On dual spacelike curves of constant breadth in dual Lorentzian space \mathbb{D}_{1}^{3}

Suha Yilmaz ${ }^{1}$, Umit Ziya Savci ${ }^{2}$ and Yasin Unluturk ${ }^{3}$
${ }^{1}$ Dokuz Eylul University, Buca Faculty of Education, Buca, Izmir, Turkey
${ }^{2}$ Celal Bayar University, Department of Mathematics Education, Manisa, Turkey
${ }^{3}$ Kirklareli University, Department of Mathematics, Kirklareli, Turkey

Received: 18 May 2015, Revised: 16 July 2015, Accepted: 22 July 2015
Published online: 12 December 2015.

Abstract

In this work, dual spacelike curves of constant breadth are defined in dual Lorentzian space \mathbb{D}_{1}^{3}. Some characterizations of closed dual spacelike curves of constant breadth are presented in dual Lorentzian space \mathbb{D}_{1}^{3}. These characterizations are made by obtaining special solutions of differential equations which are related to dual spacelike curves of constant breadth in \mathbb{D}_{1}^{3}.

Keywords: Dual Lorentzian space, dual spacelike curves, curves of constant breadth, differential equations.

1 Introduction

Dual numbers were introduced by William Kingdon Clifford as a tool for his geometrical investigations. Then dual numbers and vectors were used on line geometry and kinematics by Eduard Study. He devoted a special attention to the representation of oriented lines by dual unit vectors and defined the famous mapping: The set of oriented lines in a three-dimensional Euclidean space \mathbb{E}^{3} is one to one correspondence with the points of a dual space \mathbb{D}^{3} of triples of dual numbers [4].

In the classical theory of curves in differential geometry, curves of constant breadth have a long history as a research matter [2], [3], [1]. First it was introduced by Euler in [2]. Then Fujivara obtained a problem to determine whether there exist space curves of constant breadth or not, and he defined the concept "breadth" for space curves on a surface of constant breadth [3]. Furthermore, Blaschke defined the curve of constant breadth on the sphere [1]. Reuleaux gave a method to obtain these kinds of curves and applied the results he had by using his method, in kinematics and engineering [8].

Some geometric properties of plane curves of constant breadth were given by Köse in [6]. And, in another work of Kose, [5], these properties were studied in the Euclidean 3-space E^{3}. In Minkowski 3-space as an ambient space, some characterizations of timelike curves of constant breadth were given by Yılmaz and Turgut in [12]. Also, Yılmaz dealt with dual timelike curves of constant breadth in dual Lorentzian space in [11].

[^0]In this paper, we study dual spacelike curves of constant breadth in dual Lorentzian space \mathbb{D}_{1}^{3}. We give some characterizations of dual spacelike curves of constant breadth in \mathbb{D}_{1}^{3}.

2 Preliminaries

Let \mathbb{E}_{1}^{3} be the three-dimensional Minkowski space, that is, the three-dimensional real vector space \mathbb{E}^{3} with the metric

$$
\langle d x, d x\rangle=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ denotes the canonical coordinates in \mathbb{E}^{3}. An arbitrary vector x of \mathbb{E}_{1}^{3} is said to be spacelike if $\langle x, x\rangle>0$ or $x=0$, timelike if $\langle x, x\rangle<0$ and lightlike or null if $\langle x, x\rangle=0$ and $x \neq 0$. A timelike or light-like vector in \mathbb{E}_{1}^{3} is said to be causal. For $x \in \mathbb{E}_{1}^{3}$ the norm is defined by $\|x\|=\sqrt{|\langle x, x\rangle|}$, then the vector x is called a spacelike unit vector if $\langle x, x\rangle=1$ and a timelike unit vector if $\langle x, x\rangle=-1$. Similarly, a regular curve in \mathbb{E}_{1}^{3} can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors are spacelike, timelike or null (lightlike), respectively [7].

Dual numbers are given with the set

$$
\mathbb{D}=\left\{\widehat{x}=x+\varepsilon x^{*} ; x, x^{*} \in \mathbb{E}\right\}
$$

where the symbol ε designates the dual unit with the property $\varepsilon^{2}=0$ for $\varepsilon \neq 0$. Dual angle is defined as $\widehat{\theta}=\theta+\varepsilon \theta^{*}$, where θ is the projected angle between two spears and θ^{*} is the shortest distance between them. The set \mathbb{D} of dual numbers is commutative ring the the operations + and \cdot. The set

$$
\mathbb{D}^{3}=\mathbb{D} \times \mathbb{D} \times \mathbb{D}=\left\{\widehat{\varphi}=\varphi+\varepsilon \varphi^{*} ; \varphi, \varphi^{*} \in \mathbb{E}^{3}\right\}
$$

is a module over the ring \mathbb{D} [10].

