NEW TRENDS IN MATHEMATICAL SCIENCES

Vol. 2, No. 2, 2014, p129-133 ISSN 2147-5520 - <u>www.ntmsci.com</u>

Socle-regular QTAG-modules

Fahad Sikander¹, Ayazul Hasan², Alveera Mehdi³

¹College of Computation and Informatics Saudi Electronic University, Jeddah-23442, Kingdom of Saudi Arabia ²Department of Mathematics, Integral University, Lucknow-226026(India) ³Department of Mathematics, Aligarh Muslim University, Aligarh-202002(India) E- mails: ¹fahadsikander@gmail.com, ²ayaz.maths@gmail.com

³alveera_mehdi@rediffmail.com

Abstract: A right module M over an associative ring with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules. In this paper we focus our attention to the socles of fully invariant submodules and introduce a new class of modules, which we term socle-regular QTAG-modules. This class is shown to be large and strictly contains the class of fully transitive modules. Also, here we investigated some basic properties of such modules.

Keywords: QTAG -module, transitive modules, fully invariant submodules, socles.

1. Introduction and preliminaries

The study of QTAG-modules was initiated by Singh [9]. Mehdi, Abbasi etc. worked a lot on this module [7]. They studied different notions and structures on QTAG-modules and developed the theory of these modules by introducing several notions and some in-teresting properties of these modules and characterized different submodules of QTAG-modules. Yet there is much to explore.

Throughout this paper, all rings will be associative with unity and modules M are unital QTAG-modules. An element $x \in M$ is uniform, if xR is a non-zero uniform (hence uniserial) module and for any R-module M with a unique composition series, d(M) denotes its composition length. For a uniform element $x \in M$, e(x) = d(xR) and $H_M(x) = \sup \left\{ d\left(\frac{yR}{xR}\right) | y \in M, x \in yR \text{ and } y \text{ uniform} \right\}$ are the exponent and height of x in M, respectively. $H_k(M)$ denotes the submodule of M generated by the elements of height at least k and $H^k(M)$ is the submodule of M generated by the elements of height at least k and $H^k(M)$ and it is h-reduced if it does not contain any h-divisible submodule. In other words it is free from the elements of infinite height. M is called separable if $M^1 = 0$.

For an ordinal σ , a submodule *N* of *M* is said to be σ -pure, if $H_{\beta}(M) \cap N = H_{\beta}(N)$ for all $\beta \leq \sigma$ and a submodule *K* of *M* is said to be isotype in *M*, if it is σ -pure for every ordinal σ . [3]

A *QTAG*-module *M* defines a well ordered sequence of submodules $M = M^0 \supset M^1 \supset M^2 \supset \cdots \supset M^T = 0$ for some ordinal τ . Here

$$M^1 \bigcap_{k \in \omega} H_k(M)$$
, $M^{\sigma+1} = (M^{\sigma})^1$ and $M^{\sigma} = \bigcap_{\rho < \sigma} M^{\rho}$.

if σ is a limit ordinal. M^{σ} is said to be the σ^{th} -Ulm submodule of M. The σ^{th} -Ulm invariant of $M, f_M(\sigma)$ is the cardinality of $g(S_{\alpha}(H_{\alpha}(M))/Soc(H_{\sigma+1}(M)))$. It is interesting to note that the results which hold for TAG-modules also hold good for QTAG-modules [9].

2. The class of socle-regular QTAG-modules

The classification of all fully invariant submodules of reduced QTAG-modules is a vast subject. We start these investigations by characterizing the socles of fully invariant modules. Here we deal with the socles of fully invariant submodules of reduced QTAG-modules.

To study fully invariant modules, the concept of U-sequences is extensively used. In a QTAG-module M, for $x \in M, U(x)$, the U-sequence for x is a monotonically increasing sequence of ordinals $\{\sigma_1\}, i \ge 0, \sigma_1 < \text{length of } M$ [8]. The symbol ∞ may be included in this U-sequence i.e. the sequence be ∞ from some point on but that if a gap occurs between σ_k and σ_{k+1} , the σ_k^{th} -Ulm invariant of M is non zero.

