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Abstract: In this paper, we obtained the 1-soliton solutions of the (3+1)-dimensional Zakharov–Kuznetsov (ZK) equation and the
Drinfeld-Sokolov equation system. By using a solitary wave ansatz method, we obtain exact bright and dark soliton solutions for these
equations. The parameters of the soliton envelope (amplitude, widths, velocity) are obtained as function of the dependent model
coefficients. Note that, it is always useful and desirable to construct exact solutions especially soliton-type envelope for the
understanding of most nonlinear physical phenomena.
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1 Introduction

In recent years, nonlinear waves is a very important topic of research in nonlinear dynamics, mathematical physics and

various fields [1,2,3]. These wave equations are observed in fluid dynamics, aeronautics, optical fibers, solid state

physics, plasma physics, chemical physics, geophysical sciences and geochemistry.

In the past decades, new exact solutions may help to find new phenomena. A variety of powerfull methods, such as the

Jacobi elliptic function method [4,5], tanh-sech method [6,7], extended tanh method [8,9],
(

G′
G

)
-expansion method [10,

11], homogeneous balance method [12,13], sine-cosine method [14,15,16], first integral method [17,18] and

F-expansion method [19,20] were used to obtain the solitary wave solutions.

The solitary wave ansatz method was first proposed by Biswas [21] and Triki et al. [22] is particularly notable in its

power and applicability in solving nonlinear problems, and it has been successfully applied to many kinds of nonlinear

partial differential equations [23,24]

2 The (3+1)-dimensional Zakharov–Kuznetsov (ZK) Equation

The Zakharov–Kuznetsov (ZK) equation governs the behavior of weakly nonlinear ion-acoustic waves in a plasma

comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic field. We considered the

following ZK equation given by [25]

ut +auux +(uxx +uyy +uzz)x = 0, (1)
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which is a typical nonlinear evolution equation, where a is real constants. Wazwaz constructed some new exact solutions

by sine-cosine method in [26]. Wu and Fan obtained compactons, solitary patterns, plane periodic and solitary traveling

wave solutions for Eq. (1), and their analytic expressions in [27].

Now, the bright soliton solution, dark soliton solution and conservation laws of this equation will be obtained.

2.1 The bright (non-topological) soliton solution:

To obtain the bright soliton solution of equation (1), the solitary wave ansatz admits the use of the assumption [28,29],

u(x,y,z, t) = λ sechpτ , (2)

where τ = η(x+ y+bz− vt ) which λ , η and v are constant coefficients.Here λ is the amplitude, η and b are the inverse

width and v is the velocity of the soliton. The exponents p is unknown at this point and will be determined later. From the

ansatz (2), we obtain:

ut = pληvsechpτ tanhτ, (3)

uux =−λ 2 pηsech2pτ tanhτ, (4)

uxxx =−p3λη3sechpτ tanhτ + p(p+1)(p+2)λη3sechp+2τ tanhτ, (5)

uyyx =−p3λη3sechpτ tanhτ + p(p+1)(p+2)λη3sechp+2τ tanhτ, (6)

uzzx =−p3λη3b2sechpτ tanhτ + p(p+1)(p+2)λη3b2sechp+2τ tanhτ. (7)

Substituting Eqs. (2)-(7) into Eq. (1), we get

pληvsechpτ tanhτ −aλ 2 pηsech2pτ tanhτ − p3λη3sechpτ tanhτ + p(p+1)(p+2)λη3sechp+2τ tanhτ

− p3λη3sechpτ tanhτ + p(p+1)(p+2)λη3sechp+2τ tanhτ − p3λη3b2sechpτ tanhτ (8)

+ p(p+1)(p+2)λη3b2sechp+2τ tanhτ = 0.