For any $\widehat{a}=a+\xi a^{*}, \widehat{b}=b+\xi b^{*} \in \mathbb{D}^{3}$, if the Lorentzian inner product of \widehat{a} and \widehat{b} is defined by

$$
<\widehat{a}, \widehat{b}>=<a, b>+\varepsilon\left(<a^{*}, b>+<a, b^{*}>\right)
$$

then the dual space \mathbb{D}^{3} together with this Lorentzian inner product is called the dual Lorentzian space and denoted by \mathbb{D}_{1}^{3} [9]. For $\widehat{\varphi} \neq 0$, the norm $\|\widehat{\varphi}\|$ of $\widehat{\varphi}$ is defined by

$$
\|\widehat{\varphi}\|=\sqrt{<\widehat{\varphi}, \widehat{\varphi}>}
$$

A dual vector $\widehat{\omega}=\omega+\varepsilon \omega^{*}$ is called dual spacelike vector if $\langle\widehat{\omega}, \widehat{\omega}\rangle>0$ or $\widehat{\omega}=0$, dual timelike vector if $\langle\widehat{\omega}, \widehat{\omega}\rangle<0$ and dual null (lightlike) vector if $\langle\widehat{\omega}, \widehat{\omega}\rangle=0$ for $\widehat{\omega} \neq 0$. Therefore, an arbitrary dual curve which is a differential mapping onto \mathbb{D}_{1}^{3}, can locally be dual spacelike, dual timelike or dual null if its velocity vector is dual spacelike, dual timelike or dual null, respectively. Also, for the dual vectors $\widehat{a}, \widehat{b} \in \mathbb{D}_{1}^{3}$, Lorentzian vector product of these dual vectors is defined by

$$
\widehat{a} \times \widehat{b}=a \times b+\varepsilon\left(a^{*} \times b+a \times b^{*}\right)
$$

where $a \times b$ is the classical cross product according to the signature $(+,+,-)$ [9].

Let $\widehat{\varphi}: I \subset R \rightarrow \mathbb{D}_{1}^{3}$ be a dual spacelike curve with the arc-length parameter s. Then the unit tangent vector is defined $\dot{\hat{\varphi}}=\widehat{t}$ and the principal normal is $\widehat{n}=\frac{\dot{t}}{\widehat{\kappa}}$ where $\widehat{\kappa}$ is never pure dual curvature. The function $\widehat{\kappa}=\|\dot{t}\|=\kappa+\varepsilon \kappa^{*}$ is called dual curvature of the dual curve $\widehat{\varphi}$. Then the binormal vector of $\widehat{\varphi}$ is given by the dual vector $\widehat{b}=\widehat{t} \times \widehat{n}$. Hence, the triple $\{\widehat{t}, \widehat{n}, \widehat{b}\}$ is called Frenet trihedra at the point $\widehat{\varphi}(s)$. The Frenet derivative formulas of a dual spacelike curve $\widehat{\varphi}$ is given as

$$
\begin{align*}
& \widehat{t^{\prime}}=\widehat{\kappa} \widehat{n} \\
& \widehat{n}=-\varepsilon \widehat{\kappa} \widehat{t}+\widehat{\tau} \widehat{b} \tag{1}\\
& \widehat{b}=\widehat{\tau} \widehat{n}
\end{align*}
$$

where $\widehat{\tau}=\tau+\varepsilon \tau^{*}$ is the dual torsion of the dual spacelike curve $\widehat{\varphi}$. Here we assume that the dual torsion $\widehat{\tau}$ is never pure dual one [9].

3 Dual spacelike curves of constant breadth in \mathbb{D}_{1}^{3}

In this section, we give some characterizations of dual spacelike curve of constant breadth in the dual Lorentzian space \mathbb{D}_{1}^{3}. First, we give the definition of dual spacelike curve of constant breadth in \mathbb{D}_{1}^{3}.

