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Abstract: In this paper we introduce the sequence spaces 𝜒(𝑝, 𝜎, 𝑞, 𝑠), Λ(𝑝, 𝜎, 𝑞, 𝑠) and define a semi normed space 

(𝑋, 𝑞) semi normed by 𝑞. We study some properties of these sequence spaces and obtain some inclusion relations. 
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1.  Introduction  

A complex sequence, whose 𝑘th term is 𝑥𝑘 , is denoted by {𝑥𝑘} or simply 𝑥. Let 𝜙 be the set of all finite sequences. A 

sequence 𝑥 = {𝑥𝑘} is said to be anlaytic 
  

sup
𝑘

(|𝑥𝑘|)
1

𝑘 < ∞f. The vector space of all analytic sequences will be denoted 

by Λ. A sequence 𝑥 is called chi sequence if lim
𝑘→∞

(𝑘! |𝑥𝑘|)
1

𝑘 = 0. 

The vector space of all chi sequences will be denoted by 𝜒. Let 𝜎 be a one-one mapping of the set of positive integers 

into itself such that 𝜎𝑚(𝑛) = 𝜎(𝜎𝑚−1(𝑛)), 𝑚 = 1,2,3, … 

A continuous linear functional 𝜙 on Λ is said to be an invariant mean or a 𝜎-mean if and only if (1) 𝜙(𝑥) ≥ 0 when 

the sequence 𝑥 =  (𝑥𝑛) has 𝑥𝑛 ≥ 0for all 𝑛 (2) 𝜙(𝑒) = 1 where 𝑒 =  (1,1,1, … ) and (3) 𝜙({𝑥𝜎(𝑛)}) = 𝜙({𝑥𝑛}) for all 

𝑥 ∈ Λ. For certain kinds of mappings 𝜎, every invariant mean 𝜙 extends the limit functional on the space 𝐶 of all real 

convergent sequences in the sense that 𝜙(𝑥) = lim 𝑥 for all 𝑥 ∈ 𝐶. Consequently 𝐶 ⊂ 𝑉𝜎 , where 𝑉𝜎  is the set of analytic 

sequences all of those 𝜎-means are equal. 

If  𝑥 = (𝑥𝑛), set 𝑇𝑥 = (𝑇𝑥)1 𝑛⁄ = (𝑥𝜎(𝑛)). It can be shown that  

𝑉𝜎 = {𝑥 = (𝑥𝑛): lim
𝑚→∞

𝑡𝑚𝑛(𝑥𝑛)1 𝑛⁄ = 𝐿 uniformly in 𝑛, 𝐿 = 𝜎 − lim
𝑛→∞

(𝑥𝑛)
1

𝑛} where 

 𝑡𝑚𝑛(𝑥) =
(𝑥𝑛 + 𝑇𝑥𝑛 + ⋯ + 𝑇𝑚𝑥𝑛)1 𝑛⁄

𝑚 + 1
 (1) 

Given a sequence 𝑥 = {𝑥𝑘} its 𝑛th section is the sequence 𝑥(𝑛) = {𝑥1, 𝑥2, … , 𝑥𝑛, 0,0, … }, 𝛿(𝑛) = (0,0, … ,1,0,0, … ), 1 

in the 𝑛th place and zeros elsewhere. An FK-space (Frechet coordinate space) is a Frechet space which is made up of 

numerical sequences and has the property that the coordinate functionals 𝑝𝑘(𝑥) = 𝑥𝑘  (𝑘 = 1,2, … ) are continuous. 

2. Definitions and Preliminaries 

Definition 2.1. The space consisting of all those sequences 𝑥 in 𝑤 such that (𝑘! |𝑥𝑘|)
1

𝑘 → 0 as 𝑘 → ∞ is denoted by 𝜒. 

In other words (𝑘! |𝑥𝑘|)1 𝑘⁄  is a null sequence 𝜒 is called the space of chi sequences. The space 𝜒 is a metric space with 

the metric 𝑑(𝑥, 𝑦) = {
  

sup
𝑘

(𝑘! |𝑥𝑘 − 𝑦𝑘|)
1

𝑘, 𝑘 = 1,2,3, … } for all 𝑥 = {𝑥𝑘} and 𝑦 = {𝑦𝑘} in 𝜒. 
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Definition 2.2. The space consisting of all those sequence 𝑥 in 𝑤 such that (
  

sup
𝑘

(|𝑥𝑘|)
1

𝑘) < ∞ is denoted by Λ. In other 

words (
  

sup
𝑘

(|𝑥𝑘|)
1

𝑘) is a bounded sequence. 