To study the socles of fully invariant submodules, we define the following:

Definition 2.1. A h-reduced QTAG-module M is said to be socle-regular if for all fully invariant submodules N of M, there exists an ordinal σ such that $Soc(N) = Soc(H_{\sigma}(M))$. Hence σ depends on N.

Definition 2.2. For a submodule N of M, put $\sigma = \min\{H(x)|x \in Soc(N)\}$ and denote $\sigma = \inf(Soc(N))$. Here $Soc(N) \subseteq Soc(H_{\sigma}(M))$.

Remark 2.1. If K is submodule of M containing N, $\inf(\operatorname{Soc}(N))$ may be calculated with respect to N and M respectively. To differentiate we write $\inf(\operatorname{Soc}(N))_{K}$ and $\inf(\operatorname{Soc}(N))_{M}$ respectively, but if K is an isotype submodule of M, then $\inf(\operatorname{Soc}(N))_{K} = \inf(\operatorname{Soc}(N))_{M}$. However if K is not an isotype submodule of M, then $\inf(\operatorname{Soc}(N))_{K} \leq \inf(\operatorname{Soc}(N))_{M}$.

To study these modules we need the following elementary facts:

Proposition 2.1. (i) If N is a submodule of the h-reduced QTAG-module M such that $Soc(H_k(M)) \subseteq Soc(N)$ for some integer k, then inf (Soc(N)) is finite.

(ii) If N is a fully invariant submodule of M and $\inf(Soc(N)) = k$, $k < \omega$, then $Soc(N) = Soc(H_k(M))$.

Proof. (i) Let $\sigma = inf(Soc(N))$. Now $\sigma \le \min\{H_M(x) | x \in Soc(H_k(M))\}$. If $\sigma \ge \omega$, then $Soc(H_k(M)) \subseteq H_{\omega}(M) = H_{\omega}(H_k(M))$. Thus $Soc(H_k(M)) \subseteq H_{\omega}(H_k(M))$. This means $H_k(M)$ is *h*-divisible (if not zero) which is not possible because *M* is *h*-reduced. Thus $inf(Soc(N)) < \omega$.

(*ii*) Since inf(Soc(N)) = k, $Soc(N) \subseteq Soc(H_k(M))$. Let x be a uniform element of Soc(N) such that $H_M(x) = k$, then there exists $y \in M$ such that $d\left(\frac{yR}{xR}\right) = k$. Since every element of exponent one and finite height can be embedded in a direct summand, by [5] yR is a summand of M containing x. Therefore $M = yR \oplus M'$, for some M' of M. If z is an arbitrary uniform element of $Soc(H_k(M))$, then there exists $u \in M$ such that $d\left(\frac{uR}{zR}\right) = k$. Now e(u) = k + 1, we may define a homomorphism $f: M \to M$ such that $y \to u$, f(M') = 0 and f(x) = z. Since Soc(N) is fully invariant in M, $z \in Soc(N)$ and $Soc(H_k(M)) \subseteq Soc(N)$, proving the result.

Remark 2.2. For a fully invariant submodule N of a separable module M, inf(Soc(N)) is finite. Hence M is socleregular.

Let us recall the definition of fully transitive QTAG-modules [6]:

Definition 2.3. A QTAG-module M is fully transitive if for every pair of uniform elements $x, y \in M$, $H_M(x_i) \leq H_M(y_i)$ for all $i \geq 0$ implies that there exists an endomorphism of M that maps x onto y. Here $d\left(\frac{x_iR}{x_R}\right) = d\left(\frac{y_iR}{y_R}\right) = i$.

Remark 2.3. We may extend this definition for all the elements if we consider U-sequences of the elements [4], consisting of ordinals and the symbol ∞ . In other words if $U(x) = (\alpha_1, \alpha_2, ...)$ and $U(y) = (\beta_1, \beta_2, ...)$ such that $\alpha_{\rho} < \beta_{\rho}$, then there exists an endomorphism of M that maps x onto y.