Definition 1. Let $\left(C_{1}\right)$ be a dual spacelike curve with position vector $\widehat{\varphi}=\widehat{\varphi}(s)$ in \mathbb{D}_{1}^{3}. If (C) has parallel tangents in opposite directions at corresponding points $\widehat{\varphi}(s)$ and $\widehat{\alpha}\left(s_{\alpha}\right)$ and the distance between these points is always constant, then $\left(C_{1}\right)$ is called a dual spacelike curve of constant breadth. Moreover, a pair of dual spacelike curves $\left(C_{1}\right)$ and $\left(C_{2}\right)$ for which the tangents at the corresponding points $\widehat{\varphi}(s)$ and $\widehat{\alpha}\left(s_{\alpha}\right)$, respectively, are parallel and in opposite directions, and the distance between these points is always constant are called a spacelike dual curve pair of constant breadth.

Let $\widehat{\varphi}=\widehat{\varphi}(s)$ be a simple closed dual curve in \mathbb{D}_{1}^{3}. We consider a dual spacelike curve in the class Γ as in [3] having parallel tangents \widehat{t} and \widehat{t}_{α} in opposite directions at the opposite points $\widehat{\varphi}$ and $\widehat{\alpha}$ of the curve. A simple closed dual curve of constant breadth having parallel tangents in opposite directions at opposite points can be represented with respect to dual Frenet frame by the equation

$$
\begin{equation*}
\widehat{\alpha}=\widehat{\varphi}+\widehat{\gamma t}+\widehat{\delta} \widehat{n}+\widehat{\lambda} \widehat{b} \tag{2}
\end{equation*}
$$

where $\widehat{\gamma}, \widehat{\delta}$ and $\widehat{\lambda}$ are arbitrary functions of s. Differentiating both sides of (2), we get

$$
\begin{equation*}
\frac{d \widehat{\alpha}}{d s_{\alpha}} \frac{d s_{\alpha}}{d s}=\left(\frac{d \widehat{\gamma}}{d s}-\varepsilon \widehat{\delta} \widehat{\kappa}+1\right) \widehat{t}+\left(\widehat{\gamma} \widehat{\kappa}+\frac{d \widehat{\delta}}{d s}+\widehat{\lambda} \widehat{\tau}\right) \widehat{n}+\left(\widehat{\delta} \widehat{\tau}+\frac{d \widehat{\lambda}}{d s}\right) \widehat{b} \tag{3}
\end{equation*}
$$

and we know that $\widehat{t}_{\alpha}=-\widehat{t}$. Considering this, we have the following system of equations

$$
\begin{align*}
& \frac{d \widehat{\gamma}}{d s}=\varepsilon \widehat{\delta} \widehat{\kappa}-1-\frac{d s_{\alpha}}{d s} \\
& \frac{d \widehat{\delta}}{d s}=-\widehat{\gamma} \widehat{\kappa}-\widehat{\lambda} \widehat{\tau} \tag{4}\\
& \frac{d \widehat{\lambda}}{d s}=-\widehat{\delta} \widehat{\tau}
\end{align*}
$$

If we call $\widehat{\theta}$ as the angle between the tangent of the curve C at point $\widehat{\varphi}$ with a given direction and consider $\frac{d \widehat{\theta}}{d s}=\widehat{\kappa}=\frac{1}{\hat{\rho}}$ and $\frac{d \widehat{\theta}}{d s_{\alpha}}=\widehat{\kappa}^{*}=\frac{1}{\widehat{\rho}^{*}}$, we have (4) as follow;

$$
\begin{align*}
& \frac{d \widehat{\gamma}}{d \widehat{\theta}}=\varepsilon \widehat{\delta} \hat{\rho} \widehat{\kappa}-f(\widehat{\theta}), \\
& \frac{d \widehat{\delta}}{d \widehat{\theta}}=-\widehat{\gamma}-\widehat{\lambda} \widehat{\tau} \widehat{\rho}, \tag{5}\\
& \frac{d \widehat{\lambda}}{d \widehat{\theta}}=-\widehat{\delta} \widehat{\rho} \widehat{\tau},
\end{align*}
$$

where $f(\widehat{\theta})=\widehat{\rho}+\widehat{\rho}^{*}$. Using the system of ordinary differential equations (5), we have the following dual third order differential equation with respect to $\widehat{\gamma}$ as;

$$
\begin{equation*}
\frac{d^{3} \widehat{\gamma}}{d \widehat{\theta}^{3}}+\varepsilon \frac{d \widehat{\gamma}}{d \widehat{\theta}}+\varepsilon \frac{d \widehat{\lambda}}{d \widehat{\theta}} \widehat{\rho} \widehat{k}_{2}+\varepsilon \widehat{\lambda} \frac{d \widehat{\rho}}{d \widehat{\theta}}+\widehat{k}_{2}=0 \tag{6}
\end{equation*}
$$

We can give the following corollary.