Equating the exponents of sech2pτ tanhτ and sechp+2τ tanhτ term in equation (8), one yields

2p = p+2, (9)

which implies

p = 2. (10)

We next equate the exponents of sech2pτ tanhτ and sechp+2τ tanhτ terms to zero one gets

−aλ 2 pη + p(p+1)(p+2)λη3 + p(p+1)(p+2)λη3 + p(p+1)(p+2)λη3b2 = 0. (11)
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If we put p = 2 and solving the equation (11), the velocity of soliton is given by

λ =
12η2(2+b2)

a
, a ̸= 0. (12)

By setting the coefficients of limsechpτ terms in Eq. (8) to zero yields

pληv−2p3λη3 − p3λη3b2 = 0. (13)

If we put p = 2 and solving the equation (13)

v = 4η2(2+b2). (14)

which gives the velocity of the soliton.

Finally, we get the bright (non topological) soliton solution for the constant coefficient the (3+1)-dimensional ZK

equation, when the above expressions of p,v and λ given by Eqs. (10), (12) and (14) are substituted in (2) as :

u(x,y,z, t) = λ limsech2η(x+ y+bz− vt). (15)

2.2 The dark (topological) soliton solution:

In this section, the ansatz method [30] will be used to carry out the integration of the (3+1)-dimensional ZK equation (1).

The search is going to be for a dark soliton solution. We use an ansatz solution of the form [31,32,33]

u(x,y,z, t) = λ tanhp τ, (16)

and

τ = η(x+ y+bz− vt), (2.17)

where λ , b and η are unknown free parameters and v is the velocity of the soliton, respectively, that will be determined.

The exponent p is also unknown.

From Eq. (16), we have:

ut =−pλvη
{

tanhp−1 τ − tanhp+1 τ
}
, (17)

uux = pλ 2η
{

tanh2p−1 τ − tanh2p+1 τ
}
, (18)

uxxx = λ pη3

{
(p−1)(p−2) tanhp−3 τ −

[
2p2 +(p−1)(p−2)

]
tanhp−1 τ

+
[
2p2 +(p+1)(p+2)

]
tanhp+1 τ − (p+1)(p+2) tanhp+3 τ

}
, (19)

uyyx = λ pη3

{
(p−1)(p−2) tanhp−3 τ −

[
2p2 +(p−1)(p−2)

]
tanhp−1 τ

+
[
2p2 +(p+1)(p+2)

]
tanhp+1 τ − (p+1)(p+2) tanhp+3 τ

}
, (20)
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uzzx = λ pη3b2

{
(p−1)(p−2) tanhp−3 τ −

[
2p2 +(p−1)(p−2)

]
tanhp−1 τ

+
[
2p2 +(p+1)(p+2)

]
tanhp+1 τ − (p+1)(p+2) tanhp+3 τ

}
, (21)

where τ = η(x+ y+bz− vt ). Substituting Eqs. (17)-(21) into Eq. (1), we obtain

− pλvη
{

tanhp−1 τ − tanhp+1 τ
}
+apλ 2η

{
tanh2p−1 τ − tanh2p+1 τ

}
(22)

+2λ pη3

{
(p−1)(p−2) tanhp−3 τ −

[
2p2 +(p−1)(p−2)

]
tanhp−1 τ

+
[
2p2 +(p+1)(p+2)

]
tanhp+1 τ − (p+1)(p+2) tanhp+3 τ

}

+λ pη3b2

{
(p−1)(p−2) tanhp−3 τ −

[
2p2 +(p−1)(p−2)

]
tanhp−1 τ

+
[
2p2 +(p+1)(p+2)

]
tanhp+1 τ − (p+1)(p+2) tanhp+3 τ

}
= 0.

