Approximation of Fourier Series of a Function of Class $w\left(L^{p}, \xi(t)\right)$ by Product Means

M. Misra ${ }^{1}$, B. Majhi ${ }^{2}$, B. Padhy ${ }^{3}$, P. Samanta ${ }^{4}$ and U. K. Misra ${ }^{5}$
${ }^{1}$ Department of Mathematics, Binayak Acharya College, Berhampur-760006 ,Odisha, India, E-mail: mahendramisra2007@gmail.com
${ }^{2}$ Department of Mathematics,GIET, Gunupur, Rayagada, Odisha, India, E-mail:bhairabamajhi@gmail.com
${ }^{3}$ Department of Mathematics, Roland Institute of Technology Golanthara-761008, Odisha, India, E-mail: iraady@gmail.com
${ }^{4}$ Department of Mathematics, Berhampur University, Berhampur-760007, Odisha, India, E-mail: dr.pns.math@gmail.com
${ }^{5}$ Department of Mathematics,National Institute of Science and Technology,Pallur Hills, Golanthara-761008, Odisha, India E-mail: umakanta_misra@yahoo.com

Abstract

Lipchitz class of function had been introduced by McFadden[7\}.Recently dealing with degree of approximation of Fourier series of a function of Lipchitz class Nigam[4] and Misra et al [2],[3] have established certain theorems. Extending their results in this paper, a theorem on degree of approximation of a function $f \in W\left(L^{p}, \xi(t)\right)$ by product summability $(E, q)\left(\bar{N}, p_{n}\right)$ of Fourier series associated with f , has been established. Keywords: Degree of Approximation, $w\left(L^{p}, \xi(t)\right)$ class of function, $(E, q)\left(\bar{N}, p_{n}\right)$ product mean, Fourier series.

1. Introduction and Preliminaries

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad, n \rightarrow \infty,\left(P_{-i}=p_{-i}=0, i \geq 0\right) \tag{1}
\end{equation*}
$$

The sequence -to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{2}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of the $\left(\bar{N}, p_{n}\right)$-mean of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficient $\left\{p_{n}\right\}$. If

$$
\begin{equation*}
t_{n} \rightarrow s \quad \text {,as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be $\left(\bar{N}, p_{n}\right)$ summable to s.
The conditions for regularity of $\left(\bar{N}, p_{n}\right)$-summability are easily seen to be

$$
\left\{\begin{array}{l}
(i) P_{n} \rightarrow \infty, \text { as } n \rightarrow \infty \tag{4}\\
(i i) \sum_{i=0}^{n} p_{i} \leq C\left|P_{n}\right|, \text { as } n \rightarrow \infty
\end{array}\right.
$$

The sequence -to-sequence transformation [1]

$$
\begin{equation*}
T_{n}=\frac{1}{(1+q)^{n}} \sum_{v=0}^{n}\binom{n}{v} q^{n-v} s_{v}, \tag{5}
\end{equation*}
$$

defines the sequence $\left\{T_{n}\right\}$ of the (E, q) mean of the sequence $\left\{s_{n}\right\}$.
If

$$
\begin{equation*}
T_{n} \rightarrow s, \text { as } n \rightarrow \infty, \tag{6}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be (E, q) summable to s.
Clearly (E, q) method is regular. Further, the (E, q) transform of the $\left(\bar{N}, p_{n}\right)$ transform of $\left\{s_{n}\right\}$ is defined by

$$
\begin{align*}
\tau_{n}= & \frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k} t_{k} \\
& =\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} s_{v}\right\} \tag{7}
\end{align*}
$$

If

$$
\begin{equation*}
\tau_{n} \rightarrow s, \text { as } \quad n \rightarrow \infty, \tag{8}
\end{equation*}
$$

then $\quad \sum a_{n}$ is said to be $(E, q)\left(\bar{N}, p_{n}\right)$-summable to s.
Let $f(t)$ be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Then the Fourier series associated with f at any point x is defined by

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{9}
\end{equation*}
$$

Let $S_{n}(f ; x)$ be the n -th partial sum of (1.9). The L_{∞}-norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(x)|: x \in R\} \tag{10}
\end{equation*}
$$

and the L_{v}-norm is defined by

$$
\begin{equation*}
\|f\|_{v}=\left(\int_{0}^{2 \pi}|f(x)|^{v}\right)^{\frac{1}{v}}, v \geq 1 \tag{11}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial $P_{n}(x)$ of degree n under norm $\|\cdot\|_{\infty}$ is defined by [5]

$$
\begin{equation*}
\left\|P_{n}-f\right\|_{\infty}=\sup \left\{\left|p_{n}(x)-f(x)\right|: x \in R\right\} \tag{12}
\end{equation*}
$$

and the degree of approximation $E_{n}(f)$ of a function $f \in L_{v}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min _{P_{n}}\left\|P_{n}-f\right\|_{v} \tag{13}
\end{equation*}
$$