Corollary 1. The dual differential equation of third order in (6) is a characterization of the simple closed dual spacelike curve $\widehat{\alpha}$.

Since position vector of a simple closed dual spacelike curve can be determined by solution of (6), let us investigate solution of the equation (6) in a special case. Let $\widehat{\kappa}, \widehat{\kappa}^{*}$ and $\widehat{\tau}, \widehat{\tau}^{*}$ be constants. Then the equation (6) has the form

$$
\begin{equation*}
\frac{d^{3} \widehat{\gamma}}{d \widehat{\theta}^{3}}+\left(\varepsilon+\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}} \frac{d \widehat{\gamma}}{d \widehat{\theta}}+\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}} f(\widehat{\boldsymbol{\theta}})=0 .\right. \tag{7}
\end{equation*}
$$

Solution of equation (7) yields the components

$$
\begin{align*}
& \widehat{\gamma}=A+B \cos (\widehat{l} \widehat{\theta})+C \sin (\widehat{l} \widehat{\boldsymbol{\theta}})-\int \frac{F(\widehat{\theta})}{\hat{l}^{2}} d \widehat{\theta}+\int \frac{F(\widehat{\theta}) \cos (\widehat{l} \widehat{\theta})}{\widehat{l}^{2}} d \widehat{\theta} \\
& +\int \frac{F(\widehat{\theta}) \sin (\widehat{l} \widehat{\theta})}{\widehat{l}^{2}} d \widehat{\theta}, \\
& \widehat{\delta}=\frac{1}{\varepsilon}\left\{-B \widehat{l} \sin (\widehat{l})+C \widehat{l} \cos (\widehat{l})+\frac{F(\widehat{\theta})}{\widehat{l}^{2}}[\cos (\widehat{l})+\sin (\widehat{l})-1]+f(\widehat{\theta})\right\}, \tag{8}
\end{align*}
$$

$$
\begin{aligned}
& +f(\widehat{\theta})\} \varepsilon \underset{\widehat{k}}{\widehat{\imath}} d \widehat{\theta},
\end{aligned}
$$

where $\hat{l}=\varepsilon+\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}, F(\widehat{\boldsymbol{\theta}})=\frac{\widehat{\tau}^{2}}{\widehat{\widehat{\kappa}}^{2}} f(\widehat{\boldsymbol{\theta}})$. We can give the following corollary.
Corollary 2. Position vector of a simple dual spacelike closed curve with constant dual curvature and constant dual torsion are obtained in terms of the values of $\widehat{\gamma}, \widehat{\delta}$ and $\widehat{\lambda}$ in the equation (8).

If the distance between opposite points of $\widehat{\varphi}$ and $\widehat{\alpha}$ is constant, then we can write that

$$
\begin{equation*}
\|\widehat{\alpha}-\widehat{\varphi}\|=\widehat{\gamma}^{2}+\varepsilon\left(\widehat{\delta}^{2}-\widehat{\lambda}^{2}\right)=\text { constant. } \tag{9}
\end{equation*}
$$

Differentiating (9) with respect to $\widehat{\theta}$

$$
\begin{equation*}
\widehat{\gamma} \frac{d \widehat{\gamma}}{d \widehat{\theta}}+\varepsilon \widehat{\delta} \frac{d \widehat{\delta}}{d \widehat{\theta}}-\varepsilon \widehat{\lambda} \frac{d \widehat{\lambda}}{d \widehat{\theta}}=0 \tag{10}
\end{equation*}
$$

By virtue of (5), the differential equation (10) yields

$$
\begin{equation*}
\widehat{\gamma}\left(\frac{d \widehat{\gamma}}{d \widehat{\theta}}-\varepsilon \widehat{\delta}\right)=0 \tag{11}
\end{equation*}
$$

There are two cases for the equation (11), we study these cases as follows.