Definition 2.4. Let $\{\alpha_i\}$ be a monotonically increasing sequence of ordinals defined for $i \ge 0$. If λ is the length of a module M and $\alpha_i < \lambda$ except that the sequence be ∞ from some point on, $\{\alpha_i\}$ is called a U-sequence relative to M. Whenever a gap occurs between α_{n-1} and α_n , the α_n^{th} -Ulm invariant of M is non-zero.

Now we prove the following:

Theorem 2.1. If M is a fully transitive QTAG-module, then M is socle-regular.

Proof. The fully invariant submodule $N \subseteq M$ is generated by the elements x such that $U(x) \ge U$, where $U = \{\alpha_i\}$ is a U-sequence relative to M. If $x \in Soc(N)$, then $U(x) = (\beta, \infty, ...)$ for some ordinal $\beta \ge \alpha_0$, therefore $x \in Soc(H_{\alpha_0}(M))$ and $Soc(N) \subseteq Soc(H_{\alpha_0}(M))$. On the other side if $z \in Soc(H_{\alpha_0}(M))$ then $U(z) = (\beta, \infty, ...)$ where $\beta \ge \alpha_0$. Now $U(z) \ge U$, therefore $z \in N$ and $Soc(H_{\alpha_0}(M)) \subseteq Soc(N)$ and $Soc(N) = Soc(H_{\alpha_0}(M))$. Thus M is socle-regular.

To investigate the properties of socle-regular QTAG-modules we need the following lemmas:

Lemma 2.1. Let M be QTAG-module such that $M = \bigoplus_{i \in l} M_i$. If N is a fully invariant submodule of M, then $i \in l$

(i) $N = \bigoplus_{i \in l} (M_i \cap N);$

(ii) each $M_i \cap N$ is fully invariant in M_i .

Proof. An endomorphism f of $M \oplus K$ may be expressed as the matrix $\begin{pmatrix} f_1 & f_2 \\ f_3 & f_4 \end{pmatrix}$. Here f_2 is a homomorphism from M to K. Now $f(N \oplus 0) \subseteq f_1(N) \oplus f_2(N) \subseteq N \oplus f_2(N)$ because N is fully invariant in M. Since f_2 is a homomorphism from M to K and K is separable, f_2 maps $H_{\omega}(M)$ to zero. Also $N \subseteq H_{\omega}(M)$, $f_2(N) = 0$ therefore $f(N \oplus 0) \subseteq N \oplus 0$ and N is fully invariant in $M \oplus K$.

Theorem 2.2. Let $M = N \oplus K$ be a QTAG-module with K, separable. Then M is socle-regular if and only if N is socle-regular.

Proof. Suppose that N is socle-regular and L is fully invariant in M. By Lemma 2.1, $L = (L \cap N) \oplus (L \cap K)$ and $L \cap N$, $L \cap K$ are fully invariant in N and K respectively. If $L \cap K \neq 0$ then $inf(Soc(L \cap K))_{K}$ is finite because K is separable. Now $Soc(L) = Soc(L \cap N) \oplus Soc(L \cap K)$ thus $inf(Soc(L))_{M} \leq inf(Soc(L \cap K))_{M}$. Being a direct summand, K is h-pure in M, therefore $inf(Soc(L \cap K))_{M} = inf(Soc(L \cap K))_{K}$. This implies $inf(Soc(L))_{M}$ is also finite and by Proposition 2.1, $Soc(L) = Soc(H_{k}(M))$, for some integer k.

If $L \cap K = 0$, then L is a fully invariant submodule of the socle-regular QTAG-module N. Therefore $Soc(L) = Soc(H_{\alpha}(N))$ for some ordinal α . If $\alpha \ge \omega$, $H_{\alpha}M = H_{\alpha}(N)$ as K is separable and $Soc(L) = Soc(H_{\alpha}(M))$ and if $\alpha < \omega$, $Soc(L) = Soc(H_k(N))$ for some k and L is a fully invariant submodule of N. Now by Proposition 2.1 (i), $inf(Soc(L))_N$ is finite. Being a direct summand N is h-pure in M, therefore $inf(Soc(L))_M$ is also finite and by Proposition 2.1 (ii), $Soc(L) = Soc(H_k(M))$ for some integer k.

