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Abstract: In this paper, fluid behavior over a flat plate with oscillating motion, starting from rest and wall transpiration is 
presented. The classical solution of this problem is given by Panton [22] and is found to be an especial case of the solution here 
presented. The analytical solution is obtained without the use of any special transformations, such as Laplace or Fourier 
transforms. Three highly accurate and simple semi analytical methods, Variational Iteration Method (VIM), Homotopy 
Perturbation Method (HPM) and Adomians Decomposition Method (ADM) are used to solve this problem. The results show the 
effects of suction and injection of the wall on fluid behavior and reveal that VIM, HPM and ADM are very effective and accurate 
in comparison with the exact solution. A non-dimensional number is used to take in to account the injection or suction of fluid at 
the wall. This parameter is shown to be of great influence on the proposed velocity solution. 
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1. Introduction 
Nonlinear differential equations are very applicable in engineering sciences like mechanical and chemical 
engineering, aerospace sciences and so on. There are some methods for solving linear differential equations like 
Laplace transformation method, Fourier transformation method and variable separation method, but there is no 
analytical method for solving nonlinear differential equations. In recent years, scientists have presented some new 
semi-analytical methods for solving nonlinear differential equations which are simple, high accurate and even could 
solve linear differential equations, for instance Least square method [13-15], Lattice Boltzman method [31-36], 
Differential transform method [3,6], Homotopy asymptotic method [23,30], Adomian’s decomposition method 
[1,2,9,10], He’s HPM [8,9,12,17,18,19,20] and VIM [8,9,10,11,16,21]. One category of nonlinear differential 
equations which is very practical in mechanical engineering is the Navier-stokes equation that describes motion of 
fluids. In this paper, we aim to present the basic ideas of VIM and HPM and ADM and then their implementations to 
Navier-Stokes equations which describe motion of Newtonian viscose fluid flow over an infinite flat plane wall 
when the wall presents harmonic oscillation in the longitudinal direction is illustrated in Fig.1. This problem has 
significant application in boundary layer control with important examples in manufacturing techniques, aeronautical 
systems, mechanical and chemical engineering processes. Almeida cruiz and Ferreira lins [4] calculated the solution 
of this problem, using the method of separation of variables. Das, S., et.al [5] solved Stokes equation for rotating 
fluids over an oscillating plate using Laplace transform technic. Erdogan and Imrak [7] calculated the solution of 
Stokes equations over an oscillating infinite flat plate using the Fourier transform technique. For this problem, three 
semi-analytical methods which solve the pertinent Stokes problem in a situation that there are wall fluid injection or 
suction is presented. Then, a comparison between the obtained results and exact solution is offered. [4].  
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2. Basic equation 
The Navier-Stokes problem considered here, is stated as follows: 

Consider a fluid with viscosity , initially at rest, occupying a half plane 0y  and bounded on the x-axis by an 

infinite plane wall. At time 0t  the wall moves in x-direction with velocity given by   wu t . The fluid 

velocity  ,u y t is described by Navier-Stokes equation, which can be cast as: 
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       for 0y   and  0t   
(1) 

where wV is the transpiration velocity. The initial and boundary conditions are: 

   0expwu u t u i t      at     0y      ,    0t   (2) 

0u        at     y     ,    0t   (3) 

0u       at      0y       ,     0t   (4) 

where 0u  is the maximum amplitude of wall velocity oscillation,  is the frequency of the wall velocity and 

1i    is the imaginary constant. Using the wall velocity given in expression (2), the sin and cos oscillations can 

be treated by taking real and imaginary parts of the velocity field. Eq. (1) and its boundary and initial conditions can 
be rewritten in the dimensionless forms as: 
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(5) 

 U exp i        at       0       ,     0   (6) 

0U        at             ,     0   (7) 

0U       at       0        ,      0   (8) 

where the dimensionless parameters are defined as: 
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(9) 

 
3. Variational Iteration Method 
 
3.1 Principle of method  
To illustrate the basic concepts of the VIM [9], we consider the following differential equation: 

(x)Lu Nu g   (10) 

where L is a linear operator, N a nonlinear operator, and ( )g x an inhomogeneous term. According to the VIM, 

we can construct a correction functional as follows: 

          1 0

x

n n n nu x u x Lu Nu g d          
(11) 

where   is a general Lagrangian multiplier [9] which can be identified optimally via the variational theory. The 

subscript n indicates the n th approximation and nu is considered as a restricted variation, i.e. 0nu  . The VIM 

is a powerful tool to search for semi-analytical solutions for various nonlinear problems. 
 