Definition 2.3. Let 𝑝, 𝑞 be semi norms on a vector space 𝑋. Then 𝑝 is said to be stronger than 𝑞 if whenever (𝑥𝑛) is a 

sequence such that 𝑝(𝑥𝑛) → 0, then also 𝑞(𝑥𝑛) → 0. If each is stronger than the other, then 𝑝 and 𝑞 are said to be 

equivalent. 

Lemma 2.4. Let 𝑝 and 𝑞 be semi norms on a linear space 𝑋. Then 𝑝 is stronger than 𝑞 if and only if there exists a 

constant 𝑀 such that 𝑞(𝑥) ≤ 𝑀𝑝(𝑥)for all 𝑥 ∈ 𝑋. 

Definition 2.5. A sequence space 𝐸  is said to be solid or normal if (𝛼𝑘𝑥𝑘) ∈ 𝐸  whenever (𝑥𝑘) ∈ 𝐸  and for all 

sequences of scalars (𝛼𝑘) with |𝛼𝑘| ≤ 1, for all 𝑘 ∈ 𝑁. 

Definition 2.6. A sequence space 𝐸 is said to be monotone if it contains the canonical pre-images of all its step spaces. 

Remark 2.7. From the above two definitions, it is clear that a sequence space 𝐸 is solid implies that 𝐸 is monotone. 

Definition 2.8. A sequence 𝐸 is said to be convergence free if (𝑦𝑘) ∈ 𝐸 whenever (𝑥𝑘) ∈ 𝐸 and 𝑥𝑘  =  0 implies that 

𝑦𝑘  =  0. 

Let 𝑝 =  (𝑝𝑘) be a sequence of positive real numbers with 0 <  𝑝𝑘  < sup 𝑝𝑘  =  𝐺. Let 𝐷 =  max(1, 2𝐺−1). Then for 

𝑎𝑘 , 𝑏𝑘 ∈ 𝐶, the set of complex numbers for all 𝑘 ∈ 𝑁 we have. 

|𝑎𝑘 + 𝑏𝑘|1 𝑘⁄ ≤ 𝐷{|𝑎𝑘|1 𝑘⁄ + |𝑏𝑘|1 𝑘⁄ } 
(2) 

Let (𝑋, 𝑞) be a semi normed space over the field 𝐶  of complex numbers with the semi norm 𝑞. The symbol Λ(𝑋) 

denotes the space of all analytic sequences defined over 𝑋. We define the following sequence spaces: 

Λ(𝑝, 𝜎, 𝑞, 𝑠) = {𝑥 ∈ Λ(𝑋):
  

sup
𝑛, 𝑘

𝑘−𝑠 [𝑞 (|𝑥𝜎𝑘(𝑛)|
1 𝑘⁄

)]
𝑝𝑘

< ∞ uniformly in 𝑛 ≥ 0, 𝑠 ≥ 0} 

𝜒(𝑝, 𝜎, 𝑞, 𝑠) = {𝑥 ∈ 𝜒(𝑋): 𝑘−𝑠 [𝑞 (|𝑥𝜎𝑘(𝑛)|
1 𝑘⁄

)]
𝑝𝑘

→ 0, as 𝑘 → ∞ uniformly in 𝑛 ≥ 0, 𝑠 ≥ 0} 

3. Main Results 

Theorem 3.1. 𝜒(𝑝, 𝜎, 𝑞, 𝑠) is a linear space over the set of complex numbers.. 

Proof. It is routine verification. Therefore the proof is omitted. 

Theorem 3.2. 𝜒(𝑝, 𝜎, 𝑞, 𝑠)is paranormed space with 

𝑔∗(𝑥) = {sup
𝑘≥1

𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1
𝑘] , uniformly in 𝑛 > 0} 

where 𝐻 = max (1, sup 
𝑘

𝑝𝑘). 

