions

A new technique, using the Bernstein polynomials, to numerically solve the pantograph equations is presented.

Comparison of the results obtained by the present method with and that other method reveals that the present method is

very effective and convenient. The numerical results show that the accuracy improves when N is increased. Tables and

figures indicate that as N increases, the errors decrease more rapidly; hence for better results, using large number N is

recommended. Another considerable advantage of the method is that Bernstein coefficients of the solution are found very

easily by using the computer programs.
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