By equating the highest exponents of tanh2p+1 τ and tanhp+3 τ terms in Eq (22), one gets:

2p+1 = p+3, (23)

so that

p = 2. (24)

Again from (22), setting the coefficients of tanhp−1 τ terms to zero yields

−pλvη −2λη3 p
[
2p2 +(p−1)(p−2)

]
−λη3b2 p

[
2p2 +(p−1)(p−2)

]
= 0. (25)

If we put p = 2 and solving the equation in (25), we obtain

v =−8η2(b2 +2). (26)

Setting the coefficients of tanhp+1 τ and tanh2p−1 τ or tanhp+3 τ and tanh2p+1 τ terms in Eq. (22) to zero we get

apλ 2η + pλvη +2λ pη3 [2p2 +(p+1)(p+2)
]
+λ pη3b2 [2p2 +(p+1)(p+2)

]
= 0. (27)

If we put p = 2 and solving the equation in (27), we get

λ =−12η2(b2 +2)
a

, a ̸= 0. (28)

Lastly, we can determine the dark (topological) soliton solution for the Eq. (1) as

u(x,y,z, t) = λ tanh2(η(x+ y+bz− vt)), (29)

where the velocity of the solitons v is given in (26), free parameter λ is given by (28).
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3 The Drinfeld-Sokolov (DS) system

Let us second consider the Drinfeld-Sokolov system [34]

ut +(v2)x = 0, (30)

vt −avxxx +3buxv+3huvx = 0, (31)

where a, b and h are real constants. This system was introduced by Drinfeld and Sokolov as an example of a system of

nonlinear equations possessing Lax pairs of a special form [35]. Wazwaz [36] used the sine-cosine method and the tanh

method to stress the power of these methods to nonlinear equations. Bekir [34] successfully used the extended tanh method

and the auxiliary equation method [37] establish solitary wave solutions of the Drinfeld-Sokolov equations. Wazwaz [36]

also investigated the traveling wave solutions with compact and noncompact structures for the Drinfeld-Sokolov equations

and Qi et al. employ the complex method to obtain the general meromorphic solutions of the Drinfeld-Sokolov equations

(DS system of equations) [38].

3.1 Bright (non-topological) soliton solution

In order to seek soliton solutions to (30) and (31), the starting assumptions are

u(x, t) = A1sechp {η (x− vt)} (32)

and

v(x, t) = A2sechr {η (x− vt)} (33)

which A1, A2, η and v are constant coefficients.Here A1, A2 are the amplitude, η is the inverse width and v is the velocity

of the soliton. The exponents p is unknown at this point and will be determined later. From (32) and (33), it is possible to

obtain:

pA1ηvsechpτ tanhτ −2rA2
2ηsech2rτ tanhτ = 0, (34)

and

rA2ηvsechrτ tanhτ +ar3A2η3sechrτ tanhτ

− r(r+1)(r+2)aA2η3sechr+2τ tanhτ

−3bpA1A2ηsechp+rτ tanhτ (35)

−3hrA1A2ηsechp+rτ tanhτ

= 0.

Equating the exponents of sechpτ tanhτ and sech2rτ tanhτ terms in Eq. (34), one obtains

p = 2r, (36)
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and theirs coefficients gives

pA1ηv−2rA2
2η = 0, (37)

then we get,

v =
A2

2
A1

. (38)

Similarly, equating the exponents of sechr+2τ tanhτ and sechp+rτ tanhτ terms in Eq. (35), it is possible to obtain

p = 2, (39)

so that from (36)

r = 1. (40)

Setting the coefficients of sechrτ tanhτ terms to zero we get

rA2ηv+ar3A2η3 = 0. (41)

By using (38) and some calculating, we have

η =± A2

r
√
−aA1

, (42)

which gives the inverse width of the soliton. Additionally, it is necessary to have

aA1 < 0. (43)

By setting the coefficients of sechp+rτ tanhτ and sechr+2τ tanhτ terms to zero one gets

−r(r+1)(r+2)aA2η3 −3bpA1A2η −3hrA1A2η = 0, (44)

and using Eqs. (39), (40) and (42) that gives

A1 =± 2A2√
4b+2h

, (45)

which provided that 4b+2h > 0.