Proof. Clearly 𝑔(𝑥) = 𝑔(−𝑥) and 𝑔(𝜃) = 0, where 𝜃 is the zero sequence. It can be easily verified that 𝑔(𝑥 + 𝑦) ≤

𝑔(𝑥) + 𝑔(𝑦). Next 𝑥 → 𝜃, 𝜆 fixed implies 𝑔(𝜆𝑥) → 0. Also 𝑥 → 𝜃 and 𝜆 → 0 imply 𝑔(𝜆𝑥) → 0. The case 𝜆 → 0 and 𝑥 

fixed implies that 𝑔(𝜆𝑥) → 0 follows from the following expressions. 

𝑔(𝜆𝑥) = {sup
𝑘≥1

𝑘−𝑠 [𝑞 (|𝑥𝜎𝑘(𝑛)|
1 𝑘⁄

)]  uniformly in 𝑛, 𝑚 ∈ 𝑁} 

𝑔(𝜆𝑥) = {(|𝜆|1 𝑘⁄ 𝑟)
𝑝𝑚 𝐻⁄

: sup
𝑘≥1

𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

] , 𝑟 > 0, uniformly in 𝑛, 𝑚 ∈ 𝑁}. 
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where 𝑟 =
1

|𝜆|1 𝑘⁄ . Hence 𝜒(𝑝, 𝜎, 𝑞, 𝑠) is a paranormed space. This completes the proof. 

Theorem 3.3. 𝜒(𝑝, 𝜎, 𝑞, 𝑠) ∩ Λ(𝑝, 𝜎, 𝑞, 𝑠) ⊆ 𝜒(𝑝, 𝜎, 𝑞, 𝑠). 

Proof. It is routine verification. Therefore the proof  is omitted. 

Theorem 3.4. 𝜒(𝑝, 𝜎, 𝑞, 𝑠) ⊂ Λ(𝑝, 𝜎, 𝑞, 𝑠). 

Proof. It is routine verification. Therefore the proof  is omitted. 

Remark 3.5. Let 𝑞1 and 𝑞2 be two semi norms on 𝑋, we have 

(i)  𝜒(𝑝, 𝜎, 𝑞1, 𝑠) ∩ 𝜒(𝑝, 𝜎, 𝑞2, 𝑠) ⊆ 𝜒(𝑝, 𝜎, 𝑞1 + 𝑞2, 𝑠); 

(ii) If 𝑞1 is stronger than 𝑞2, then 𝜒(𝑝, 𝜎, 𝑞1, 𝑠) ⊆ 𝜒(𝑝, 𝜎, 𝑞2, 𝑠); 

(iii) If 𝑞1 is equivalent to 𝑞2, then 𝜒(𝑝, 𝜎, 𝑞1, 𝑠) = 𝜒(𝑝, 𝜎, 𝑞2, 𝑠). 

Theorem 3.6. (i) Let 0 ≤ 𝑝𝑘 ≤ 𝑟𝑘 and {
𝑟𝑘

𝑝𝑘
} be bounded. Then 𝜒(𝑟, 𝜎, 𝑞, 𝑠) ⊂ 𝜒(𝑝, 𝜎, 𝑞, 𝑠); 

(ii) 𝑠1 ≤ 𝑠2 implies 𝜒(𝑝, 𝜎, 𝑞, 𝑠1) ⊂ 𝜒(𝑝, 𝜎, 𝑞, 𝑠2). 

Proof of (i). 

Let 𝑥 ∈ 𝜒(𝑟, 𝜎, 𝑞, 𝑠) (3) 
 

𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1
𝑘]

𝑟𝑘

→ 0 as 𝑘 → ∞ (4) 

Let 𝑡𝑘 = 𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1

𝑘]
𝑟𝑘

→ 0 and 𝜆𝑘 =
𝑝𝑘

𝑟𝑘
. Since 𝑝𝑘 ≤ 𝑟𝑘, we have 0 ≤ 𝜆𝑘 ≤ 1. Take 0 < 𝜆 > 𝜆𝑘. Define 

𝑢𝑡 = 𝑡𝑘 (𝑡𝑘 ≥ 1); 𝑢𝑘 = 0 (𝑡𝑘 < 1); and 𝑣𝑘 = 0 (𝑡𝑘 ≥ 1); 𝑣𝑘 = 𝑡𝑘 (𝑡𝑘 < 1); 𝑡𝑘 = 𝑢𝑘 + 𝑣𝑘𝑡𝑘
𝜆𝑘 + 𝑣𝑘

𝜆𝑘 . Now it follows 

that 

𝑢𝑘
𝜆𝑘 ≤ 𝑡𝑘 and 𝑣𝑘

𝜆𝑘 ≤ 𝑣𝑘
𝜆 (5) 

(i.e.) 𝑡𝑘
𝜆𝑘 ≤ 𝑡𝑘 + 𝑣𝑘

𝜆 by (5) 

𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝜆𝑘

≤ 𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑟𝑘

 

𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑝𝑘 𝑟𝑘⁄

≤ 𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑟𝑘

 

𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑝𝑘

≤ 𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑟𝑘

. 