This method of approximation is called Trigonometric Fourier approximation[6].
A function $f(x) \in \operatorname{Lip} \alpha$, if

$$
\begin{equation*}
|f(x+t)-f(x)|=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1, t>0 \tag{14}
\end{equation*}
$$

and $f(x) \in \operatorname{Lip}(\alpha, r)$, for $0 \leq x \leq 2 \pi$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1, r \geq 1, t>0 \tag{15}
\end{equation*}
$$

For a given positive increasing function $\xi(t)$, the function $f(x) \in \operatorname{Lip}(\xi(t), r)$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O(\xi(t)), r \geq 1, t>0 \tag{16}
\end{equation*}
$$

For a given positive increasing function $\xi(t)$ and an integer $p>1$ the function $f(x) \in W\left(L^{p}, \xi(t)\right)$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{p}(\sin x)^{p \beta} d x\right)^{\frac{1}{p}}=O(\xi(t)), \beta \geq 0 \tag{17}
\end{equation*}
$$

We use the following notation throughout this paper:

$$
\begin{equation*}
\phi(t)=f(x+t)+f(x-t)-2 f(x) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{n}(t)=\frac{1}{2 \pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} \tag{19}
\end{equation*}
$$

Further, the method $(E, q)\left(\bar{N}, p_{n}\right)$ is assumed to be regular throughout the paper.
Dealing with The degree of approximation by the product $(E, q)(C, 1)$-mean of Fourier series, Nigam et al [4] proved the following theorem.

Theorem 1. If a function $f, 2 \pi$ - periodic, belonging to class $\operatorname{Lip} \alpha$, then its degree of approximation by $(E, q)(C, 1)$ summability mean on its Fourier series $\sum_{n=0}^{\infty} A_{n}(t)$ is given by $\left\|E_{n}^{q} C_{n}^{1}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1$, where $\quad E_{n}^{q} C_{n}^{1} \quad$ represents the (E, q) transform of $(C, 1)$ transform of $s_{n}(f ; x)$.
Misra et al [2] proved the following theorem using $(E, q)\left(\bar{N}, p_{n}\right)$ mean of Fourier series.

Theorem 2. If f is a 2π - periodic function of class Lip α, then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means of its Fourier series (9) of $f(x)$ is given by
$\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1$, where τ_{n} is as defined in (7).
Recently, Misra et al [3] proved the following theorem using $(E, q)\left(\bar{N}, p_{n}\right)$ mean of the Fourier series using a 2π - periodic function of class $\operatorname{Lip}(\xi(t), r)$.

Theorem 3. Let $\xi(t)$ be a positive increasing function. If f is a 2π - Periodic function of the class $\operatorname{Lip}(\xi(t), r), r \geq 1, t>0$, then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means of the Fourier series (9) of $f(x)$ is given by

$$
\left\|\tau_{n}-f\right\|_{\infty}=O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), r \geq 1
$$

where τ_{n} is as defined in (7).

2 Main Theorem

In this paper, we have proved a theorem on degree of approximation by the product mean $(E, q)\left(\bar{N}, p_{n}\right)$ of the Fourier series of a function of class $W\left(L^{p}, \xi(t)\right)$. We prove.

Theorem 4. Let $\xi(t)$ be a positive increasing function and f a 2π - Periodic function of the class $W\left(L^{p}, \xi(t)\right), p>1, t>0$. Then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means of the Fourier series (9) of $f(x)$ is given by

$$
\begin{equation*}
\left\|\tau_{n}-f\right\|_{r}=O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), r \geq 1 \tag{20}
\end{equation*}
$$

provided

$$
\begin{equation*}
\left(\int_{0}^{\frac{1}{n+1}}\left(\frac{t|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right)^{r} d t\right)^{\frac{1}{r}}=O\left(\frac{1}{n+1}\right) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{t^{-\delta}|\phi(t)|}{\xi(t)}\right)^{r} d t\right)^{\frac{1}{r}}=O\left((n+1)^{\delta}\right) \tag{22}
\end{equation*}
$$

hold uniformly in x with $\frac{1}{r}+\frac{1}{s}=1$, where δ is an arbitrary number such that $s(1-\delta)-1>0$ and τ_{n} is as defined in (7).

