
145 

 

NEW TRENDS IN MATHEMATICAL SCIENCES 
Vol. 2, No. 3, 2014, p.145-158  
ISSN 2147-5520 - www.ntmsci.com 

 

Application of DTM for 2D viscous flow through expanding or 
contracting gaps with permeable walls 

 
M. Jafaryara, S. Iman Pourmousavib, M. Hosseinic, E. Mohammadiand   

 
a Department of Mechanical Engineering, Mazandaran Institute of Technology, Babol, Iran 

b Department of Mechanical Engineering, Babol University of Technology, Babol, Iran 
c Department of Mechanical Engineering, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Mazandaran, Iran 

d Department of Mechanical Engineering, Islamic Azad University, Ramsar Branch, Ramsar, Mazandaran, Iran 

 

Abstract: In this study, Differential Transformation Method is used to solve the problem of laminar, isothermal, incompressible 
and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or exit during 
successive expansions or contractions. The concept of this method is briefly introduced, and it’s application for this problem is 
studied. Then, the results are compared with numerical results and the validity of these methods is shown. After this verification, 
we analyze the effects of some physical applicable parameters to show the efficiency of DTM for this type of problems. 
Graphical results are presented to investigate the influence of the non-dimensional wall dilation rate ( ) and permeation 

Reynolds number ( Re ) on the velocity, normal pressure distribution and wall shear stress. The present problem for slowly 

expanding or contracting walls with weak permeability is a simple model for the transport of biological fluids through contracting 
or expanding vessels. 
 
Keywords: Permeation Reynolds number; Non-dimensional wall dilation rate; Differential Transformation Method (DTM). 

1. Introduction  

Studies of fluid transport in biological organisms often concern the flow of a particular fluid inside an expanding or 

contracting vessel with permeable walls. For a valve vessel exhibiting deformable boundaries, alternating wall 

contractions produce the effect of a physiological pump. The flow behavior inside the lymphatic exhibits a similar 

character. In such models, circulation is induced by successive contractions of two thin sheets that cause the 

downstream convection of the sandwiched fluid. Seepage across permeable walls is clearly important to the mass 

transfer between blood, air and tissue [1]. Therefore, a substantial amount of research work has been invested in the 

study of the flow in a rectangular domain bounded by two moving porous walls, which enable the fluid to enter or 

exit during successive expansions or contractions. Dauenhauer and Majdalani [2] studied the unsteady flow in semi-

infinite expanding channels with wall injection. They are characterized by two non-dimensional parameters, the 

expansion ratio of the wall  and the cross-flow Reynolds number. Majdalani and Zhou [3] studied moderate to 

large injection and suction driven channel flows with expanding or contracting walls. Using perturbations in cross-

flow Reynolds number Re, the resulting equation is solved both numerically and analytically. 
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One of the semi-exact methods which does not need small parameters is the Differential Transformation Method. 

Therefore, same as the HAM and the HPM, the DTM can overcome the foregoing restrictions and limitations of 

perturbation methods. This method constructs an analytical solution in the form of a polynomial. It is different from 

the traditional higher-order Taylor series method. The Taylor series method is computationally expensive for large 

orders. The differential transform method is an alternative procedure for obtaining an analytic Taylor series solution 

of differential equations.  The main advantage of this method is that it can be applied directly to nonlinear 

differential equations without requiring linearization, discretization and therefore, it is not affected by errors 

associated to discretization. The concept of DTM was first introduced by Zhou [4], who solved linear and nonlinear 

problems in electrical circuits. Chen and Ho [5] developed this method for partial differential equations and Ayaz 

[6] applied it to the system of differential equations; this method is very powerful [7]. Recently, several papers have 

been published about numerical [8-32] and analytical methods [33-56]. 

 

In this study, differential transformation method is applied to find the approximate solutions of nonlinear differential 

equations governing Two-dimensional viscous flow through expanding or contracting gaps with permeable walls 

and have made a comparison with the Numerical Solution. The forth order Runge-Kutta method has been used and 

considered as the numerical solution for validity of this method. 

 

2. Flow analysis and mathematical formulation 

Consider the laminar, isothermal and incompressible flow in a rectangular domain bounded by two permeable 
surfaces that enable the fluid to enter or exit during successive expansions or contractions. A schematic diagram of 
the problem is shown in Fig. 1. 