But 𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑟𝑘

→ 0 as 𝑘 → ∞ by (4). 

𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑝𝑘

→ 0 as 𝑘 → ∞. 

Hence 

𝑥 ∈ 𝜒(𝑟, 𝜎, 𝑞, 𝑠) (6) 

From (3) and (6) we get 𝜒(𝑟, 𝜎, 𝑞, 𝑠) ⊂ 𝜒(𝑝, 𝜎, 𝑞, 𝑠). Hence the proof. 

Proof of (ii). It is routine verification. Therefore the proof is omitted. 
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Theorem 3.7. The space 𝜒(𝑝, 𝜎, 𝑞, 𝑠) is solid and as such is monotone. 

Proof. Let (𝑥𝑘) ∈ 𝜒(𝑝, 𝜎, 𝑞, 𝑠) and (𝛼𝑘) be a sequence of scalars such that |𝛼𝑘| ≤ 1 for all 𝑘 ∈ 𝑁. Then 

𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝛼𝑘𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑝𝑘

≤ 𝑘−𝑠 [𝑞(𝜎𝑘(𝑛)! |𝛼𝑘𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑝𝑘

 for all 𝑘 ∈ 𝑁. 

[𝑞(𝜎𝑘(𝑛)! |𝛼𝑘𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑝𝑘

≤ [𝑞(𝜎𝑘(𝑛)! |𝛼𝑘𝑥𝜎𝑘(𝑛)|)
1 𝑘⁄

]
𝑝𝑘

 for all 𝑘 ∈ 𝑁. This completes the proof.  

Theorem 3.8. The space 𝜒(𝑝, 𝜎, 𝑞, 𝑠) are not convergence free in general. 

Proof. The proof follows from the following example. 

Example 3.9. Let 𝑠 = 0; 𝑝𝑘 = 1 for 𝑘 even and 𝑝𝑘 = 2 for 𝑘 odd. Let 𝑋 = 𝐶, 𝑞(𝑥) = |𝑥| and 𝜎(𝑛) = 𝑛 + 1 for all 𝑛 ∈

𝑁 . Then we have 𝜎2(𝑛) = 𝜎(𝜎(𝑛)) = 𝜎(𝑛 + 1) = (𝑛 + 1) + 1 = 𝑛 + 2  and 𝜎3(𝑛) = 𝜎(𝜎2(𝑛)) = 𝜎(𝑛 + 2) =

(𝑛 + 2) + 1 = 𝑛 + 3. Therefore, 𝜎𝑘(𝑛) = (𝑛 + 𝑘) for all 𝑛, 𝑘 ∈ 𝑁. Consider the sequences (𝑥𝑘) and (𝑦𝑘) defined as 

𝑥𝑘 = (
1

𝑘
)

𝑘

×
1

𝑘!
 and (𝑦𝑘) = 𝑘𝑘 ×

1

𝑘!
 for all 𝑘 ∈ 𝑁. (i.e.) |𝑥𝑘|1 𝑘⁄ =

1

𝑘
×

1

𝑘!
 and |𝑦𝑘|1 𝑘⁄ =

1

𝑘
×

1

𝑘!
 for all 𝑘 ∈ 𝑁. 

Hence |(
1

(𝑛+𝑘)
)

𝑛+𝑘

|
𝑝𝑘

→ 0  as 𝑘 → ∞ . Therefore (𝑥𝑘) ∈ 𝜒(𝑝, 𝜎) . But |(
1

(𝑛+𝑘)
)

𝑛+𝑘

|
𝑝𝑘

→ 0  as 𝑘 → ∞ . Hence (𝑦𝑘) ∉

𝜒(𝑝, 𝜎). Hence the space 𝜒(𝑝, 𝜎, 𝑞, 𝑠) are not convergence free in general. This completes the proof. 
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