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Abstract: The aim of this paper is to construct a family of rational interpolants that have no poles in Rm. This method is an extension
of Floater and Hormanns method [1]. A priori error estimate for the method is given under some regularity conditions.
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1 Introduction

Given a function f defined on an m−dimensional box, we can approximate f by polynomial interpolation. If the set of
approximating functions is extended to the set of all rational functions, namely functions of the form

p
q

, where p and q

are any polynomials, it is hard to control the occurrence of poles and to specify accuracy of the approximate solution.
Polynomial interpolation is thus a special case of rational interpolation. Hence, it can be expected that rational
interpolation may give better results then multivariate polynomial interpolation.

In 1−dimension, Berrut and Mittelmann [2] suggested that it might be possible to avoid poles by using rational functions
of higher degree. They considered algorithms which fit rational functions whose numerator and denominator degrees can
both be as high as any positive integer n. As observed in Berrut and Mittelmann [2], every such interpolant can be given
in the barycentric form

r(x) =

n
∑

i=0

wi

x− xi
f (xi)

n
∑

i=0

wi

x− xi

for some real values wi. Thus it is enough for good approximation rates to find the weights w0,w1, . . . ,wn to specify the
function r. There was another suggestion by Berrut [3], simply to take

wi = (−1)i , k = 0,1, . . . ,n

giving

r(x) =

n
∑

i=0

(−1)i f (xi)

x− xi
n
∑

i=0

(−1)i

x− xi

. (1)

Berrut showed that (1) has no poles in R. See also Berrut [4],[5].

Floater and Hormann [1] reported that there is a whole family of barycentric rational interpolants with arbitrarily high
approximation orders, including the interpolant (1) as a special case. The construction is as follows. Choose any integer
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d with 0 ≤ d ≤ n, and for each i = 0,1, ...,n−d, let pi denote the unique polynomial of degree at most d that interpolates
f at the d +1 points xi,xi+1, . . . ,xi+d . Then let

r(x) =

n−d
∑

i=0
λi(x)pi(x)

n−d
∑

i=0
λi(x)

(2)

where

λi(x) =
(−1)i

(x− xi) . . .(x− xi+d)
.

For each d = 0,1,2, ...,n, none of (2) has any poles in R. In addition, for fixed d ≥ 1 the interpolant has approximation
order O(hd+1) as h → 0, where

h := max
0≤i≤n−1

(xi+1 − xi) (3)

as long as f ∈Cd+2[a,b].

Floater and Hormann [1] used the following construction to show (2) that has no poles in R. On multiplying the
numerator and denominator in (2) by the product

(−1)n−d (x− x0) . . .(x− xn) ,

we obtain

r(x) =

n−d
∑

i=0
µi(x)pi(x)

n−d
∑

i=0
µi(x)

(4)

where
µi(x) = (−1)n−d (x− x0) . . .(x− xn)λi(x),

which we can also express in the form

µi(x) =
i−1

∏
j=0

(x− x j)
n

∏
k=i+d+1

(xk − x) . (5)

As usual, an empty product in (5) has value 1. After than, Floater and Hormann [1] analyzed the convergence and the
results are given in the following theorems.

Theorem 1. For all d, 0 ≤ d ≤ n, the rational function r in (4) has no poles in R.

Theorem 2. Suppose d ≥ 1 and f ∈Cd+2[a,b], and let r be the rational function in (2) and h be as in (3). If n−d is odd
then

∥r− f∥∞ ≤ hd+1(b−a)

∥∥∥ f (d+2)
∥∥∥

∞
d +2

. (6)

If n−d is even then

∥r− f∥∞ ≤ hd+1

(b−a)

∥∥∥ f (d+2)
∥∥∥

∞
d +2

+

∥∥∥ f (d+1)
∥∥∥

∞
d +1

 . (7)

Theorem 3. Suppose d = 0, f ∈C2[a,b] and the local mesh ratio

β := max
1≤i≤n−2

min
{

xi+1 − xi

xi − xi−1
,

xi+1 − xi

xi+2 − xi+1

}
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is bounded when h → 0. Let r be the rational function in (2). If n is odd then

∥r− f∥∞ ≤ h(1+β )(b−a)
∥ f ′′∥∞

2
.