3.2 Application 
In order to solve Eq. (5) by using VIM, we construct a correction function, as follow: 
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         
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(12) 

its stationary conditions can be obtained as follows: 

  0    

 1 1
t

 


    

(13) 
(14) 

The lagrangian multiplier can be identified as: 

1    (15) 

Substituting Eq. (15) into Eq. (12) results the following iteration formula: 

         
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(16) 

Now we start with an arbitrary initial approximation as follows: 

   2,0 exp(U i       
(17) 

Higher orders of iterations lead to obtain quasi- exact solution. Using the iteration formula (16) and the initial guess 

0U , we have: 
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(18) 

the second iteration: 
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the third iteration: 
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(20) 

In the same manner, the rest of the components of the iteration formula can be obtained which shows that14th  

iterations converged to the exact solution. Therefore we have: 

   14, ,U U     (21) 

 
4. Homotopy Perturbation Method 
 
4.1 Principle of method 
To illustrate the basic concepts of this method [9, 24, 26, 27, 37], we consider the following nonlinear differential 
equation: 
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    0,          A u f r r    (22) 

with the boundary condition of: 

, 0
u

B u
n

    
 

(23) 

 

where ( )A u  is defined as follows: 

     A u L u N u   (24) 

Homotopy perturbation structure is shown as: 

           0 0, 0H v p L v L u pL u p N v f r         (25) 

or 

           0, 1 0H v p p L v L u p A v f r             (26) 

where: 

   , :  0,1 .v r p R   (27) 

 
Obviously, considering Eqs. (25) and (26) we have: 

           0,0 0             ,1 0H v L v L u H v A v f r       (28) 

where  0,1p   is an embedding parameter and 0u  is the first approximation that satisfies the boundary condition. 

According to HPM, the approximation solution of Eq. (28) can be expressed as a power series of p -terms: 

2
0 1 2 ,v v pv p v     (29) 

and the best approximation is: 

0 1 2
1

lim ,
p

u v v v v


      (30) 

 
4.2 Application 
A Homotopy perturbation method can be constructed as follow: 

 

           
2

0 2

,

1 , , , 2 , ,

H U p

p U U p U U U          
    



                            

 
(31) 

we consider  ,U    as: 

         2 3
0 1 2 3, , , , , ,U U pU p U p U               (32) 

Subject to the initial condition: 

    2,0 expU i       
(33) 

Substituting Eq. (32) into Eq. (31) and after some simplification and rearranging based on powers of p -terms we 

have: 
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(34) 

the initial condition is defined as: 

    2
00 ,    , expU i          

(35) 

in the same way we have: 
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 10 ,     , 0U     (37) 
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(38) 

 20 ,    , 0U     (39) 

Solving Eq. (34) to Eq. (39) results, 0 1 2, ,U U U  as follows: 

    2
0 , expU i        

(40) 

    2
1 ,U iexp i         

(41) 

    2 2
2

1
,

2
U exp i          

(42) 

In the same manner we obtained 3 4 , ,U U  , then the solution, when 1p   will be as follows: 

       1 2 3, , , , ,U U U U            (43) 

We ultimately obtain the solution as follows: 

       2
2 2, exp 1 exp

2
U i i i i
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 

          
 

 (44) 

as you can see, the obtained solution is very close to the exact solution [9]. 
 
5. Adomian’s Decomposition Method 
 
5.1 Principle of method 
Let us discuss a brief outline of the Adomian Decomposition Method (ADM) [9, 25, 28].So, we consider a general 
nonlinear equation in the form of: 

Lu Ru Nu g    (45) 

where L is the highest order derivative which is assumed to be easily invertible, R the linear differential operator of 

less order than L, Nu presents the nonlinear terms and g is the source term. Applying the inverse operator 1L  to 

the both sides of Eq. (45), and using the given conditions we obtain: 

     1 1u f x L Ru L Nu     (46) 
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where the function ( )f x  represents the terms arising from integration the source term ( )g x , by using the given 

conditions for nonlinear differential equations, the nonlinear operator  Nu F u  is represented by an infinite of 

the so-called Adomian polynomials: 

 
0

m
m

F u A




   (47) 

The polynomials mA are generated for all kinds of nonlinearity so 0A  depends only on 0u , 1A  depends on 0u  and 

1u , and so on. The Adomian polynomials introduced above show that the sum of subscripts of the components of  

for each term of mA is equal to n . The Adomian method defines the solution ( )u x by the series: 

0
m

m

u u




   (48) 

In the case of ( )F u , the infinite series is a Taylor expansion about 0u , as follows: 

              2 3
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0 0 0 0 02! 3!
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F u F u F u u u F u F u

 
         (49) 