The walls expand or contract uniformly at a time-dependent rate a . At the wall, it is assumed that the fluid inflow 

velocity wV is independent of position. The equations of continuity and motion for the unsteady flow are given as 

follows: 
* *
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In the above equations *u  and *v  indicate the velocity components in the x and y directions, *p  denotes the 

dimensional pressure, ,   and t are the density, kinematic viscosity and time, respectively. The boundary 

conditions will be: 
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(4) 

where 
w

a
c

V



 is the wall presence or injection/suction coefficient, that is a measure of wall permeability. The 

stream function and mean flow vorticity can be introduced by putting: 
* * * *

* * *
* * * *
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* * *2 *2
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 (5) 

Due to mass conservation, a similar solution can be developed with respect to *x  . Starting with: 

 
* ** * *
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2
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u v

a aa

y f
y f

a y

 
  


 



 (6) 

Substitution Eq.(6) into Eq. (5) yields: 
 

* * * * * * * *

* * * * * *

y t y x y y y y y
u u u v u vu    (7) 

In order to solve Eq. (7), one uses the chain rule to obtain: 
 

* * * * * * * 2 1 *( 3 ) 0,yyyy yyy yy yyy y yy yytf yf f f f f f a f        (8) 

with the following boundary conditions: 
* *

* *

0: 0, 0,

1: Re, 0,

yy

y

at y f f

at y f f

  

  
 (9) 

where ( )
aa

t




 is the non-dimensional wall dilation rate defined positive for expansion and negative for 

contraction. 

Furthermore, Re waV


 is the permeation Reynolds number defined positive for injection and negative for suction 

through the walls. Eqs. (2.6), (2.8) and (2.9) can be normalized by putting: 
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* * * *
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''' '' ''' ' ''( 3 ) Re Re 0IVf yf f f f f f     (12) 

The boundary conditions (9) will be: 
''

'

0 : 0, 0

1: 1, 0

y f f

y f f

  

  
 (13) 

 

The resulting Eq. (12) is the classic Berman's formula [13], with 0  (channel with stationary walls). 

After the flow field is found, the normal pressure gradient can be obtained by substituting the velocity components 
into Eqs. (1)_(3). Hence it is: 
 

1 1

*

2

[Re Re ( )],

.

y

w

p f ff f yf

p
p

V
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
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
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We can determine the normal pressure distribution, if we integrate Eq. (14). Let cp  be the centreline pressure, 

hence: 
 

( ) 1 1

0
[Re Re ( )],

c

p y y

p
dp f ff f yf          (15) 

Then using 2( ) / 2ff f  and ( ) ( )f yf yf   , the resulting normal pressure drop will be: 

2
1 1 1Re (0) [Re Re ].

2n

f
p f f yf         (16) 

Another important quantity is the shear stress. The shear stress can be determined from Newton's law for viscosity: 

* *

2 * *
* * *

3
( ) .

x y

v x f
v u

a

 


    (17) 

Introducing the non-dimensional shear stress 
*

2
wV




 w, we have: 



149 

 

.
Re

xf


  (18) 

3. Differential Transform Method 
Basic definitions and operations of differential transformation are introduced as follows. 

Differential transformation of the function  f   is defined as follows: 

   

0

k

k

d f1
F k

k ! d
 






 
  

  
 (19)  

In (5.1),  f   is the original function and  F k  is the transformed function which is called the T-function (it is 

also called the spectrum of the  f   at 0   , in the k domain). The differential inverse transformation of 

 F k is defined as: 

  k
0

k 0

f F( k )( )  




   (20) 

By Combining (19) and (20)   f   can be obtained: 

   

0

k k
0

k
k 0

d f ( )
f

k !d
 

  






 

  
  

  
  (21) 

Equation (21) implies that the concept of the differential transformation is derived from Taylor’s series expansion, 

but the method does not evaluate the derivatives symbolically. However, relative derivatives are calculated by an 

iterative procedure that is described by the transformed equations of the original functions. From the definitions of 

(19) and (20), it is easily proven that the transformed functions comply with the basic mathematical operations 

shown in below. In real applications, the function  f  in (21) is expressed by a finite series and can be written as: 

 
N

k
0

k 0

f F( k )( )  


   (22) 

Equation (22) implies that    k
0k N 1

f F( k )( )  

 
   is negligibly small, where N is series size. 

Theorems to be used in the transformation procedure, which can be evaluated from (19) and (20), are given below 

(Table 1). 
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4. Solution with Differential Transformation Method 

Now Differential Transformation Method into governing equations has been applied. Taking the differential 

transform of Eqs. (12) and (13) with respect to   and considering H = 1 gives:  

 

 

 
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0

0

( 1)( 2)( 3)( 4) [ 4] [ ]( 1)( 2)( 3) [ 3]

3 ( 1)( 2) [ 2] Re [ ]( 1)( 2)( 3) [ 3]

Re ( 1) [ 1]( 1)( 2) [ 2] 0,

1 1
where   [ ] .