If n is even then

∥r− f∥∞ ≤ h(1+β )
(
(b−a)

∥ f ′′∥∞
2

+
∥∥ f ′

∥∥
∞

)
.

In this study, as an extension of the methods of Floater and Hormann [1] in the univariate case, a family of multivariate
rational interpolants which have no poles in Rm is constructed. The method is given with a priori error estimate under low
regularity assumptions. We note that the set of interpolation nodes K form a tensor product grid.

2 Preliminaries

2.1 Interpolation Polynomials

Let us consider the n+1 pairs xi in R. The problem is to find an interpolating polynomial such that

pm f (xi) = a0 +a1xi + · · ·+amxm
i = yi , i = 0,1, . . . ,n.

The points xi are called interpolation nodes. The following two theorems can be found any numerical analysis text, (see,
e.g., Quarteroni et al. [6]).

Theorem 4. Given n+1 distinct nodes x0,x1, . . . ,xn and n+1 corresponding values y0,y1, . . .yn, then there exists a unique
polynomial pn f ∈ Pn such that pn f (xi) = yi for i = 0,1, . . . ,n.

In the next theorem, Lagrange characteristic polynomials are used which are defined as

li ∈ Pn : li(x) =
n

∏
j=0
j ̸=i

(x− x j)

(xi − x j)
, i = 0,1, . . . ,n.

Theorem 5. Let x and the abscissas x0,x1, . . . ,xn be contained in an interval [a,b] on which f and its first n+1 derivatives
are continuous. Then there exists ξx ∈ (a,b), which depends on x, such that

f (x)− pn f (x) =
1

(n+1)!

n

∏
j=0

(x− x j) f (n+1)(ξx).

In m−dimensions, interpolation polynomial of a function f is defined similar to 1−dimension, see e.g. [7]. Let us
consider the n distinct points xi = (x1

i , . . . ,x
m
i ) in Rm. Let ϕ1, . . . ,ϕm denote m linearly independent functions in C(Rm).

The interpolating problem is to determine a1,a2, . . .am such that

a1ϕ1(xi)+a2ϕ2(xi)+ · · ·+amϕm(xi) = f (xi)

for 1 ≤ i ≤ n.

The following paragraph was given by Mößner and Reif in [8].

The space dimension m is assumed as fixed and greater than 1. Let K j =
{

xi
j|0 ≤ x1

j < x2
j < · · ·< x

n j
j ≤ b j, i = 1, . . . ,n j

}
denote a partition of the interval [0,b j]. Given the tensor product partition K =

m
∏
j=1

K j of
m
∏
j=1

[0,b j]. For each coordinate

direction j = 1,2, . . . ,m, univariate interpolation operator mapping a function f with an essentially bounded weak n jth
derivative to the unique polynomial p j = I j f j of order n j, interpolating f j on K j, is denoted by

I j : W
n j
∞ → Pn j (8)
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Then, the interpolation polynomial can be written as

p j(x) =
n j

∑
i=1

f (xi
j)l

n j
i (x),

where l
n j
1 , . . . , l

n j
n j are Lagrange polynomials. The error operator related to I j is defined by E j := 1− I j. Then, an upper

bound for the error of polynomial interpolation can be written in the form∥∥E j f j
∥∥

j ≤ w jt
n j
j

∥∥∥ f
(n j)
j

∥∥∥
j

where

w j =

∥∥∥(x− x1
j) · · ·(x− x

n j
j )

∥∥∥
j

t
n j
j n j!

and ∥∥ j shows the supremum norm on [0,b j]. For m−dimensions, let e j denote the jth unit vector, and let x j = x− x je j.
(8) is extended to an operator

I j f (x) =
n j

∑
i=1

f (x j + xi
je j)l

n j
i (x) , x ∈ K

which acts only the jth component of a given multivariate function f and all other components are treated as constants.
Then the tensor product interpolation

I := Im · · · I1 : W n
∞(K)→ Pn

interpolates f on K and p := I f =Im · · · I1 f is unique. Let ∥∥ denote sup-norm on K. The error operator E can be given as

E =− ∑
∥α∥=1

(−Em)
αm · · ·(−E1)

α1 (9)

where α = (α1,α2, . . . ,αm) ∈ Nm is a multi-index with maximal component ∥α∥= max
i

αi. Thus, the upper bound of the

error is obtained as

∥E f∥ ≤ ∑
∥α∥=1

wα1
1 wα2

2 · · ·vαm
m tα1n1

1 tα2n2
2 . . . tαmnm

m
∥∥∂ α1n1

1 ∂ α2n2
2 · · ·∂ αmnm

m f
∥∥

∞

Let us write ∂ α f := ∂ α1
1 ∂ α2

2 · · ·∂ αm
m f and tα := tn1

1 tn2
2 . . . tnm

m .