Conversely suppose that *M* is socle-regular. If *N* is not socle-regular then there exists a fully invariant submodule *L* of *M* such that $Soc(L) \neq (H_{\alpha}(N))$ for any ordinal α . If inf(Soc(L)) is finite then by Proposition 2.1 (*i*), $Soc(L) = Soc(H_k(N))$ for some finite *k*. This contradiction proves that inf(Soc(L)) is infinite and $Soc(L) \subseteq H_{\omega}(N)$. Since *N* is fully invariant in *N*, Soc(L) is also fully invariant in *N*. Now by Lemma 2.2, Soc(L) is fully invariant in a socle-regular module *M*. Therefore $Soc(L) = Soc(H_{\alpha}(M))$, for some ordinal α . Since $Soc(L) \subseteq H_{\omega}(M)$, α must be infinite. Also

 $H_{\alpha}(K) = 0, Soc(L) = Soc(H_{\alpha}(N)) \oplus Soc(H_{\alpha}(K)) = Soc(H_{\alpha}(N))$, which is a contradiction. Therefore N is socleregular.

Theorem 2.3. The QTAG-module M is socle-regular if and only if the direct sum of β copies of M, $\bigoplus_{\gamma < \beta} M_{\gamma}$ is socle-

regular for any cordinal β .

Proof. Let *K* be a fully invariant submodule of $\bigoplus_{\gamma < \beta} M_{\gamma}$, then by Lemma 2.1, $K = \bigoplus_{\gamma < \beta} (M_{\gamma} \cap K)$, where each M_{γ} is isomorphic to *M*. Now $Soc(K) = \bigoplus_{\gamma < \beta} Soc(M_{\gamma} \cap K)$ and each $M_{\gamma} \cap K$ is fully invariant in M_{γ} . Since *M* is soclereguler, each $Soc(M_{\gamma} \cap K) = Soc(H_{\alpha_{\gamma}}(M_{\gamma}))$ for ordinals α_{γ} 's are not equal, the submodule $\bigoplus_{\gamma < \beta} Soc(H_{\alpha_{\gamma}}(M_{\gamma}))$ is

not fully invariant, therefore $Soc(K) = Soc\left(H_{\alpha} \bigoplus_{\gamma < \beta} M_{\gamma}\right)$ where $\alpha = \alpha_{\gamma}$ for all γ .

Conversely suppose $\bigoplus_{\gamma < \beta} M_{\gamma}$ is socle-reguler and N an arbitrary fully invariant sub-module of M. Now $\bigoplus_{\gamma < \beta} N_{\gamma}$ is $\gamma < \beta$

fully invariant in $\bigoplus_{\gamma < \beta} M_{\gamma}$ which is socle-regular. Therefore we have $Soc\left(\bigoplus_{\gamma < \beta} N_{\gamma}\right) = Soc\left(H_{\alpha}\left(\bigoplus_{\gamma < \beta} M_{\gamma}\right)\right)$ for some ordinal α and $Soc(N) = Soc(H_{\alpha}(M))$ implying that M is socle-regular.

Proposition 2.2. Let M be a socle-regular QTAG-module and L a fully invariant sub-module of M such that $H_{\omega}(L) = H_{\omega}(M)$. Then L is socle-regular.

Proof. Let *K* be a fully invariant submodule of *L*. Then *K* is also fully invariant in *M*. Since *M* is socle-regular $Soc(K) = Soc(H_{\alpha}(M)) = Soc(H_{\alpha}(L))$ for all ordinals $\alpha \ge \omega$. Therefore $Soc(K) = Soc(H_{\alpha}(M)) = Soc(H_{\alpha}(L))$ if $\alpha \ge \omega$ and if α is finite, then $Soc(K) = Soc(H_k(M)) \supseteq Soc(H_k(L))$ and by Proposition 2.1 (*i*), $inf(Soc(K))_L$ is finite. Again by Proposition 2.1 (*ii*), $Soc(K) = Soc(H_j(L))$ for some *j* and *L* is socle-regular.