3 Required Lemma

We require the following Lemma for the proof the theorem.

Lemma 1.

$$
\left|K_{n}(t)\right|=\left\{\begin{array}{ll}
O(n) & , 0 \leq t \leq \frac{1}{n+1} \\
O\left(\frac{1}{t}\right), & \frac{1}{n+1} \leq t \leq \pi
\end{array} .\right.
$$

Proof: For $0 \leq t \leq \frac{1}{n+1}$, we have $\sin n t \leq n \sin t$, then

$$
\begin{aligned}
& \left|K_{n}(t)\right|=\frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right| \\
& \left.\leq \frac{1}{2 \pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{(2 v+1) \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\} \right\rvert\, \\
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}(2 k+1)\left\{\frac{1}{\left.P_{k} \sum_{v=0}^{k} p_{v}\right\}}\right\}\right| \\
& \leq \frac{(2 n+1)}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \\
& =O(n)
\end{aligned}
$$

For $\frac{1}{n+1} \leq t \leq \pi$, by Jordan's lemma we have, $\sin \left(\frac{t}{2}\right) \geq \frac{t}{\pi}, \sin n t \leq 1$.
Then

$$
\left|K_{n}(t)\right|=\frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right|
$$

$$
\begin{aligned}
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} \frac{\pi p_{v}}{t}\right\}\right| \\
& =\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}\right\}\right| . \\
& =\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \\
& =O\left(\frac{1}{t}\right) .
\end{aligned}
$$

This proves the lemma.

4 Proof of Theorem 4

Using Riemann -Lebesgue theorem, we have for the n-th partial sum $s_{n}(f ; x)$ of the Fourier series (9) of $f(x)$,

$$
s_{n}(f ; x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} d t
$$

Following Titchmarch [5], the $\left(\bar{N}, p_{n}\right)$ transform of $s_{n}(f ; x)$ is given by

$$
t_{n}-f(x)=\frac{1}{2 \pi P_{n}} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n} p_{k} \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} d t
$$

Writing the $(E, q)\left(\bar{N}, p_{n}\right)$ transform of $s_{n}(f ; x)$ by τ_{n}, we have

$$
\begin{gathered}
\tau_{n}-f=\frac{1}{2 \pi(1+q)^{n}} \int_{0}^{\pi} \varphi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} d t \\
=\int_{0}^{\pi} \phi(t) K_{n}(t) d t
\end{gathered}
$$

$$
\begin{align*}
& =\left\{\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right\} \phi(t) K_{n}(t) d t \\
& =I_{1}+I_{2}, \text { say } \tag{23}
\end{align*}
$$

Now

$$
\begin{aligned}
\left|I_{1}\right| & =\frac{1}{2 \pi(1+q)^{n}}\left|\int_{0}^{1 / n+1} \phi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\sin \left(v+\frac{1}{2}\right)}{\sin \frac{t}{2}}\right\} d t\right| \\
& =\left|\int_{0}^{\frac{1}{n+1}} \phi(t) K_{n}(t) d t\right| \\
& \leq\left(\int_{0}^{\frac{1}{n+1}}\left|\frac{t \phi(t) \sin ^{\beta} t}{\xi(t)}\right|^{r} d t\right)^{\frac{1}{r}}\left(\left.\frac{1}{n+1}\left|\int_{0}^{\frac{n}{n}}\right| \frac{\xi(t) K_{n}(t)}{t \sin ^{\beta} t}\right|^{s} d t\right)^{\frac{1}{s}}
\end{aligned}
$$

where $\frac{1}{r}+\frac{1}{s}=1, \quad$ using Hölder's inequality

$$
=O(1)\left(\int_{0}^{\frac{1}{n+1}}\left(\frac{\xi(t)}{t^{1+\beta}}\right)^{s} d t\right)^{\frac{1}{s}},
$$

using lemma-1 and (21),

$$
\begin{aligned}
& =O\left(\xi\left(\frac{1}{n+1}\right)\right)\left(\int_{\varepsilon}^{\frac{1}{n+1}} \frac{d t}{t^{(1+\beta) s}}\right)^{\frac{1}{s}}, \text { for some } 0 \leq \varepsilon \leq \frac{1}{n+1} \\
& =O\left(\xi\left(\frac{1}{n+1}\right)\right) O\left((n+1)^{-\frac{1}{s}+1+\beta}\right)
\end{aligned}
$$

$$
\begin{equation*}
=O\left(\xi\left(\frac{1}{n+1}\right)(n+1)^{\beta+\frac{1}{r}}\right) \tag{24}
\end{equation*}
$$