Theorem 6. For f ∈W n
∞(K) the tensor product interpolation error on the box is bounded by

∥ f − I f∥ ≤ ∑
∥α∥=1

wα tαn ∥∂ αn f∥ ,

where w = (w1,w2, . . . ,wm), t = (t1, t2, . . . , tm) and αn = (α1n1,α2n2, . . . ,αmnm).

3 Rational interpolating function in m−dimensions

We will seek an approximate rational function for the given function f . Let d j ∈ Z and 0 ≤ d j ≤ n. For 1 ≤ j ≤ m and
0 ≤ i j ≤ n−d j, let pi1,i2...,im be the polynomial which interpolates f at{

(xt1
1 ,x

t2
2 , . . . ,x

tm
m ) : i j ≤ t j ≤ i j +d j,1 ≤ j ≤ m

}
.

Let

r =

n−d1
∑

i1=0

n−d2
∑

i2=0
· · ·

n−dm
∑

im=0
λi1,i2,...,im pi1,i2,...,im

n−d1
∑

i1=0

n−d2
∑

i2=0
· · ·

n−dm
∑

im=0
λi1,i2,...,im

, (10)
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where

λi1,i2,...,im(x) =
(−1)

m
∑

k=1
ik

i1+d1
∏

i=i1

(
x1 − x j

1

)
. . .

im+dm
∏

i=im

(
xm − x j

m

) (11)

We will show that the function r in (10) is defined in Rm. First, let us define a new function µi1,...,im as

µi1,...,im(x) =
i1−1
∏

k=0

(
x1 − xk

1
) n

∏
k=i1+d1+1

(
xk

1 − x1
)

· · ·
im−1
∏

k=0

(
xm − xk

m
) n

∏
k=im+dm+1

(
xk

m − xm
)
.

If the index set is empty, we will again understand its product has the value 1. On multiplying both numerator and
denominator by

(−1)
nm−

m
∑

k=0
dk

n

∏
k=0

(
x1 − xk

1

)
· · ·

m

∏
k=0

(
xm − xk

m

)
we obtain

r =

n−d1
∑

i1=0

n−d2
∑

i2=0
· · ·

n−dm
∑

im=0
µi1,i2,...,im pi1,i2,...,im

n−d1
∑

i1=0

n−d2
∑

i2=0
· · ·

n−dm
∑

im=0
µi1,i2,...,im

. (12)

The denominator of (12) is equal to
n−d1

∑
i1=0

µi(x1) · · ·
n−dm

∑
im=0

µi(xm).

We see from Theorem 1 that each component of the denominator is greater than zero, and the following results hold.

Theorem 7. For all d1,d2, . . . ,dm, 0 ≤ d1,d2, . . . ,dm ≤ n, the rational function r in (12) has no poles in
m
∏
i=1

[ai,bi].

Corollary 1. For all d1,d2, . . . ,dm, 0 ≤ d1,d2, . . . ,dm ≤ n, the rational function r in (12) has no poles in Rm.

Let us consider the rational interpolation function r. Let the interpolation polynomials in (10) are all be tensor product
interpolants. First, let us discuss the convergence order for 2−dimensions.

Let d1,d2 > 0. Let I1, I2 and I3 be defined as

I1,k = {i : i ≤ α −dk,0 ≤ i ≤ n−dk}
I2,k = {i : α −dk +1 ≤ i ≤ α,0 ≤ i ≤ n−dk} ,
I3,k = {i : α +1 ≤ i,0 ≤ i ≤ n−dk} , k = 1,2

as in [1]. Let h1 = max
0≤i≤n−1

|xi+1 − xi| and h2 = max
0≤i≤n−1

|yi+1 − yi| . Since d1,d2 > 0, the following result can be obtained

by [1]: ∣∣∣∣∣n−d1
∑

i=0

n−d2
∑
j=0

λi, j(x,y)