Case 1. If $\widehat{\gamma}=0$, then we have the components $\widehat{\delta}$ and $\widehat{\lambda}$ as

$$
\begin{equation*}
\widehat{\delta}=\varepsilon f(\widehat{\theta}), \widehat{\lambda}=-\varepsilon \frac{d f(\widehat{\theta})}{d \widehat{\theta}} \frac{\widehat{\kappa}}{\hat{\tau}} . \tag{12}
\end{equation*}
$$

Using the values of (12) in (2), we have the following invariant of dual spacelike curves of constant breadth as

$$
\begin{equation*}
\widehat{\alpha}=\widehat{\varphi}++\varepsilon f(\widehat{\theta}) \widehat{n}-\varepsilon \frac{d f(\widehat{\theta})}{d \widehat{\theta}} \frac{\widehat{\kappa}}{\widehat{\tau}} \widehat{b} \tag{13}
\end{equation*}
$$

Case 2. If $\frac{d \widehat{\gamma}}{d \widehat{\theta}}=\varepsilon \widehat{\delta}$, that is, $f(\widehat{\boldsymbol{\theta}})=0$, then we have a relation among radii of curvatures as

$$
\begin{equation*}
\frac{1}{\widehat{\kappa}}+\frac{1}{\widehat{\kappa}^{*}}=0 . \tag{14}
\end{equation*}
$$

Using other components, we easily have a third order differential equation of variable coefficient with respect to $\widehat{\gamma}$ as

$$
\begin{equation*}
\frac{d^{3} \widehat{\gamma}}{d \widehat{\theta}^{3}}+\varepsilon \frac{d \widehat{\gamma}}{d \widehat{\theta}}-\varepsilon \frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}=0 \tag{15}
\end{equation*}
$$

This equation is a characterization for the components. However, its general solution of has not been found. Due to this, we investigate its solutions in special cases.

Let us suppose $\widehat{\varphi}$ is a dual spacelike curve which has constant dual curvatures, in this case, we rewrite the equation (15) as

$$
\begin{equation*}
\frac{d^{3} \widehat{\gamma}}{d \widehat{\theta}^{3}}+\left(\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}\right) \frac{d \widehat{\gamma}}{d \widehat{\theta}}=0 \tag{16}
\end{equation*}
$$

The general solution of (16) depends on the character of $\varepsilon-\frac{\widehat{\tau}^{2}}{\hat{\kappa}^{2}}$. Therefore, we distinguish the following cases.

Case 2.1. If $\kappa=\tau$ and $\kappa^{*}=\tau^{*}$, then we get

$$
\begin{equation*}
\frac{d^{3} \widehat{\gamma}}{d \widehat{\theta}^{3}}+(\varepsilon-1) \frac{d \widehat{\gamma}}{d \widehat{\theta}}=0 \tag{17}
\end{equation*}
$$

The general solution of (17) depends on the value of ε.

Case 2.1.1. If $\varepsilon=1$, then, by means of solution of (16), we find the following components:

$$
\begin{align*}
& \widehat{\gamma}=\widehat{c}_{1}+\widehat{c}_{2} \widehat{\theta}+\widehat{c}_{3} \widehat{\theta}^{2} \\
& \widehat{\delta}=\frac{1}{\varepsilon}\left(\widehat{c}_{2}+2 \widehat{c}_{3} \widehat{\theta}\right) \tag{18}\\
& \widehat{\lambda}=-\frac{1}{\varepsilon} \int\left(\left(\widehat{c}_{2}+2 \widehat{c}_{3}\right) \frac{\widehat{\kappa}}{\hat{\tau}}\right) d \widehat{\theta}
\end{align*}
$$

Case 2.1.2. If $\varepsilon=-1$, then, by means of solution of (16), we have the components:

$$
\begin{align*}
& \widehat{\gamma}=\widehat{c}_{1}+\widehat{c}_{2} e^{\sqrt{2} \widehat{\theta}}+\widehat{c}_{3} e^{-\sqrt{2} \widehat{\theta}} \\
& \widehat{\delta}=\frac{1}{\varepsilon}\left(\sqrt{2} \widehat{c}_{2} e^{\sqrt{2} \widehat{\theta}}-\sqrt{2} \widehat{c}_{3} e^{-\sqrt{2} \widehat{\theta}}+f(\widehat{\theta})\right) \tag{19}\\
& \widehat{\lambda}=-\frac{1}{\varepsilon} \int\left[\sqrt{2} \widehat{c}_{2} e^{\sqrt{2} \widehat{\theta}}-\sqrt{2} \widehat{c}_{3} e^{-\sqrt{2} \widehat{\theta}}+f(\widehat{\theta})\right] \frac{\widehat{\tau}}{\widehat{\kappa}} d \widehat{\theta}
\end{align*}
$$