0 1

k

m

k

m

k

m

k k k k F k m k m k m k m F k m

k k F k F k m m m m F m

k m F k m m m F m

m
m

m

 











             

         

        


  






 (23) 

0 1[0] 0, [1] , [2] 0, [3]F F a F F a     (24) 

where F( k ) are the differential transforms of f ( ) and 0 1a ,a  are constants which can be obtained through 

boundary condition, Eq.(13). This problem can be solved as followed: 

 

0 1[0] 0, [1] , [2] 0, [3] , [4] [6] [8] 0F F a F F a F F F        

0

3
[5]

20
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2 2
1 1 0 1

3 1 1
[7] Re Re

280 70 140
F a a a a     

3 2 2 2 2 2
1 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1
[ 9 ] Re Re Re Re

2240 560 1120 1260 1260 2520
F a a a a a a a a a a            

. 

. 

. 

(25) 

 

The above process is continuous. By substituting equations (25) into the main equation based on DTM, it can be 

obtained that the closed form of the solutions is:  

3 5 2 2 7 3 2
0 1 1 1 0 1 1 1

2 2 2 2 9
0 1 0 1 0 1 0 1

3 3 1 1 1 1
F( ) a a a Re a Re a a a Re a
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1 1 1 1
Re a a a a a Re a Re a a ...

1120 1260 1260 2520

        

   

                   
     

    


 
(26) 

 

By substituting the boundary condition from Eq.(13) into Eq.(26) in point 1   the values of 0 1a ,a   can be 
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obtained.  

2 2 3 2
0 1 1 1 0 1 1 1

2 2 2 2
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' 2 2 3 2
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2 2 2 2
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F ( 1 ) a 3a 5 7 a Re a Re a a 9 a Re a
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1 1 1 1
Re a a a a a Re a Re a a ... 0

1120 1260 1260 2520

    

  

                 
    

     


 (28) 

By solving Equations (31), (32) gives the values of 0 1a ,a . By substituting obtained 0 1a ,a  into Eq. (26), it can be 

obtained the expression of F( ) .  

5. Results and discussion 

The objective of the present study was to apply DTM to obtain an explicit analytic solution of laminar, isothermal, 

incompressible viscous flow in a rectangular domain bounded by two moving porous walls, which enable the fluid 

to enter or exit during successive expansions or contractions (Fig. 1). Fig. 2 shows the comparison between 

numerical method and DTM. It verifies that, there is acceptable agreement between the numerical solution obtained 

by four-order Rung-kutte method and these methods. After this validity, results are given for the velocity profile and 

normal pressure distribution for various values of permeation Reynolds number and non-dimensional wall dilation 

rate. 

Fig. 3 illustrate the behavior of ( )f y (or /uc x ) for different permeation Reynolds number, over a range of non-

dimensional wall dilation rate. For every level of injection or suction, in the case of expanding wall, increasing   

leads to higher axial velocity near the center and the lower axial velocity near the wall. The reason is that the flow 

toward the center becomes greater to make up for the space caused by the expansion of the wall and as a result, the 

axial velocity also becomes greater near the center. 

The pressure distribution in the normal direction for various permeation Reynolds numbers over a range of non-

dimensional wall dilation rates, are plotted in Fig. 3. Fig. 4 shows that for every level of injection or suction, the 

absolute pressure change in the normal direction is lowest near the central portion. Furthermore, by increasing non-

dimensional wall dilation rates the absolute value of pressure distribution in the normal direction increases.  
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Fig. 1.  Two-dimensional domain with expanding or contracting  porous walls. 
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Fig. 2. Comparison between numerical method and DTM solutions for ( )f y when Re 1  . 
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Fig. 4.  The pressure drop in the normal direction ( np ) changes shown over a range of  at 

(a) Re 1                      (b) Re 1 . 
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Table1. Some of the basic operations of Differential Transformation Method 

Original function Transformed function 

     f g h       

   n
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 ( ) 1
m
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( ) mf  
 

     F k G k H k    
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k k
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     
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
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( 1)...( 1)
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m m m k
F k

k

  
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1 ,
[ ] ( )

0 ,

k m
F k k m

k m



    

 

 

6. Conclusion 

In this research, the DTM was successfully applied to find the analytical solution for laminar, isothermal, 
incompressible and viscous flow in a rectangular domain bounded by two moving porous walls, which enable the 
fluid to enter or exit during successive expansions or contractions. The results show that for every level of injection 
or suction, in the case of expanding wall, increasing   leads to higher axial velocity near the center and the lower 

axial velocity near the wall. 
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