Next,

$$
\left|I_{2}\right| \leq\left(\int_{\frac{1}{n+1}}^{\pi}\left(\left|\frac{t^{-\delta}|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right|\right)^{r} d t\right)^{\frac{1}{r}}\left(\int_{\frac{1}{n+1}}^{\pi}\left(\left|\frac{\xi(t)\left|K_{n}(t)\right|}{t^{-\delta} \sin ^{\beta} t}\right|\right)^{s} d t\right)^{\frac{1}{s}}
$$

where $\frac{1}{r}+\frac{1}{s}=1$, using Hölder's inequality

$$
=O\left((n+1)^{\delta}\right)\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{\xi(t)}{t^{\beta+1-\delta}}\right)^{s} d t\right)^{\frac{1}{s}}
$$

using Lemma 1 and (22)

$$
=O\left((n+1)^{\delta}\right)\left(\int_{\frac{1}{\pi}}^{n+1}\left(\frac{\xi\left(\frac{1}{y}\right)}{y^{\delta-\beta-1}}\right)^{s} \frac{d y}{y^{2}}\right)^{\frac{1}{s}}
$$

since $\xi(t)$ is a positive increasing function, so is $\xi(1 / y) /(1 / y)$. Using second mean value theorem we get

$$
\begin{align*}
& =O\left((n+1)^{1+\delta} \xi\left(\frac{1}{n+1}\right)\left(\int_{\varepsilon}^{n+1} \frac{d y}{y^{s(\delta-\beta-1)+2}}\right)^{\frac{1}{s}}, \text { for some } \frac{1}{\pi} \leq \varepsilon \leq n+1\right. \\
& =O\left((n+1)^{1+\delta} \xi\left(\frac{1}{n+1}\right)\right) O\left((n+1)^{\beta+1-\delta-\frac{1}{s}}\right) \\
& =O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right) \tag{25}
\end{align*}
$$

Then from (24) and (25), we have

$$
\begin{aligned}
\left|\tau_{n}-f(x)\right| & =O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), \text { for } r \geq 1 \\
\left\|\tau_{n}-f(x)\right\|_{r} & =\left(\int_{0}^{2 \pi} O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right)^{r} d x\right)^{\frac{1}{r}}, r \geq 1
\end{aligned}
$$

$$
\begin{aligned}
& =O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right)\left(\int_{0}^{2 \pi} d x\right)^{\frac{1}{r}} \\
& =O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right)
\end{aligned}
$$

This completes the proof of the theorem.

5 Corollaries

Following corollaries can be derived from the main theorem.

Corollary 1. The degree of approximation of a function f belonging to the class $\operatorname{Lip}(\alpha, r), 0<\alpha \leq 1, r \geq 1$ is given by

$$
\left\|\tau_{n}-f\right\|_{r}=O\left((n+1)^{-\alpha+\frac{1}{r}}\right)
$$

Proof: The corollary follows by putting $\beta=0$ and $\xi(t)=t^{\alpha}$ in the main theorem.
Corollary 2. The degree of approximation of a function f belonging to the class $\operatorname{Lip}(\alpha), 0<\alpha \leq 1$ is given by

$$
\left\|\tau_{n}-f\right\|_{\infty}=O\left((n+1)^{-\alpha}\right)
$$

Proof: The corollary follows by letting $r \rightarrow \infty$ in corollary 6.1.

Acknowledgment

The authors are thankful to the referee for his valuable suggestions for the improvement of the paper.

References

[1] G.H. Hardy, Divergent Series (First Edition), Oxford University Press, (1970).
[2] U.K. Misra, M. Misra, B.P. Padhy and S.K. Buxi, On degree of approximation by product mean $(E, q)\left(\bar{N}, p_{n}\right)$ of Fourier series, International Jour. of Math. Sciences, Technology and Humanities, 22(2012), 213-220.
[3] U.K. Misra, M. Misra, B.P. Padhy and D. Bisoyi, On degree of approximation by product mean $(E, q)\left(\bar{N}, p_{n}\right)$ of Fourier series, International Jour. of Math. Sciences, Technology and Humanities, 22(2012), 213-220.
[4] H.K. Nigam and A. Sharma, On degree of approximation by product means, Ultra Scientist of Physical Sciences, 22(3) (M) (2010), 889-894.
[5] E.C. Titchmarch, The Theory of Functions, Oxford University Press, (1939).
[6] A. Zygmund, Trigonometric Series (Second Edition) (Vol. I), Cambridge University Press, Cambridge, (1959).