Remark 2.4. For any large submodule L of M, $H_{\omega}(L) = H_{\omega}(M)$, therefore large sub-modules are socle-regular.

For a QTAG-module M, the property of being socle-regular is shared with $H_{\omega}(M)$ under certain conditions.

Theorem 2.4. Let M be a QTAG-module such that $M/H_{\omega}(M)$ is a direct sum of uniserial modules. Then M is socleregular if and only if $H_{\omega}(M)$ is socle-regular.

Proof. Let N be a fully invariant submodule of M. If $Soc(N) \not\subseteq Soc(H_{\omega}(M))$, then inf(Soc(N)) is finite and by Proposition 2.1, $Soc(N) = Soc(H_k(M))$, for some $k \in \mathbb{Z}^+$ and if $Soc(N) \subseteq Soc(H_{\omega}(M))$, Soc(N) is fully invariant in $H_{\omega}(M)$. Since $H_{\omega}(M)$ is socle-regular, $Soc(N) = Soc(H_{\alpha}(H_{\omega}(M)))$ for some ordinal α and Soc(N) = $Soc(H_{\omega+\alpha}(M))$ and M is socle-regular. Necessity is trivial.

Theorem 2.5. Let $M = N \oplus K$ be a socle-regular module such that every homomorphism from N to K is small, then N is socle-regular.

Proof. Let *L* be a fully invariant submodule of *N*. If inf(Soc(L)) is finite then by Proposition 2.1, $Soc(L) = Soc(H_k(N))$ for some $k \in \mathbb{Z}^+$, otherwise $Soc(L) \subseteq Soc(H_\omega(N))$. Since any endomorphism *f* of *M* may be expressed as the matrix $\begin{pmatrix} f_1 & f_2 \\ g_1 & g_2 \end{pmatrix}$ where $f_2 \in \text{Hom}(N, K)$ i.e. f_2 is small. Now $f(Soc(L \oplus 0)) \subseteq f_1(Soc(L)) \oplus f_2(Soc(L))$ and $Soc(L) \subseteq H_\omega(N)$ imply that $f_2(Soc(L)) = 0$ as f_2 is small. Therefore $Soc(L) \oplus 0$ is fully invariant in *M* and $Soc(L) \oplus 0 = Soc(H_\lambda(M))$ for some ordinal λ . Thus $Soc(L) = Soc(H_\lambda(N))$ and *N* is socle-regular.

We end this paper with the following open problem:

Problem. Are all the *QTAG*-modules of length $\omega + 1$ regular?

References

- [1] Fuchs L., Infinite Abelian Groups, Vol. I, Academic Press, New York, (1970).
- [2] Fuchs L., Infinite Abelian Groups, Vol. II, Academic Press, New York, (1973).
- [3] Hefzi M. A. and Singh S., On σ -pure submodules of QTAG-modules, Arch. Math., 46(1986), 501 510.
- [4] Kaplansky I., Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954 and 1969.
- [5] Khan, M.Z., Modules behaving like torsion abelian groups II, Math. Japonica, 23(5)(1979), 509 516.
- [6] Mehdi A., Abbasi M. Y. and Mehdi F., Nice decomposition series and rich modules, South East Asian J. Math. & Math. Sci., 4(1), 1-6, (2005).
- [7] Mehdi A., Abbasi M. Y. and Mehdi F., On (ω + n)-projective modules, Ganita Sandesh, 20(1), 27-32, (2006).
- [8] Mehdi A., Naji S.A.R.K and Hasan A., Small homomorphisms and large submodules of QTAG-modules, Scientia Series A., Math. Sci., 23(2012), 19-24.
- [9] Singh S., Some decomposition theorems in abelian groups and their generalizations, Ring Theory, Proc. of Ohio Univ. Conf. Marcel Dekker N.Y. 25, 183-189, (1976).