∣∣∣∣∣= s(x,y)
n
∏

i=0
|x−xi|

n
∏

i=0
|y−yi|

≥ µ j(x)s(y)
n
∏

i=0
|x−xi|

n
∏

i=0
|y−yi|

≥ s(y)

d1!h
d1+1
1

n
∏

i=0
|y−yi|

, j ∈ I2,1

(13)

or ∣∣∣∣∣n−d1
∑

i=0

n−d2
∑
j=0

λi, j(x,y)

∣∣∣∣∣= s(x,y)
n
∏

i=0
|x−xi|

n
∏

i=0
|y−yi|

≥ µ j(y)s(x)
n
∏

i=0
|x−xi|

n
∏

i=0
|y−yi|

≥ s(x)

d2!h
d2+1
2

n
∏

i=0
|x−xi|

, j ∈ I2,2.
(14)
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Using the definition of µ j yields
|µi(x)|

s(x)
≤ h1

t1
(15)

and
|µi(y)|

s(y)
≤ h2

t2
(16)

where t1 = min
0≤i≤n−1

|xi+1 − xi| and t2 = min
0≤i≤n−1

|yi+1 − yi| . To see this, first let x ∈ (xα ,xα+1) and i ∈ I1,1. Then, |µi(x)| ≤∣∣µα−d1(x)
∣∣. Since ∣∣x− xα−d1

∣∣≤ h1

t1

∣∣x− xα+d1+1
∣∣ ,

we get the desired result. A similar argument can be made for I3,1. We now deduce the following theorem for the
2−dimensional case.

Theorem 8. Suppose that d1,d2 are positive and f ∈ W n+1
∞ (

2
∏
i=1

[0,bi]). Let the interpolation nodes be{
(xi,y j) : 0 ≤ i, j ≤ n

}
. Then,

∥ f − r∥ ≤
(n−d1)(n−d2)h

d1+1
1

t1(d1 +1)

∥∥∥∥∂ d1+1 f
∂xd1+1

∥∥∥∥+ (n−d1)(n−d2)h
d2+1
2

t2(d2 +1)

∥∥∥∥∂ d2+1 f
∂yd2+1

∥∥∥∥
+
(n−d1)(n−d2)h

d1+1
1 hd2+1

2
(d1 +1)(d2 +1)

∥∥∥∥ ∂ d1+d2+2 f
∂xd1+1∂yd2+1

∥∥∥∥
where

h1 = max
0≤i≤n−1

|xi+1 − xi| ,h2 = max
0≤i≤n−1

|yi+1 − yi| ,
t1 = min

0≤i≤n−1
|xi+1 − xi| , t2 = min

0≤i≤n−1
|yi+1 − yi| .

Proof. Since the error function f − r is zero on the interpolation points, it is enough to find the error on the set

S :=
{
(x,y) : (x,y) ∈ [a1,b1]× [a2,b2]\

{
(xi,y j) : 0 ≤ i, j ≤ n

}}
.

The function λi1,i2 in (11) is well-defined on S and we can write the error function as

f (x,y)− r(x,y) =

n−d1
∑

i1=0

n−d2
∑

i2=0
λi1,i2(x,y) [ f (x,y)− pi1,i2(x,y)]

n−d1
∑

i1=0

n−d2
∑

i2=0
λi1,i2(x,y)

. (17)

We will bound the error function by finding an upper bound on the numerator and a lower bound on the denominator of
this quotient. The function E = f − pi1,i2 f can be written by (9) as E = E1 +E2 −E1E2. Thus, the numerator of (17) is
bounded by

|( f − r)(x,y)| ≤

1
(d1 +1)!

n−d1
∑

i1=0

n−d2
∑

i2=0

1∣∣wi2(y)
∣∣∥∥∥∥ ∂d1+1 f

∂xd1+1

∥∥∥∥
n−d1

∑
i1=0

n−d2
∑

i2=0
λi1 ,i2 (x,y)

+

1
(d2 +1)!

n−d1
∑

i1=0

n−d2
∑

i2=0

1∣∣wi1(x)
∣∣∥∥∥∥ ∂d2+1 f

∂yd2+1

∥∥∥∥
n−d1

∑
i1=0

n−d2
∑

i2=0
λi1 ,i2 (x,y)