Case 2.2. If $\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}>0$, then, by means of solution of (16), we find the components:

$$
\begin{align*}
\widehat{\gamma}= & \widehat{A} \cos \left[\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}}\right] \widehat{\theta}+\widehat{B} \sin \left[\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}}\right] \widehat{\theta}, \\
\widehat{\delta}= & \frac{1}{\varepsilon}\left(\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\widehat{\kappa}}^{2}}}\left\{\widehat{A} \sin \left[\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\widehat{\kappa}}^{2}}}\right] \widehat{\theta}+\widehat{B} \cos \left[\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}}\right] \widehat{\theta}\right\}\right), \tag{20}\\
\widehat{\lambda}= & -\frac{1}{\varepsilon} \int\left[\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}} \frac{\kappa}{\tau}\left\{\widehat{A} \sin \left[\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}}\right] \widehat{\theta}+\widehat{B} \cos \left[\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}}\right] \widehat{\theta}\right\}\right. \\
& \left.-\left(\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}\right)\left\{\widehat{A} \cos \left[\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}}\right] \widehat{\theta}+\widehat{B} \sin \left[\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}}\right] \widehat{\theta}\right\}\right] d \widehat{\theta} .
\end{align*}
$$

Case 2.3. If $\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}<0$, then, by means of solution of (16), we obtain the components:

$$
\begin{align*}
& \widehat{\gamma}=\widehat{K} e^{-\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}} \widehat{\theta}}+\widehat{L} e^{\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}} \widehat{\theta}}, \\
& \widehat{\delta}=\frac{1}{\varepsilon}\left(\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}}\left\{\widehat{K} e^{-\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}} \hat{\theta}}-\widehat{L} e^{\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}}} \hat{\theta}\right\}\right), \tag{21}\\
& \widehat{\lambda}=-\frac{1}{\varepsilon} \int\left(\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}}\left\{\widehat{K} e^{-\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}} \widehat{\theta}}+\widehat{L} e^{\sqrt{\varepsilon-\frac{\widehat{\tau}^{2}}{\widehat{\kappa}^{2}}} \widehat{\theta}}\right\} \frac{\widehat{\kappa}}{\frac{\widehat{\tau}}{}}\right) d \widehat{\theta},
\end{align*}
$$

where \widehat{K}, \widehat{L} are constants.

4 Conclusion

In the classical theory of curves in differential geometry, curves of constant breadth have a long history as a research matter. In this paper, we give dual spacelike curves of constant breadth in dual Lorentzian 3- space \mathbb{D}_{1}^{3}. These characterizations are made by obtaining special solutions of differential equations which are related to dual spacelike curves of constant breadth in \mathbb{D}_{1}^{3}.

References

[1] W. Blaschke. Konvexe Bereiche Gegebener Konstanter Breite und Kleinsten Inhalts. Math. Ann., Vol 76 pp: 504-513, 1915.
[2] Euler, L., De Curvis Trangularibus, Acta Acad Petropol, pp:3-30, 1870.
[3] Fujivara, M., On Space Curves of Constant Breadth, Tohoku Math. J. Vol:5, pp. 179-184, 1914. 1963.
[4] Guggenheimer, H., Differential Geometry, McGraw Hill, New York, 1963.
[5] Köse Ö., On Space Curves of Constant Breadth, Doğa Turk Math. J. Vol:(10) 1, pp. 11-14, 1986.
[6] Köse Ö., Some Properties of Ovals and Curves of Constant Width in a Plane, Doğa Turk Math. J., Vol 8, pp:119-126, 1984.
[7] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
[8] Reuleaux, F., The Kinematics of Machinery, Dover Publications, New York, 1963.
[9] Uğurlu H.H., Çalişkan A., The Study mapping for directed space-like and time-like in Minkowski 3-space R_{1}^{3}, Mathematical \& Computational App., Vol. 1: 142-148, 1996.
[10] Veldkamp, G.R., On The Use of Dual Numbers, Vectors and Matrices in Instantaneous Spatial Kinematics, Mech. Math. Theory, Vol 11, pp:141-156, 1976.
[11] Yılmaz, S., Timelike Dual Curves of Constant Breadth in Dual Lorentzian Space, Sci. J. of International Black Sea University, Vol 2, pp:129-136. 2008.
[12] Yılmaz, S., Turgut M., On the time-like curves of constant breadth in Minkowski 3-Space, International J. Math. Combin., Vol 3: pp: 34-39, 2008.

[^0]: * Corresponding author e-mail: yasinunluturk @klu.edu.tr