Therefore the 1-soliton solution of the Drinfeld-Sokolov system is given by

u(x, t) = A1sech2η (x− vt) , (46)

and

v(x, t) = A2sechη (x− vt) , (47)

where the soliton velocity, inverse width and amplitude are given by (38), (42) and (45). respectively.
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3.2 Dark (topological) soliton solution

For a dark (topological) 1-soliton solution, the starting hypothesis is given by

u(x, t) = A1 tanhp {η (x− vt)} , (48)

and

v(x, t) = A2 tanhr {η (x− vt)} . (49)

Here in (48) and (49), A1, A2 and η are the free parameters for topological solitons and v is the velocity of the soliton.

Similar approach like section 2, by using (48) and (49) we get

pvηA1{tanhp+1 τ − tanhp−1 τ}+2rηA2
2{tanh2r−1 τ − tanh2r+1 τ}= 0, (50)

and

rvηA2{tanhr+1 τ − tanhr−1 τ}−ar(r−1)(r−2)A2η3{tanhr−3 τ − tanhr−1 τ
}

−ar(r+1)(r+2)A2η3{tanhr+1 τ − tanhr+3 τ
}

(51)

−2a(ηr)3A2
{

tanhr+1 τ − tanhr−1 τ
}
+3bpηA1A2{tanhp+r−1 τ − tanhp+r+1 τ}

+3hrηA1A2
{

tanhp+r−1 τ − tanhp+r+1 τ
}

= 0.

Now from (50), equating the coefficients of 2r+1 and p+1 gives

2r+1 = p+1, (52)

so that

p = 2r. (53)

It need to be noted that the same result is yielded when the exponent 2r− 1 and p− 1 is equated the other. Again from

(51) equating the coefficients of p+ r−1 and r+1 gives

p+ r−1 = r+1, (54)

that leads to

p = 2. (55)

So that from (3.24),

r = 1. (56)

Setting the coefficients of tanhp+ j τ and tanh2r+ j τ in (50), to zero where j =−1,1 gives

pvA1 −2rηA2
2 = 0, (57)
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which gives after using (3.26) and (3.27):

v =
A2

2
A1

. (58)

Again from (51), setting the coefficients of tanhr+3 τ and tanhp+r+1 τ terms to zero one obtains:

ar(r+1)(r+2)A2η3 −3bpηA1A2 −3hrηA1A2 = 0, (59)

the latter gives after using (55) and (56):

η =±
√

A1(2b+h)
2a

. (60)

From (60), it is possible to see that the solitons will exist provided

A1(2b+h)a > 0. (61)

Finally, setting the coefficients of tanhr+1 τ and tanhp+r−1 τ in (51) to zero gives

rvA2 −ar(r+1)(r+2)A2η3 −2a(ηr)3A2 +3bpηA1A2 +3hrηA1A2 = 0, (62)

this leads to after using (55), (56), (31) and (60):

A2 =±A1
√

2b+h, (63)

which implies that it is necessary to have 2b+h > 0. By inserting (63) in (58), it is possible to recover

v = A1 (2b+h) . (64)

Lastly, the dark (topological) soliton solutions for the Drinfeld-Sokolov system is given by

u(x, t) = A1 tanh2 {η (x− vt)} , (65)

and

v(x, t) = A2 tanh{η (x− vt)} , (66)

where the velocity of the solitons v is given in (58) or (64), free parameters η and A2 are given by (60) and (63) respectively.

We see from (60) that the free parameter η is dependent on the other free parameter A1. Also in (58) the velocity of the

soliton v is dependent on the free parameters A1 and A2.

4 Conclusions

We have derived the exact bright and dark soliton solutions of the two nonlinear evolution equations namely the Zakharov–

Kuznetsov (ZK) equation and the Drinfeld-Sokolov system. This has been realized by using the solitary wave ansatz

method. The solitary wave ansatz is used to carry out this derivation. In view of the analysis, we see that the used method

is an efficient method of integrability for constructing exact soliton solutions. Conditions for the existence of soliton
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envelopes have also been reported. To our knowledge, these new solutions have not been reported in former literature,

they may be of significant importance for the explanation of some special physical phenomena.
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