+

1
(d1 +1)!(d2 +1)!

n−d1
∑

i1=0

n−d2
∑

i2=0

∥∥∥∥ ∂d1+d2+2 f
∂xd1+1∂yd2+1

∥∥∥∥
n−d1

∑
i1=0

n−d2
∑

i2=0
λi1 ,i2 (x,y)

.
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We now obtain the inequality by applying (13-16)

|( f − r)(x,y)| ≤

1
(d1 +1)!

n−d1
∑

i1=0

n−d2
∑

i2=0

1∣∣wi2(y)
∣∣∥∥∥∥ ∂d1+1 f

∂xd1+1

∥∥∥∥
s(y)

d1!h
d1+1
1

n
∏

i=0
|y−yi|

+

1
(d2 +1)!

n−d1
∑

i1=0

n−d2
∑

i2=0

1∣∣wi1(x)
∣∣∥∥∥∥ ∂d2+1 f

∂yd2+1

∥∥∥∥
s(x)

d2!h
d2+1
2

n
∏

i=0
|x−xi|

+

1
(d1 +1)!(d2 +1)!

n−d1
∑

i1=0

n−d2
∑

i2=0

∥∥∥∥ ∂d1+d2+2 f
∂xd1+1∂yd2+1

∥∥∥∥
1

d1!h
d1+1
1 d2!h

d2+1
2

≤
hd1+1

1
d1 +1

n−d1
∑

i1=0

n−d2
∑

i2=0

|µi2(y)|
s(y)

∥∥∥ ∂ d1+1 f
∂xd1+1

∥∥∥
+

hd2+1
2

d2 +1

n−d1
∑

i1=0

n−d2
∑

i2=0

|µi2(x)|
s(x)

∥∥∥ ∂ d2+1 f
∂yd2+1

∥∥∥
+

hd1+1
1 hd2+1

2
(d1 +1)(d2 +1)

n−d1
∑

i1=0

n−d2
∑

i2=0

∥∥∥ ∂ d1+d2+2 f
∂xd1+1∂yd2+1

∥∥∥
≤ (n−d1)(n−d2)

hd1+2
1

t1(d1 +1)

∥∥∥ ∂ d1+1 f
∂xd1+1

∥∥∥
+(n−d1)(n−d2)

hd2+2
2

t2(d2 +1)

∥∥∥ ∂ d2+1 f
∂yd2+1

∥∥∥
+

(n−d1)(n−d2)h
d1+1
1 hd2+1

2
(d1 +1)(d2 +1)

∥∥∥ ∂ d1+d2+2 f
∂xd1+1∂yd2+1

∥∥∥ .
Simplifying the above inequality by using (14) yields the desired result.

Theorem 9. Suppose that d1,d2, . . . ,dm$ are all positive and f ∈W n+1
∞

(
m
∏
i=0

[0,bi]

)
. Then

∥ f − r∥ ≤
m

∏
i=0

(n−di) ∑
∥α∥∞=1

(
h
t

)α
hα(d+1)

∥∥∥∂ α(d+1) f
∥∥∥ ,

where
α(d +1) = (α1(d1 +1),α2(d2 +1), . . . ,αm(dm +1)),
h = (h1,h2, . . . ,hm), t = (t1, t2, . . . , tm).

Proof. It is proved by using the similar steps as in Theorem 8 and the inequalities

|µi1,i2,...,im(x)|
s(x)

≤ 1, 0 ≤ i j ≤ n−d j, 0 ≤ j ≤ m,

where

s(x) =
n−d1

∑
i=0

µi(x1)
n−d2

∑
i=0

µi(x2) · · ·
n−d2

∑
i=0

µi(xm).

4 Numerical Examples

In this section, several numerical examples are given to illustrate the properties and effectiveness of the method. We
compare the approximate solution with polynomial interpolation and piecewise polynomial interpolation. All calculations
were made using Maple 9.
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Fig. 1: Approximation error for
f (x,y) = 32(x+ y)11/2

for n = 6 and d1 = d2 = 4.

Fig. 2: Approximation error for
f (x,y) = 32(x+ y)11/2

for n = 10 and d1 = d2 = 7.