By rewriting Eq. (48) as 0 1 2 3u u u u u     , substituting it into Eq. (49) and then equating the two 

expressions for ( )F u which are found in Eq. (49) and Eq. (47), defines formulas for the Adomian polynomials in 

the form of: 

          2

1 2
1 2 0 0 1 2 0 2!

u u
F u A A F u F u u u F u

 
          (50) 

By equating terms in Eq. (50), the first few Adomians polynomials 0 1 2 3A ,A ,A ,A  and 4A  are given: 

 0 0A F u  (51) 

 1 1 0A u F u   (52) 

   2
2 2 0 1 0

1

2!
A u F u u F u    

(53) 

     3
3 3 0 1 2 0 1 0

1

3!
A u F u u u F u u F u     

(54) 

         2 2 4
4 4 0 2 1 3 0 1 2 0 1 0

1 1 1

2! 2! 4!
ivA u F u u u u F u u u F u u F u

      
 

    
(55) 

Now that the mA  are known, Eq. (47) can be substituted in Eq. (46) to specify the terms in the expansion for the 

solution of Eq. (48). 
 
5.2 Application 
To illustrate the basic concepts of the Adomian’s decomposition method for solving the Eq. (5), first we rewrite it in 
the following operator form: 

     , , 2 ,L U L U L U           (56) 

where the notations: 
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(57) 
 

Assuming L  is invertible; hence the inverse operator 1L
  is given by: 

 1

0
.  L d



     
(58) 

Operating with the inverse operator on both sides of Eq. (56), we obtain: 

        1, ,0 , 2 ,U U L L U L U             (59) 

Adomian method defines the solution  ,U   by the decomposition series: 

   
0

, ,n
n

U U   




  
(60) 

Substituting Eq. (60) into Eq. (59) yields: 

       1

0 0 0

, ,0 , 2 ,n n n
n n n
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 
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 
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(61) 

To determine the components of   ,nU   , Adomian decomposition method uses the recursive relation: 

   0 , ,0U U    (62) 

      1
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    (63) 

Initial approximate solution is: 

    2,0 expU i       
(64) 

Substituting Eq. (64) into Eq. (63), results 1 2 3, ,U U U  as follows: 
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As the same manner, we determined    4 5,  , ,  ,  U U    which leads to the solution as follows: 

       1 2 3, , , ,U U U U           (68) 

 
6. Conclusion 
In this paper, we consider navier-stokes equations for fluid behavior over an oscillating plate with wall transpiration 
for finding analytical solutions via VIM, HPM and ADM. Fig. 2 shows comparison between VIM and the exact 
solution in horizontal velocity profile for the sine oscillation (in this case, we  take the imaginary part of the 

expression) when the transpiration parameter is 0.5  . Fig. 3 shows a comparison between VIM and the exact 

solution in horizontal velocity profile for different values of the transpiration parameter, for the sine excitation. A 
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very good agreement between the result of VIM and the exact solution was observed. Fig. 4 and 5 indicate that the 
difference among ADM and the exact solution are negligible and ADM was converged to the exact solution by 
increasing iterations.  
Fig. 6 confirms the validity of the HPM. As can be seen, HPM completely is similar to exact solution. It may be 
concluded that HPM methodology is very efficient technique in finding analytical solutions for a wide variety of 
linear and nonlinear problems. In this article we use the maple package to calculate the functions obtained from 
VIM, HPM and ADM.  
Fig. 2 and 4 illustrate the positive transpiration parameter (injection) which increases the horizontal velocity and 
negative transpiration parameter (suction), then Fig. 6 has reverse effect since the momentum transmitted to the fluid 
by the wall which is sucked away. 
 
 

 

Fig. 1.  A flat plate with oscillating motion, starting from rest, and wall transpiration. 

 
Fig. 2. Comparison of VIM and exact solution in horizontal velocity profile for various values of non-dimensional 

time , using 0.5   (injection) and a sine excitation of wall. 
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Fig. 3. Comparison of VIM and the exact solution in horizontal velocity profile for non-dimensional time / 2  , 

using various transpiration parameter   with a sine excitation of the wall. 

 

 
Fig. 4. Comparison of ADM and exact solution in horizontal velocity profile for various values of non-dimensional 

time , using 0.5   (injection) and a sine excitation of wall. 
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Fig. 5. Comparison of ADM and exact solution in horizontal velocity profile for non-dimensional time / 2  , 

using various transpiration parameter   with a sine excitation of the wall. 

 

 
Fig. 6. Comparison of HPM and the exact solution in horizontal velocity profile for various values of non-

dimensional time , using 0.5    (suction) and a sine excitation of wall. 
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