Example 1. We want to approximate f (x,y) = 32(x+y)
11
2 on [0,1]× [0,1] which was given as an example by Mößner and

Reif [8]. Selecting the nodes {
(xi,y j) : xi =

i
6
, y j =

j
6
, 0 ≤ i, j ≤ 6

}
,

the absolute error for n = 6 and d1 = d2 = 4 is found as

∥ f − r∥∞ ≤ 0.09.

Similarly, taking the equidistant nodes, the absolute error for n = 10 and d1 = d2 = 7 is obtained as

∥ f − r∥∞ ≤ 10−5.

The absolute errors for n = 6, d1 = d2 = 4 and n = 10, d1 = d2 = 7 are plotted in Figure 1 and Figure 2, respectively.
Also, the infinity norms of error function for n = 10 and various d1,d2 are given in Table 1.

Table 1: The upper bounds of absolute errors for n = 10 and various d1,d2

d1 = d2 = 3 d1 = d2 = 4 d1 = d2 = 5 d1 = d2 = 6
0.031 0.007 1.5E −4 4.4E −5

Example 2. Let us consider the function f (x,y) = x2y2
(

1− e−(x2+y2)
)

on [0,1]× [0,1] dealt with in Mößner& Reif [8].
Let us find the approximate solution for n = 8, d1 = d2 = 5 on equidistant nodes. After finding the approximate function
r in (4), the upper bound of absolute error is found as

∥ f − r∥∞ ≤ 9.6×10−7.

The error function is plotted in Figure 3.

The following example was given in [9].
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Fig. 3: Error function for
f (x,y) = x2y2

(
1− e−(x2+y2)

)
on equidistant nodes.

Fig. 4: Error function for

f (x,y) = 3
4 e−

(9x−2)2
4 − (9y−2)2

4 + 3
4 e−

(9x−2)2
49 − (9y−2)2

10 +

1
2 e−

(9x−7)2
4 − (9y−3)2

4 − 1
5 e−(9x−4)2−(9y−7)2

.

We consider the function

f (x,y) =
3
4

e−
(9x−2)2

4 − (9y−2)2
4 +

3
4

e−
(9x−2)2

49 − (9y−2)2
10

+
1
2

e−
(9x−7)2

4 − (9y−3)2
4 − 1

5
e−(9x−4)2−(9y−7)2

on [0,1]× [0,1]. The upper bound of absolute error for n = 10, d1 = d2 = 6 is obtained as

∥ f − r∥∞ ≤ 0.035,

and the error function is plotted in Figure 4.

Example 3. We apply the method to
f (x,y) = ex cosy, (x,y) ∈ [0,1]× [0,1]

which we sampled at the equidistant spaced points. The errors are given below for n = 5, d1 = d2 = 4and n = 10, d1 =
d2 = 7 :

∥ f − r∥∞ ≤ 0.9446×10−3

and

∥ f − r∥∞ ≤ 0.3821×10−10.

As a last example, to compare the approximate solution with piecewise polynomial interpolation, we give an example
from [6].

Example 4. We compare the convergence of the piecewise polynomial interpolation of degree 2 and rational approximation
for n = 4, d1 = d2 = 2 and n = 8, d1 = d2 = 2, on the function

f (x,y) = e−(x2+y2)

on [0,1]× [0,1]. While the errors, for n = 4, d1 = d2 = 2 with respect to piecewise polynomial interpolation and with
respect to the present method are

∥ f − r∥∞ ≤ 1.6678×10−3
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and
∥ f − r∥∞ ≤ 4.4842×10−3,

respectively, the errors, n = 8, d1 = d2 = 2, with respect to piecewise polynomial interpolation and with respect to the
present method are

∥ f − r∥∞ ≤ 2.8151×10−4

and
∥ f − r∥∞ ≤ 4.5000×10−5,

respectively.

5 Conclusion

Given any multivariate function f , one can approximate by (4) easily on a box and estimate its error by Theorem 9

provided that f ∈W n+1
∞

(
m
∏
i=0

[0,bi]

)
. Since the approximate solution (4) depends on polynomial interpolation, it may not

converge. As seen from the examples, the method gives good approximation. More accurate results can be obtained for
small di and n. If the function f is a polynomial, the method gives the exactly f since its interpolation polynomial is again

itself. The method is applicable to all multivariate functions and it depends on 2
m
∏
i=0

(n−di) function evaluates.
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